87th Advisory Forum Meeting Parma, 15-16 March 2023

APPLYING OMICS AND BIOINFORMATICS APPROACHES

Claudia Heppner

APPLICATION OF OMICS AND BIOINFORMATICS IN RISK ASSESSMENT

EVENT REPORT

APPROVED: 13 November 2018 doi:10.2903/sp.efsa.2018.EN-1512

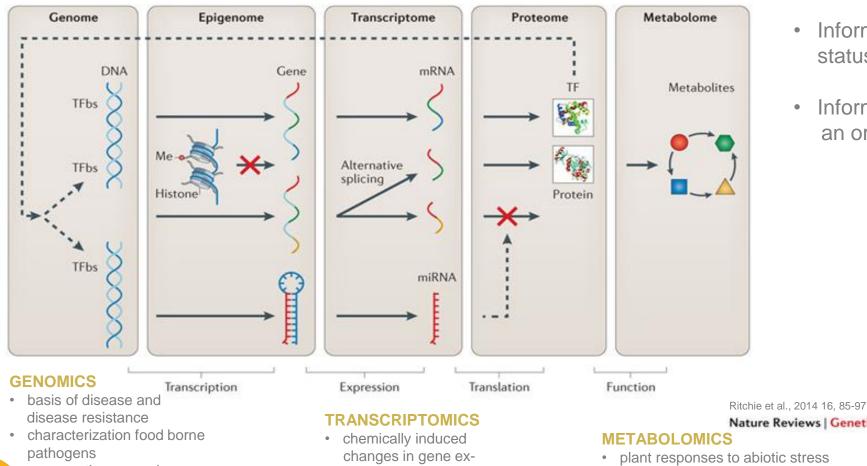
EFSA Scientific Colloquium 24 – 'omics in risk assessment: state of the art and next steps

European Food Safety Authority

and Jaime Aguilera¹, Margarita Aguilera-Gomez², Federica Barrucci¹, Pier Sandro Cocconcelli³, Howard Davies⁴, Nancy Denslow⁵, Jean Lou Dorne¹, Lutz Grohmann⁶, Lieve Herman⁷, Christer Hogstrand⁸, George E. N. Kass¹, Peter Kille⁹, Gijs Kleter¹⁰, Fabien Nogué¹¹, Nick J. Plant¹², Matthew Ramon¹, Reinhilde Schoonjans¹, Elisabeth Waigmann¹ and Matthew C. Wright¹³

APPROVED: 05 September 2021 doi:10.2903/sp.efsa.2022.e200506

Theme (Concept) paper - Application of OMICS and BIOINFORMATICS Approaches: Towards Next Generation Risk Assessment


European Food Safety Authority (EFSA), Giovanni Iacono, Beatriz Guerra, George Kass, Konstantinos Paraskevopoulos, Juliane Kleiner, Claudia Heppner, Marta Hugas

https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/s p.efsa.2022.e200506

- By 2030 to apply omics and associated bioinformatic approaches in relevant risk assessments (RA)
- RA that will be leaner, automated and based on the mechanisms behind adverse effects, greatly enhancing our ability to assess food/feed-related hazards and risks.

OMICS FOR RISK ASSESSMENT

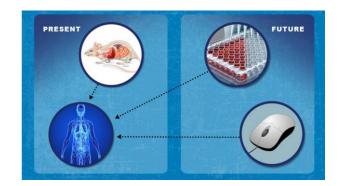
pression (e.g. Cd

PROTEOMICS

disease

· biomarkers in toxicology

· molecular signature of a


stress in plants)

comparative genomics

EPIGENOMICS

- Insight how external factors e.g. environmental stressors affect epigenetic processes
- use of epigenetic biomarkers

- Information on properties and/or functional • status of an organism
- Information on impact of external factors on • an organism

Source: U.S FDA

Nature Reviews | Genetics

- plant responses to abiotic stress
- · nutritional profile of food and feed
- new biomarkers

ROADMAP: APPLYING OMICS AND BIOINFORMATIC APPROACHES

Overall aim: to define priorities for the integration of omics and associated bioinformatics approaches in food safety Enhance capability for mechanism-based scientific advice

Harmonization and implementation of omics and bioinformatic approaches across food regulatory domains;

Exploit publicly available big data from high-throughout approaches

Provide agreed open-source/open-access bioinformatic tools in dialogue with stakeholders

Facilitate data/expertise sharing through partnerships

Kick off meeting: 9 March 2023 Final roadmap: 1st Q 2024

ROADMAP: APPLYING OMICS AND BIOINFORMATIC APPROACHES

Work area 1

Creation, curation and usage of publicly available omics data repositories

Work area 2

Improve/extend the use of WGS analysis

Work area 3 Incorporate use of metagenomics into risk assessment

Work area 4 Incorporate other Omics (transcriptomics metabolomics, proteomics)

Work area 5

Transition to holistic food exposure assessment (exposomics)

ROADMAP: WORK AREAS - WHAT AND WHY?

- Promote development and usage of Omics databases for e.g.
 - Faster and more comprehensive RA of plants, microorganisms, innovative/novel foods
 - Aid identification and characterisation of compounds that could constitute emerging risks

Successful example: genomics data from WGS

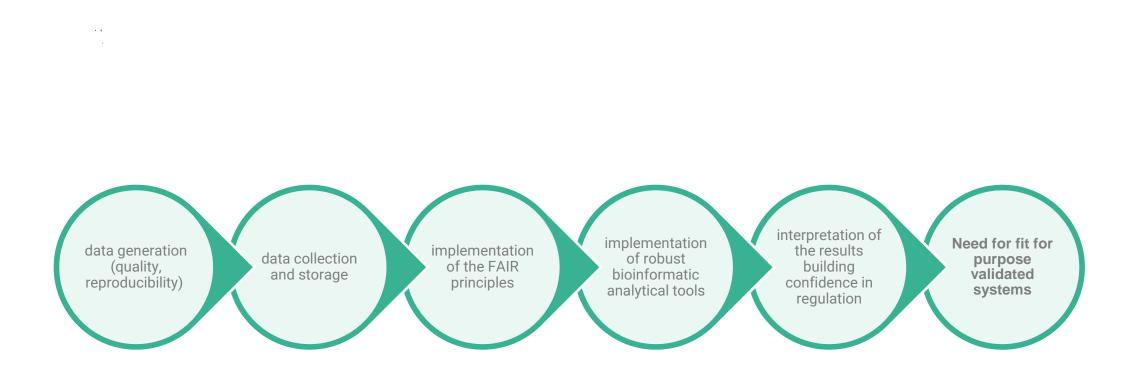
- In currently applied areas (e.g. foodborne outbreak, AMR monitoring)
- Extend to other areas (e.g. animal/plant health)

ROADMAP: WORK AREAS - WHAT AND WHY?

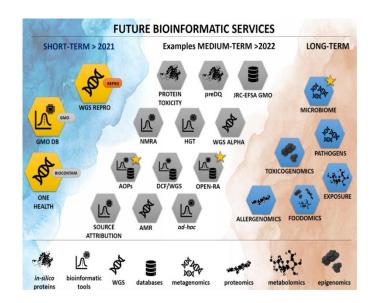
Work area 3 Incorporate use of metagenomics

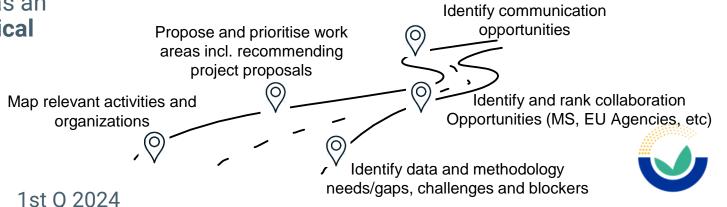
- Incorporate use of metagenomics into RA for animal, human and environmental health, e.g.:
 - Assessment of food additives or novel foods on human microbiome
 - Impact of contaminants, pesticides on biodiversity (i.e. bacterial soil communities)
 - Detection, monitoring and surveillance of microorganisms and genetic traits (e.g. AMR, pathogens)

- Improved/HP characterisation of protein adverse effects like toxicity/allergenicity
- More comprehensive safety assessment of complex GMOs such as SynBio products (e.g. RNA seq for target/off-target genes search)
- Enhanced assessment of food/feed including safety of consumption, nutritional properties & intake


ROADMAP: WORK AREAS - WHAT AND WHY?

- To check for mass consumption of specific metabolites in wastewater samples
- On blood samples to quantitatively assess food exposure
- Identify novel biomarkers for the mass screening of contaminants, nutrients, exposures


OMICS: CHALLENGES AND UNCERTAINTIES FOR A WIDER USE



ROADMAP: HOW TO MOVE INTO THE FUTURE

- Rapid advances in Omics technologies allow rapid and high resolution analysis of cellular and organ responses to chemical injury.
- Supported by powerful bioinformatics tools, Omics data can predict:
 - adverse effects
 - dose reference points to set health-based guidance values
- Promising applications as part of NAM approaches (in vitro).
- Omics technologies are widely recognised as an important contributor of the **future of chemical** risk assessment.

EXAMPLES OF EFSA PROJECTS

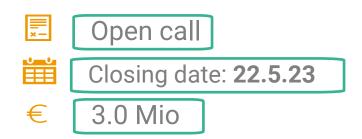
NAMs roadmap projects 2022-23

Develop NAMs NAMS4N GP/EFSA/ED/2022/01: NAM projects in the areas of AOP **Data Integration** ANO development and transcriptomics for risk assessment (call for approaches Toxicogenomics proposal in 2 steps) Published: 4 Julio 2022 Deadline: 10 Octubre 2022 - 23:59 (CEST) Expire Inference of Contract award expected May 2023 Chemical Develop Toxicokine **Grouping from** Transcriptomics, Metabolomics, advanced in tic **Transcriptomics** Processed OMICS epigenomics vitro/in silico assessme Data nt **ADME** models Implementation of a Tox pathway Multi-OMICs and **ADME4NGRA** analysis to predict Inter-species Workflow using target organ **Quantitative in Vitro** toxicity Adverse Outcome Data AOP Pathways e.g. for developme developmental nt neurotoxicity **Omics&Bioinf** In chemical RAs Al-based data search, **AI4NAMS** extraction, harmonisation and integration

Complementary projects

MULTI-OMICS CALL – OPPORTUNITY TO WORK TOGETHER

Implementation of a Multi-OMICs and Inter-species Workflow using Quantitative in Vitro Data


You tube video

1. <u>Content</u>

2. <u>Outreach to organisations</u>

Multi-omics call (link)

- The overarching goal of the project is to define, validate and apply a standardised workflow (experimental and computational) for deriving reliable human reference points and health-based guidance values (HBGVs)
- To use cutting edge in-vitro approaches, namely Organon-chip (OoC) platforms and multiple OMICs endpoints (transcriptomics, metabolomics, and epigenomics).

12

STAY CONNECTED

SUBSCRIBE TO

3

0

efsa.europa.eu/en/news/newsletters efsa.europa.eu/en/rss Careers.efsa.europa.eu – job alerts

LISTEN TO OUR PODCAST Science on the Menu –Spotify, Apple Podcast and YouTube

FOLLOW US ON TWITTER @efsa_eu (@plants_efsa (

@methods_efsa @animals_efsa FOLLOW US ON LINKEDIN Linkedin.com/company/efsa

in

 \bowtie

FOLLOW US ON INSTAGRAM @one_healthenv_eu CONTACT US efsa.europe.eu/en/contact/askefsa

