

What's new?

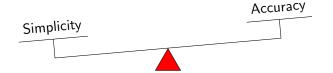
- extension of current PROAST implementation
 - ▷ more candidate models for continuous endpoints
 - ▷ unifying framework across types of endpoints
 - Bayesian implementation
 - ▷ informative priors
 - preliminary tests
 - computationally sufficiently fast
 - \triangleright user R4EU interface
- all methodological and technical details

Outline

- Main statistical methodology
 - Components of the models
 - Bayesian inference
 - ▷ Model averaging
- Preliminary statistical tests
- Some further illustrations
- Summary simulation study

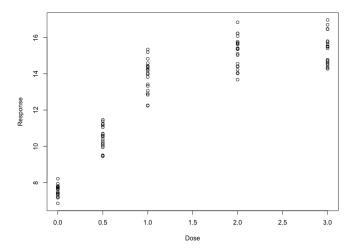
Components of dose response model

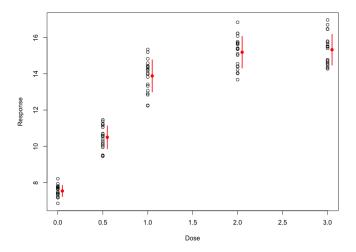
- distribution of the response at a specified dose level y|x
- effect of dose x on the median Med(x) of this distribution

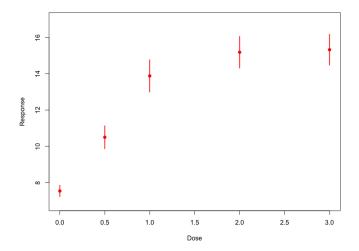


y|xresponse | dose

?







• continuous

⊳ normal

$$y|x \sim \mathsf{N}(\mu(x), \sigma^2)$$

▷ log-normal

$$y|x \sim \mathsf{LOGN}(\mu(x), \sigma^2)$$

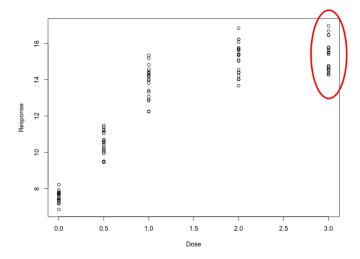
• quantal

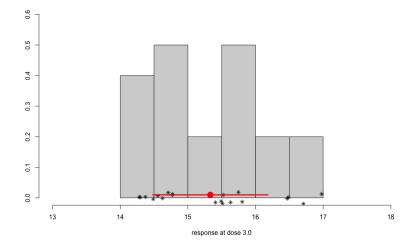
⊳ Bernoulli

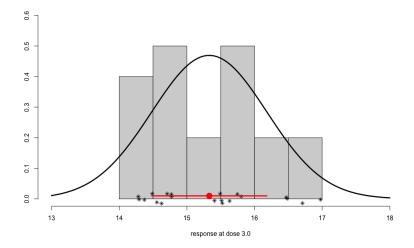
$$y|x \sim \mathsf{Bernoulli}(\pi(x))$$

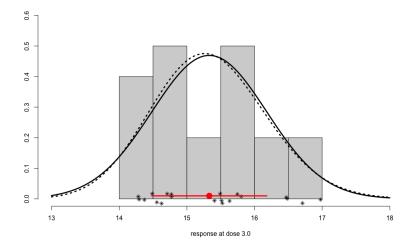
• Extension to clustered observations

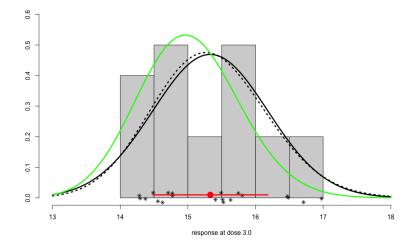
• Extension to covariates



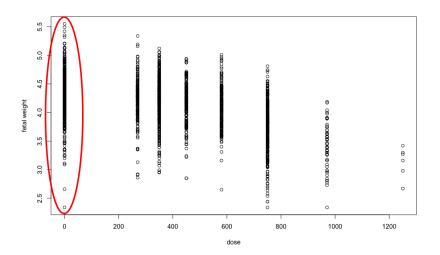




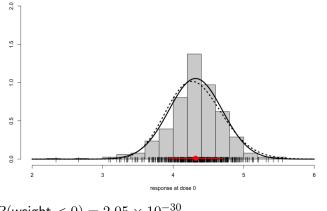




The fetal weight example (dataset das5.rda in PROAST)



Fetal weight control group



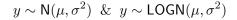
 $P(\mathrm{weight} < 0) = 2.05 \times 10^{-30}$

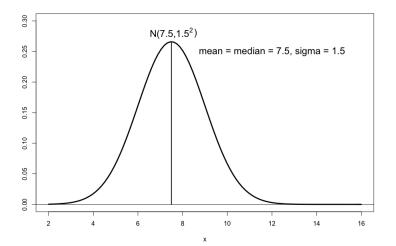
$$\begin{array}{ll} y \sim \mathsf{N}(\mu, \sigma^2) & \text{or} & y \sim \mathsf{LOGN}(\mu, \sigma^2) \\ & & \updownarrow \\ & \log(y) \sim \mathsf{N}(\mu, \sigma^2) \end{array}$$

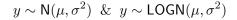
Mixing up notation: μ 's refer to different parameters (σ 's as well)

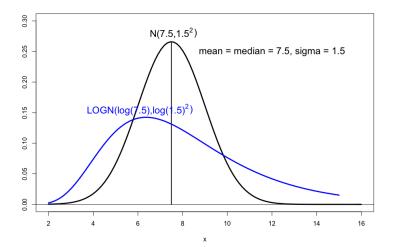
$$\begin{array}{ll} y \sim \mathsf{N}(\mu, \sigma^2) & \text{or} & y \sim \mathsf{LOGN}(\mu, \sigma^2) \\ & & \updownarrow \\ & \log(y) \sim \mathsf{N}(\mu, \sigma^2) \end{array}$$

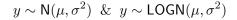
	$N(\mu,\sigma^2)$	$LOGN(\mu,\sigma^2)$
mean	μ	$e^{\mu + \sigma^2/2}$
median	μ	e^{μ}
variance	σ^2	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$
coefficient of variation	σ/μ	$\sqrt{e^{\sigma^2}-1}$

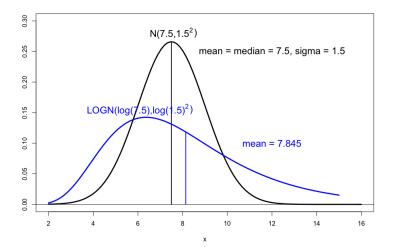


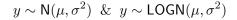


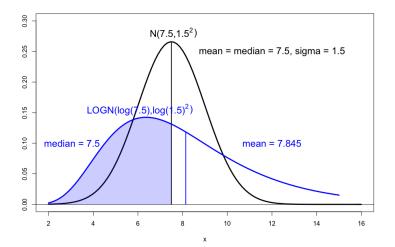












What do we mean by median Med(x) of response | dose=x

?

	$N(\mu,\sigma^2)$	$LOGN(\mu,\sigma^2)$
mean	μ	$e^{\mu + \sigma^2/2}$
median	μ	e^{μ}
variance	σ^2	$(e^{\sigma^2} - 1)e^{2\mu + \sigma^2}$
coefficient of variation	σ/μ	$\sqrt{e^{\sigma^2}-1}$

	$N(\mu(x),\sigma^2)$	$LOGN(\mu(x),\sigma^2)$
mean	$\mu(x)$	$e^{\mu(x)+\sigma^2/2}$
median $Med(x)$	$\mu(x)$	$e^{\mu(x)}$
variance	σ^2	$(e^{\sigma^2} - 1)e^{2\mu(x) + \sigma^2}$
coefficient of variation	$\sigma/\mu(x)$	$\sqrt{e^{\sigma^2}-1}$

• Median for continuous response

$$\triangleright$$
 normal $Med(x) = \mu(x)$

$$\triangleright \ \operatorname{log-normal} \ \operatorname{Med}(x) = e^{\mu(x)}$$

$$\mathsf{BMR} = \frac{\mathsf{Med}(\mathsf{BMD}) - \mathsf{Med}(0)}{\mathsf{Med}(0)}$$

• Adverse event probability for quantal response $\pi(x)$

$$\mathsf{BMR} = \frac{\pi(\mathsf{BMD}) - \pi(0)}{1 - \pi(0)}$$

- Al - A
_

Table 2:	Candidate models for both distributional assumptions
----------	--

	Model	$\mathbf{y} \mathbf{x} \sim \mathbf{N} \left(\boldsymbol{\mu}(\mathbf{x}), \sigma^2 \right)$	$\mathbf{y} \mathbf{x} \sim \text{LOGN}(\boldsymbol{\mu}(\mathbf{x}), \sigma^2)$
Family		Dose–response function $(\mu(x))$	Dose–response function $\left(e^{\mu(x)}\right)$
1a	Exponential ⁽ⁱ⁾	$\mathbf{a} \cdot \left(1 + (c - 1) \cdot \left(1 - e^{-b \cdot \mathbf{x}^d}\right)\right)$	$e^{a \cdot \left(1 + (c-1) \cdot \left(1 - e^{-b \cdot x^d}\right)\right)}$
	Inverse Exponential	$a \cdot \left(1 + (c{-1}) \cdot e^{-b \cdot x^{-d}} \right)$	$e^{a\cdot \left(1+(c-1)\cdot e^{-b\cdot x^{-d}}\right)}$
	Hill ⁽ⁱⁱ⁾	$a\cdot\left(1+(c{-}1)\cdot\left(1{-}\frac{b}{b+x^d}\right)\right)$	$e^{a \cdot \left(1 + (c-1) \cdot \left(1 - \frac{b}{b + x^d}\right)\right)}$
	Log-Normal	$a \cdot (1 + (c {-} 1) \cdot \Phi(log(b) + d \cdot log(x)))$	$e^{a \cdot (1 + (c-1) \cdot \Phi(log(b) + d \cdot log(x)))}$
1b Gamma ⁽ⁱⁱⁱ⁾ LMS-two stag	Gamma ⁽ⁱⁱⁱ⁾	$\textbf{a} \cdot \left(\textbf{1} + (\textbf{c} {-} \textbf{1}) \cdot \frac{\gamma(\textbf{d}, \textbf{b} \cdot \textbf{x})}{\Gamma(\textbf{d})} \right)$	$e^{a \cdot \left(1 + (c-1) \cdot \frac{\gamma(d, b \cdot x)}{\Gamma(d)}\right)}$
	LMS-two stage	$a \cdot \left(1 + (c-1) \cdot \left(1 - e^{-b \cdot x - d \cdot x^2}\right)\right)$	$e^{a\cdot \left(1+(c-1)\cdot \left(1-e^{-b\cdot x-d\cdot x^2}\right)\right)}$
2	Probit increasing	$\mathbf{a} \cdot \Phi(\mathbf{c} + \mathbf{b} \cdot \mathbf{x}^d)$	$e^{a \cdot \Phi(c+b \cdot x^d)}$
	Probit decreasing	$\textbf{a} \cdot (1 + \Phi(\textbf{c})) {-} \textbf{a} \cdot \Phi \big(\textbf{c} + \textbf{b} \cdot \textbf{x}^d \big)$	$e^{a\cdot(1+\Phi(c))-a\cdot\Phi\left(c+b\cdot x^d\right)}$
	Logistic increasing	$a\cdot \frac{e^{c+b\cdot x^d}}{1+e^{c+b\cdot x^d}}$	$e^{a\frac{e^{c+b\cdot x^d}}{1+e^{c+b\cdot x^d}}}$
	Logistic decreasing	$\mathbf{a} \cdot \left(1 + \frac{e^c}{1 + e^c}\right) - \mathbf{a} \cdot \frac{e^{c + b \cdot x^d}}{1 + e^{c + b \cdot x^d}}$	$e^{a \cdot \left(1 + \frac{e^c}{1 + e^c}\right) - a \cdot \frac{e^{c + b \cdot x^d}}{1 + e^{c + b \cdot x^d}}}$

Exponential model in previous guidance is defined as

$$a[c - (c - 1)e^{-bx^d}]$$

which equals the expression in the new guidance

$$\begin{aligned} a[c - (c - 1)e^{-bx^{d}}] &= a[c - (1 - c)(-e^{-bx^{d}})] \\ &= a[c - (1 - c)(-e^{-bx^{d}} + 1 - 1)] \\ &= a[c - (1 - c)(-e^{-bx^{d}} + 1) + (1 - c)] \\ &= a[1 - (1 - c)(-e^{-bx^{d}} + 1)] \\ &= a[1 + (c - 1)(1 - e^{-bx^{d}})] \end{aligned}$$

V

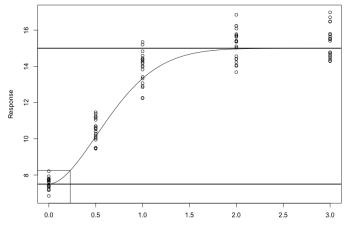
For all models

- a and c determine background and maximum response
 - e.g. for family 1 with the normal distribution
 - \triangleright background = a
 - \triangleright maximum response = ac
- *b* and *d* determine the monotone functional pattern of the model from background to maximum response

Reparameterisation

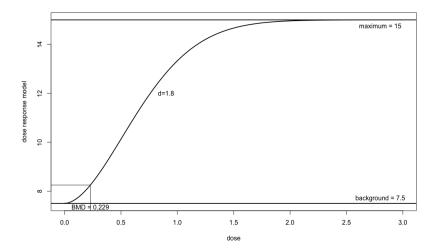
- natural parameters
 - ▷ background response
 - b maximum response
 - ⊳ BMD
- technical parameters
 - \triangleright parameter d
 - $\triangleright~\sigma$ for continuous responses

Back to the simulated example based on the exponential model background = 7.5, maximum = 15, BMD = 0.229 (BMR = 0.1), d = 1.8

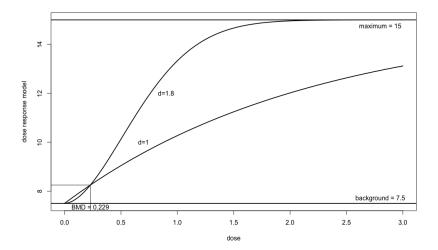


What is the effect of different values for the parameter \boldsymbol{d} on a particular model?

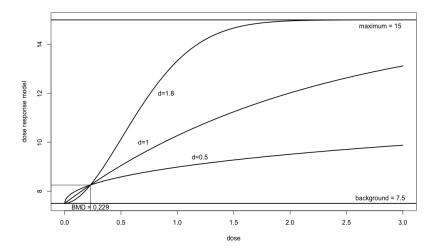
Technical parameter d in the exponential model



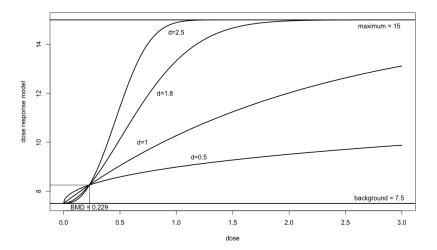
Technical parameter d in the exponential model



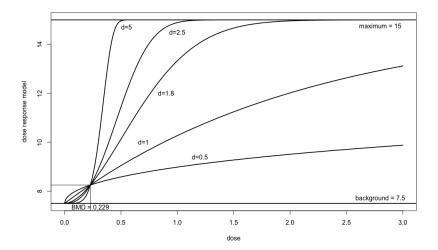
Technical parameter d in the exponential model



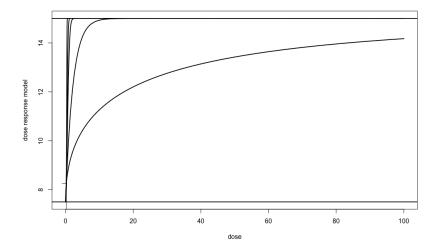
Technical parameter d in the exponential model



Technical parameter d in the exponential model

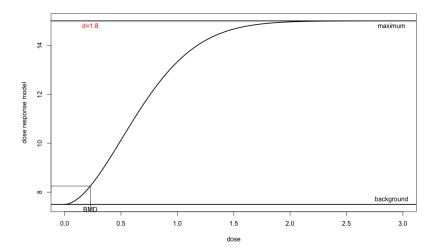


Maximum response at very large dose (in limit to infinity)



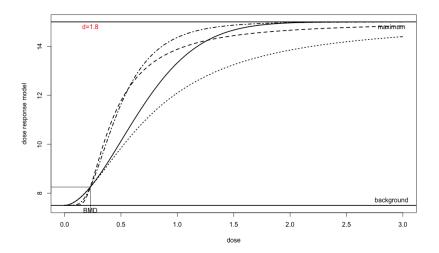
How do models differ with all parameters fixed, including parameter d?

Technical parameter d = 1.8 in the exponential model



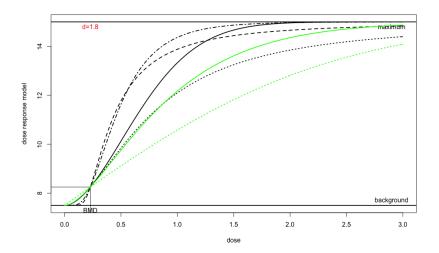
V

Technical parameter d = 1.8 fixed for family 1a

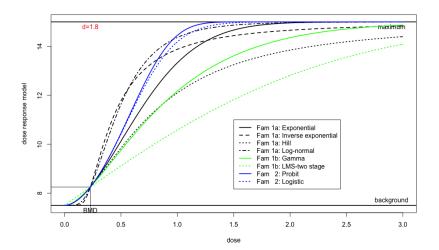


V

Technical parameter d = 1.8 fixed for family 1a,b



Technical parameter d = 1.8 fixed for family 1a,b and 2



2 parameters less

- no variance parameter σ
- max response equals 1

Same 8 candidate models

• family 1 (a & b) $ac = 1 \Rightarrow c = 1/a$

$$a(1+(c-1)F(x;b,d)) = a(1+(\frac{1}{a}-1)F(x;b,d) = a+(1-a)F(x;b,d)$$

Table 3: Candidate models for quantal endpoints

		$\mathbf{y} \mathbf{x} \sim \text{Bernoulli}(\boldsymbol{\pi}(\mathbf{x}))$	
Family	Model	Dose–response function $(\mu(x))$	
1a	Exponential	$a + (1{-}a) \cdot \left(1{-}e^{-b\cdotx^d}\right)$	
	Inverse Exponential	$\mathbf{a} + (1 {-} \mathbf{a}) \cdot \mathbf{e}^{-\mathbf{b} \cdot \mathbf{x}^{-\mathbf{d}}}$	
	Hill	$a + (1{-}a) \cdot \left(1{-}\frac{b}{b + x^d}\right)$	
	Log-Normal	$a + (1{-}a) \cdot \Phi(log(b) + d \cdot log(x))$	
1b	Gamma	$\mathbf{a} + (1{-}\mathbf{a}) \cdot \tfrac{\gamma(\mathbf{d}, \mathbf{b} \cdot \mathbf{x})}{\Gamma(\mathbf{d})}$	
	LMS-two stage	$a + (1{-}a) \cdot \left(1{-}e^{-b\cdot x - d\cdot x^2}\right)$	
2	Probit increasing	$\Phi\big(a+b\cdotx^d\big)$	
	Logistic increasing	$\frac{e^{a+b\cdot x^d}}{1+e^{a+b\cdot x^d}}$	

Questions ?

Outline

- Main statistical methodology
 - Components of the models
 - Bayesian inference
 - ▷ Model averaging
- Preliminary statistical tests
- Some further illustrations
- Summary simulation study

- extension of maximum likelihood (ML) inference
- parameters get distributions as well
- prior distribution $\stackrel{data}{\longrightarrow}$ posterior distribution

- 2-year study in rats
- 3 doses of a substance
- changes in thyroid epithelial cell vacuolisation
- in 2017 and 2022 guidance

Dose (mg/kg day)	No of animals with thyroid epithelial vacuolisation	No of animals in dose group
0	6	50
3	6	50
12	34	50
30	42	50

Dose (mg/kg day)	No of animals with thyroid epithelial vacuolisation	No of animals in dose group
0	6	50
3	6	50
12	34	50
30	42	50

Consider the estimation of the proportion $\pi(0)$ for control group

- data: 6 out of 50
- frequency estimator

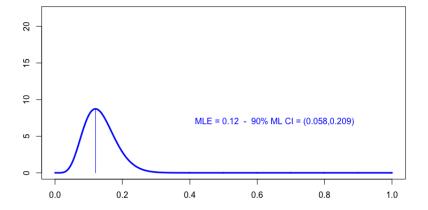
$$\hat{\pi}(0) = \frac{6}{50} = 0.12$$

• ? maximum likelihood estimate (MLE)

V

MLE for proportion at control level

- likelihood expresses the plausibility of the observed data as a function of proportion $\pi(0)$
- the ML estimate maximizes this plausibility or likelihood
- the likelihood function is determined by the distribution for the response
- all evidence, obtained from an experiment, about an unknown quantity is contained in the likelihood function
- for quantal data: the binomial distribution



Bayesian inference

Central formula

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

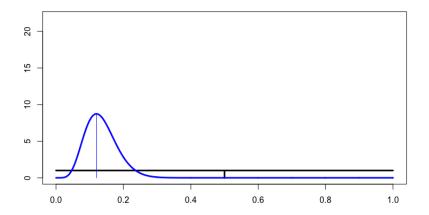
or

$$f(\mathsf{parameters}|\mathsf{data}) = rac{f(\mathsf{data}|\mathsf{parameters})f(\mathsf{parameters})}{f(\mathsf{data})}$$

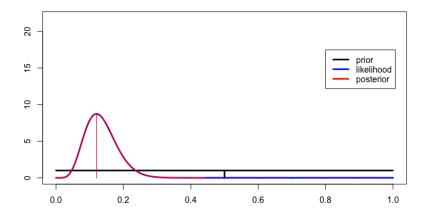
or

posterior distribution \propto likelihood \times prior distribution or prior distribution $\xrightarrow{\text{data}}$ posterior distribution

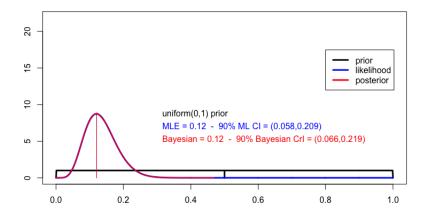
uninformative U(0,1) prior for $\pi(0)$



uninformative U(0,1) prior for $\pi(0)$



uninformative U(0,1) prior for $\pi(0)$



Central formula

posterior distribution $~\propto~$ likelihood \times prior distribution so

frequentist estimation

 \cong Bayesian estimation with uninformative prior

and

 $\xrightarrow{\text{other info}} \text{prior distribution} \xrightarrow{\text{current data}} \text{posterior distribution}$

Use of informative prior

- determined before analysis
- informed decision to use (or not) prior information
- sensitivity analysis
- construction of informative prior based on
 - ▷ literature, e.g. reported estimates, confidence intervals
 - \triangleright expert opinion
 - b historical data

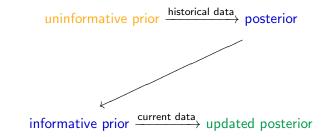
Information from historical data about $\pi(0)$

- 10 adverse events, out of 100
- similar experimental conditions

How to use these historical data?

V

How to use these historical data?



How to construct the informative prior from posterior?

Posterior distribution from historical data and uninformative prior

- point estimate 0.1: 10 out of 100 adverse events
- 99% Bayesian Crl: [0.044, 0.200]

Construction of informative prior using PERT distribution with

 \triangleright mode =0.1

ightarrow min = 0.044, max = 0.200

▷ shape ?

Prior distribution

PERT distribution

- widely used in risk analysis
- defined by the minimum, most likely and maximum value, and shape

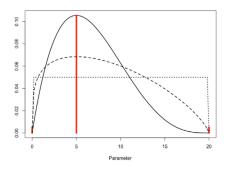
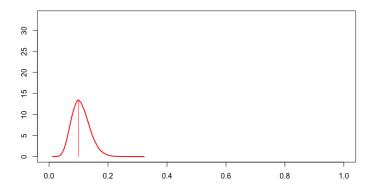
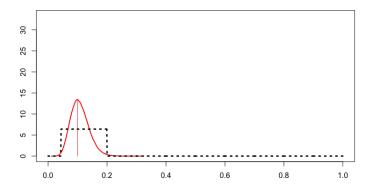


Figure 4: PERT densities with minimum = 0, mode = 5, maximum = 20 (vertical red lines) and shape.Varying from 0 (dotted line), 1 (dashed line) to 4 (solid line)

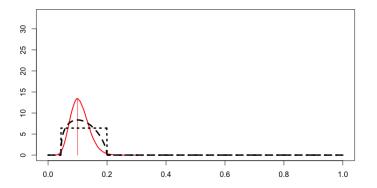
Posterior distribution: 99% Bayesian CrI: [0.044, 0.200] around 0.1



PERT with mode =0.1, min = 0.044, max = 0.2, shape = 0

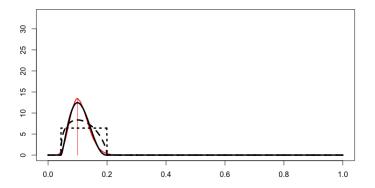


PERT with mode =0.1, min = 0.044, max = 0.2, shape = 1



9

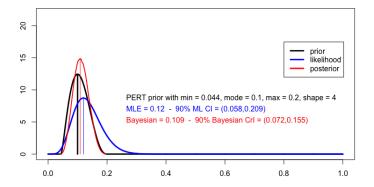
PERT with mode =0.1, min = 0.044, max = 0.2, shape = 4



Informative prior distribution

V

Analysis with informative prior using PERT with shape = 4



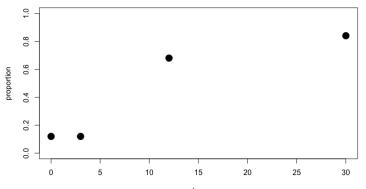
Sensitivity analysis

prior	$\hat{\pi}(0)$	CrIL	CrIU	CrIU/CrIL
uninformative	0.120	0.066	0.219	3.31
PERT shape=0	0.120	0.067	0.187	2.80
PERT shape=1	0.115	0.068	0.174	2.55
PERT shape=4	0.109	0.072	0.155	2.16

Thyroid epithelial cell vacuolisation data revisited

20
<u> </u>

Dose (mg/kg day)	No of animals with thyroid epithelial vacuolisation	No of animals in dose group
0	6	50
3	6	50
12	34	50
30	42	50



dose

V

Construction of priors

- a challenge in non-linear models
- PERT prior on natural parameters, based on
 - ▷ insights from simulations
 - > practical considerations

and normal priors on transformed technical parameters d and σ^2

Default priors for natural parameters

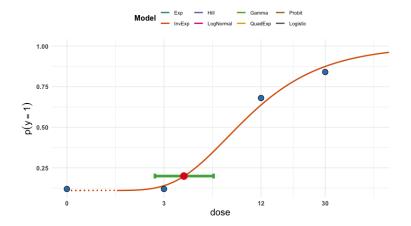
- C,Q BMD: uniform (=PERT) on the full dose range
- **C,Q** background: PERT with mode on observed average in control group and with wide range
 - **C** maximum: PERT with mode on observed average at max dose and with wide range

Default priors for technical parameters

- **C,Q** $\log(d)$: N(1,1) truncated at 5
 - ${\bf C}\ \log(1/\sigma^2):$ normal, loosely based on the scale of the data

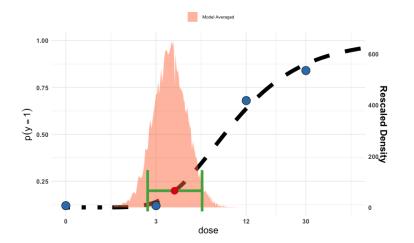
Inverse exponential model using $\mathsf{BMR}{=}0.1,$ with default priors

BMD=3.99 (BMDL=2.64, BMDU=6.09) BMDU/BMDL=2.31



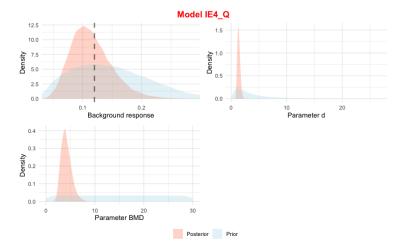
Inverse exponential model using $\mathsf{BMR}{=}0.1,$ with default priors

BMD=3.99 (BMDL=2.64, BMDU=6.09) BMDU/BMDL=2.31



Inverse exponential (IE) using BMR=0.1, with default priors

BMD=3.99 (BMDL=2.64, BMDU=6.09) BMDU/BMDL=2.31



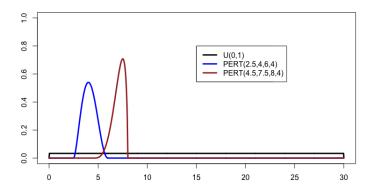
 \checkmark

Inverse exponential (IE) using BMR=0.1, with **default priors** BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31

Consider informative priors on BMD

- min=2.5, mode=4, max=6, shape=4
- min=4.5, mode=7.5, max=8, shape=4

Priors on BMD

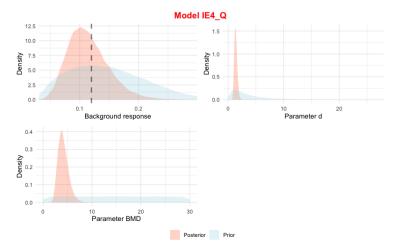


How do different priors affect the BMD estimation and the BMDL, BMDU?

V

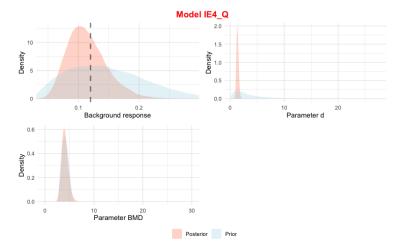
IE MODEL with default priors

BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31



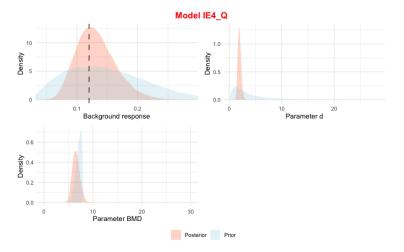
IE MODEL with BMD prior PERT(2.5,4,6,sh=4)

BMD=4.02 (BMDL=3.06, BMDU=5.28) BMDU/BMDL=1.73

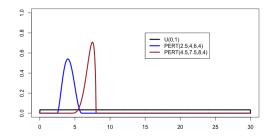


IE MODEL with BMD prior PERT(4.5,7.5,8,sh=4)

BMD=6.52 (BMDL=5.36, BMDU=7.91) BMDU/BMDL=1.47



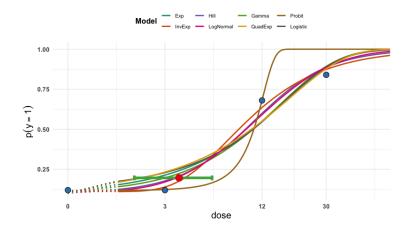
IE MODEL with BMD priors



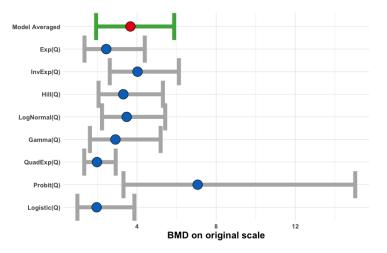
prior	BMD	BMDL	BMDU	BMDU/BMDL
U(0,1)	3.99	2.64	6.09	2.31
PERT(2.5,4,6,sh=4)	4.02	3.06	5.28	1.73
PERT(4.5,7.5,8,sh=4)	6.52	5.36	7.91	1.47

V

all models with default priors



all models with default priors



Questions ?

The new BMD methodology - Insights and understandings

83/156

Outline

- Main statistical methodology
 - Components of the models
 - Bayesian inference
 - Model averaging
- Preliminary statistical tests
- Some further illustrations
- Summary simulation study

Model averaging

- multi-model inference
- suite of models should be rich enough
- frequentist model averaging

averaged model
$$\mathsf{fit} = \sum_{\mathsf{model}} w_{\mathsf{model}} \times \mathsf{fitted} \mathsf{model}$$

- model weight $w_{\rm model}$ based on goodness-of-fit criterion (AIC)
- use averaged model fit to determine BMD
- BMDL (and BMDU) based on bootstrap

- same rationale
- priors and posteriors on two levels
 - \triangleright on the parameters of each specific model
 - $\triangleright\,$ on the models within the suite of candidate models
- different implementation

averaged BMD posterior = weighted mixture of model specific BMD posteriors

weights = posterior probabilities of the models

• BMDL (and BMDU) defined as quantiles of averaged posterior

Default prior distribution on set of candidate models

- ${\bf C}$ uniform distribution: probability 1/16 for each model
- ${\boldsymbol Q}$ uniform distribution: probability 1/8 for each model

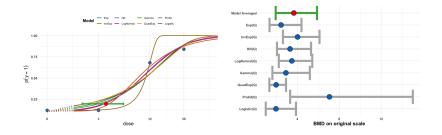
Technical issue:

- for the posterior probabilities of the models
- not analytically tractable integrals

Solutions:

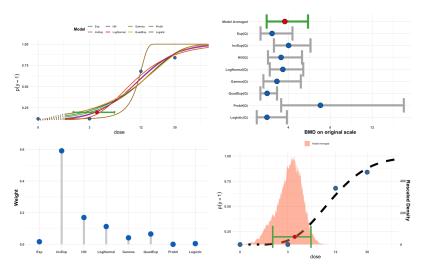
- approximation of integrand: Laplace approximation
- numerical methods to compute integrals: Bridge sampling

all models with default priors



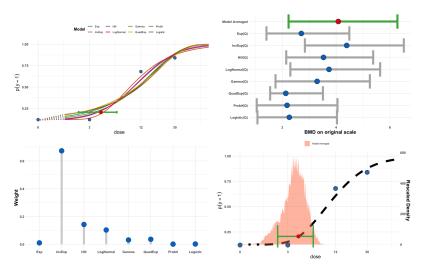
Laplace approximation

BMD=3.67 (BMDL=1.94, BMDU=5.88) BMDU/BMDL=3.04



Bridge sampling

BMD=4.08 (BMDL=2.23, BMDU=6.28) BMDU/BMDL=2.81



Questions ?

Outline

- Main statistical methodology
 - Components of the models
 - Bayesian inference
 - ▷ Model averaging
- Preliminary statistical tests
- Some further illustrations
- Summary simulation study

• For continuous response

$$y|x \sim \mathsf{N}(\mu(x),\sigma^2), \quad y|x \sim \mathsf{LOGN}(\mu(x),\sigma^2)$$

- constant variance (normality) & constant coefficient of variation (log-normality)
- constant variance & coefficient of variation for individual data
- $\triangleright\,$ normality & log-normality for individual data
- Testing for no dose effect
- Testing best model fits sufficiently well
- Data suitable for estimating the BMD (next presentation)

- Frequentist hypothesis testing: based on p-value
- Bayesian hypothesis testing: based on Bayes factor

Frequentist For continuous response

$$y|x \sim \mathsf{N}(\mu(x),\sigma^2), \quad y|x \sim \mathsf{LOGN}(\mu(x),\sigma^2)$$

- constant variance (normality) & constant coefficient of variation (log-normality)
- constant variance & coefficient of variation for individual data
- ▷ normality & log-normality for individual data

Bayesian Testing for no dose effect

Bayesian Testing best model fits sufficiently well

Indirect test focusing on the variability across dose levels

Normality assumption

$$y|x \sim \mathsf{N}(\mu(x), \sigma^2)$$

implying null hypothesis of homoscedasticity

$$H_0:\sigma_1^2=\ldots=\sigma_N^2=\sigma^2$$

Bartlett test for constant variance using only summary statistics

Log-normality assumption

$$y|x \sim \mathsf{LOGN}(\mu(x), \sigma^2) \ \Leftrightarrow \ \log(y)|x \sim \mathsf{N}(\mu(x), \sigma^2)$$

implying null hypothesis of homoscedasticity

$$H_0:\sigma_1^2=....=\sigma_N^2=\sigma^2 \text{ on log-scale}$$

$$\updownarrow$$

$$H_0:\mathsf{CV}_1=....=\mathsf{CV}_N=\sqrt{e^{\sigma^2}-1} \text{ on original scale}$$

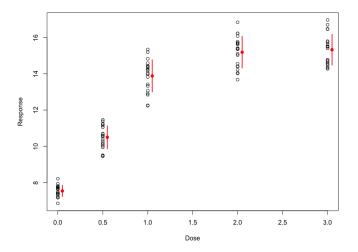
with

$$\mathsf{CV} = \mathsf{coefficient} \ \mathsf{of} \ \mathsf{variation} = rac{\sqrt{\mathsf{Var}(y|x)}}{E(y|x)}$$

Bartlett test for constant coefficient of variation

Bartlett test for constant variance or CV

Continuous response (Example 3.1, Figure C.3 in guidance)



Continuous response (Example 3.1, Figure C.3 in guidance)

- Distributional assumption of constant variance for the normal distribution is not met, Bartlett test p-value is 3e-04
- Distributional assumption of constant coefficient of variation is met, Bartlett test p-value is 0.4295

Conclusion: evidence against the normal distribution

Same hypotheses

• normal distribution

$$H_0: \sigma_1^2 = \dots = \sigma_N^2$$

• log-normal distribution

$$H_0: \mathsf{CV}_1 = \dots = \mathsf{CV}_N$$

Levene test using individual data

Continuous response (Example 3.1, Figure C.3 in guidance)

- **SD** Distributional assumption of constant variance for the normal distribution is not met, Bartlett test p-value is 0.0003
- **ID** Distributional assumption of constant variance for the normal distribution is not met, Levene test p-value is 0.0046
- **SD** Distributional assumption of constant coefficient of variation is met, Bartlett test p-value is 0.430
- **ID** Distributional assumption of constant coefficient of variation is met, Levene test p-value is 0.550

Conclusion: evidence against the normal distribution

Frequentist For continuous response

$$y|x \sim \mathsf{N}(\mu(x),\sigma^2), \quad y|x \sim \mathsf{LOGN}(\mu(x),\sigma^2)$$

- constant variance (normality) & constant coefficient of variation (log-normality)
- constant variance & coefficient of variation for individual data
- ▷ normality & log-normality for individual data

Bayesian Testing for no dose effect

Bayesian Testing best model fits sufficiently well

Individual data: Shapiro-Wilk frequentist test for normality

• normality assumption

 $H_0: y|x \sim \text{normal distribution}$

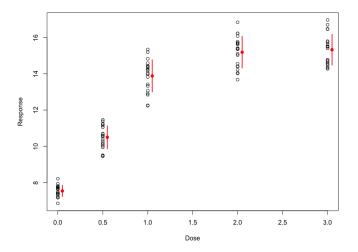
log-normality assumption

 $H_0: y|x \sim \log$ -normal distribution

 $\$ $H_0: \log(y)|x \sim ext{ normal distribution}$

Shapiro-Wilk testing for normality or log-normality

Continuous response (Example 3.1, Figure C.3 in guidance)



Continuous response (Example 3.1, Figure C.3 in guidance)

- at each dose level
- collapsing all dose levels (after centering)

Results

- $\bullet\,$ there is no evidence against normality at level $5\%\,$
- there is evidence against normality at level 10% for dose 3
- $\bullet\,$ there is no evidence against log-normality at level $5\%\,$
- there is evidence against log-normality at level 10% for dose 3

Frequentist For continuous response

$$y|x \sim \mathsf{N}(\mu(x),\sigma^2), \quad y|x \sim \mathsf{LOGN}(\mu(x),\sigma^2)$$

- constant variance (normality) & constant coefficient of variation (log-normality)
- constant variance & coefficient of variation for individual data
- ▷ normality & log-normality for individual data

Bayesian Testing for no dose effect

Bayesian Testing best model fits sufficiently well

- measures change prior \rightarrow posterior in favor of H_0
- central equation

$$\frac{P(H_0|\mathsf{data})}{P(H_a|\mathsf{data})} = \frac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)} \times \frac{P(H_0)}{P(H_a)}$$
$$\frac{P(H_0|\mathsf{data})}{1 - P(H_0|\mathsf{data})} = \frac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)} \times \frac{P(H_0)}{1 - P(H_0)}$$

prior odds for $H_0 =$ Bayes factor imes prior odds for H_0

prior odds for $H_0 \xrightarrow{\text{Bayes factor}} \text{posterior odds for } H_0$

$$\mathsf{BF} = \frac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)}$$

Bayes factor	interpretation
BF > 10	strong evidence favoring H_0 against H_a
$3 < BF \le 10$	some evidence favoring H_0 against H_a
$1/3 \le BF \le 3$	insufficient evidence favoring any hypothesis
$1/10 \le BF < 1/3$	some evidence favoring H_a against H_0
BF < 1/10	strong evidence favoring H_a against H_0

 H_0 : no effect of dose & H_a : any effect of dose

$$\mathsf{BF} = rac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)}$$

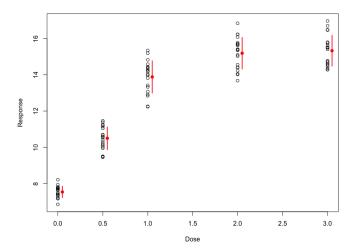
Bayes factor	interpretation
BF > 10	strong evidence favoring H_0 against H_a
$3 < BF \le 10$	some evidence favoring H_0 against H_a
$1/3 \le BF \le 3$	insufficient evidence favoring any hypothesis
$1/10 \le BF < 1/3$	some evidence favoring H_a against H_0
BF < 1/10	strong evidence favoring H_a against H_0

H_0 : no effect of dose & H_a : any effect of dose

$$\mathsf{BF} = \frac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)}$$

Bayes factor	interpretation
BF > 10	sufficient evidence that there is no dose-effect
$BF \le 10$	insufficient evidence that there is no dose-effect

Continuous response (Example 3.1, Figure C.3 in guidance)



Output

• Bayes factor in favor of null model over SM:

 $\mathsf{BF}=0.000\leq 10$

• there is insufficient evidence that there is no dose effect

 H_0 : best model & H_a : saturated model

$$\mathsf{BF} = rac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)}$$

Bayes factor	interpretation
BF > 10	strong evidence favoring H_0 against H_a
$3 < BF \le 10$	some evidence favoring H_0 against H_a
$1/3 \le BF \le 3$	insufficient evidence favoring any hypothesis
$1/10 \le BF < 1/3$	some evidence favoring H_a against H_0
BF < 1/10	strong evidence favoring H_a against H_0

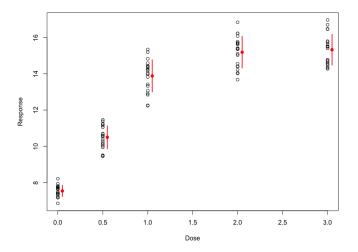
H_0 : best model & H_a : saturated model

$$\mathsf{BF} = \frac{P(\mathsf{data}|H_0)}{P(\mathsf{data}|H_a)}$$

Bayes factor	interpretation
$BF \ge 1/10$	best fitting model fits sufficiently well
BF < 1/10	none of the models provide an adequate fit do the data

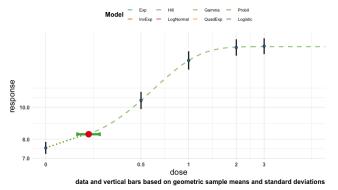
Testing best model fits sufficiently well

Continuous response (Example 3.1, Figure C.3 in guidance)



Testing best model fits sufficiently well

LogNormal distribution



Output

• best fitting model fits sufficiently well

 $BF = 9.404 \ge 1/10$

Questions ?

The new BMD methodology - Insights and understandings

118/156

Outline

- Main statistical methodology
 - Components of the models
 - Bayesian inference
 - ▷ Model averaging
- Preliminary statistical tests
- Some further illustrations
- Summary simulation study

ILLUSTRATION 1

The simulated continuous response

Example 3.1, Figure C.3 in guidance

Illustration simulation example

Continuous response (Example 3.1, Figure C.3 in guidance)

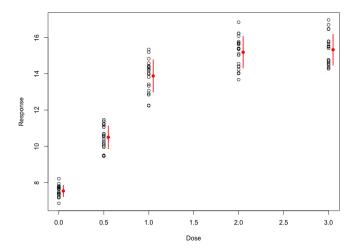


Illustration simulation example

- one dataset generated from a log-normal exponential model
- $a = 2.015, b = 1.5, c = 1.344, d = 1.8, \sigma = 0.05$
- natural parameters
 - \triangleright median background response = $e^{2.015} = 7.501$
 - \triangleright median maximum response = $e^{2.015 \times 1.344} = 15.002$
 - $\triangleright~$ BMD = 0.2287, with BMR = 0.10
- dose levels 0, 0.5, 1, 2, 3
- constant group size of 20

Wrapping-up

- insufficient evidence that there is no dose-effect
- best model (gamma) fits sufficiently well
- evidence the homoscedastic normal distribution does not fit well
- no such evidence against the log-normal distribution

Two analyses: individual data & summary data

differences?

- Shapiro-Wilk tests only in case of individual data
- with individual data exact geometric summary statistics
- ▷ for control group: exact (individual data)
 gmean = 7.528749, gsdev = 1.042578
- ▷ for control group: approximate (summary data)
 gmean = 7.528454, gsdev = 1.042420

Illustration simulation example: weights

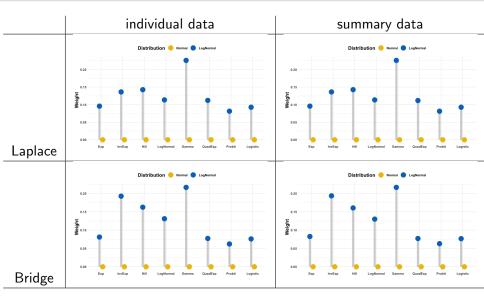


Illustration simulation example: BMD estimates

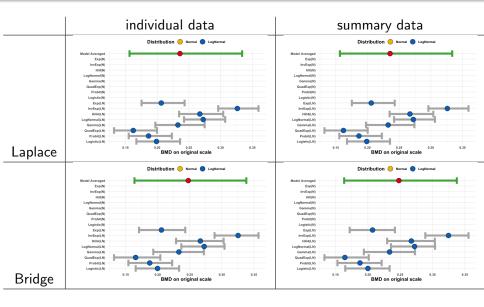


Illustration simulation example: log-normal fits

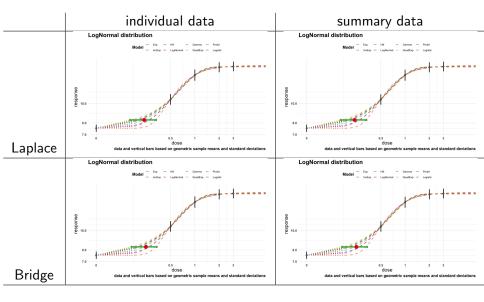
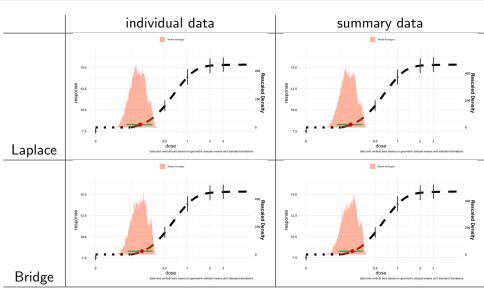


Illustration simulation example: BMD posterior



True BMD = 0.2287

	individual data			summary data		
	BMDL	BMD	BMDU	BMDL	BMD	BMDU
•	0.1562 0.1633				0.2355 0.2481	0.3326 0.3385

ILLUSTRATION 2

The fetal weight example

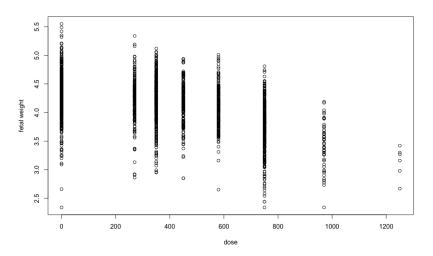
Dataset das5.rda in PROAST

The new BMD methodology - Insights and understandings

131/156

Illustration 2

The fetal weight example (dataset das5.rda in PROAST)



BMR = 0.05

Preliminary statistical tests

Frequentist For continuous response

$$y|x \sim \mathsf{N}(\mu(x), \sigma^2), \quad y|x \sim \mathsf{LOGN}(\mu(x), \sigma^2)$$

 constant variance (normality) & constant coefficient of variation (log-normality): reject both, p-val 0.0000, 0.0000 resp.

- constant variance & coefficient of variation for individual data: reject both, p-val 0.0003, 0.0000 resp.
- normality & log-normality for individual data: reject both except at dose 970 and 1250

Bayesian Testing for no effect insufficient evidence of no dose-effect (BF=0.0000)

Bayesian Testing best model fits sufficiently well best fitting model fits sufficiently well (BF>2900) The new BMD methodology - Insights and understandings

133/156

Illustration fetal weight example

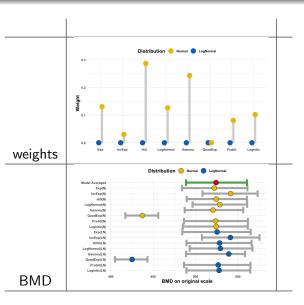
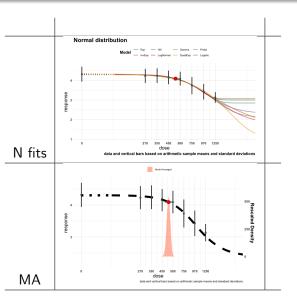


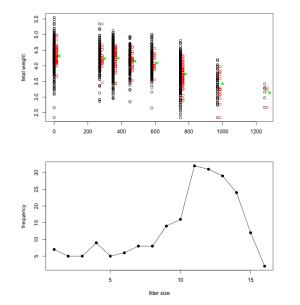
Illustration fetal weight example



BMD estimates

	BMDL	BMD	BMDU	
Bridge	488.80	524.21	560.64	

Illustration fetal weight example



Clustered or hierarchical data

- total of 2184 fetuses
- total of 213 litters
- within cluster/litter correlation ρ

 $\triangleright \
ho = 0
ightarrow$ 2184 independent units of information

 $\triangleright~\rho=1\rightarrow$ 213 independent units of information

 $\triangleright \ 0 <
ho < 1
ightarrow 213 <$ effective sample size < 2184

- correlated data \rightarrow implicit reduced sample size
- correlated data \rightarrow wider CrI

Illustration fetal weight example

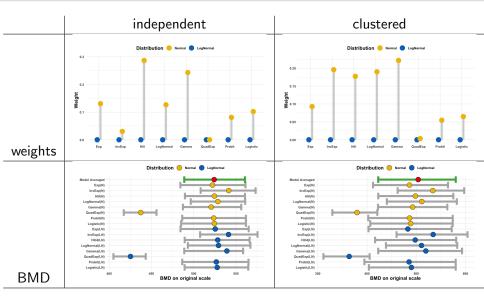
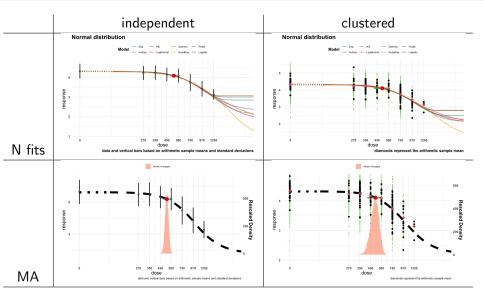


Illustration fetal weight example



BMD estimates

	independent			clustered		
	BMDL	BMD	BMDU	BMDL	BMD	BMDU
Bridge	488.80	524.21	560.64	422.77	504.01	580.22

Intra-litter correlation

 ρ estimated as 0.49 with 95% CrI [0.44,0.55]

ILLUSTRATION 3

Effects of Th17 cells example

Luo et al, 2016

- Th17 cell frequency in the spleen in offspring mice (%)
- covariate: groups by sex and day of measurement
- no litter effect considered

Illustration Th17 cells example

Dose	Mean	SD	Ν	group
0	1.336	0.36	10	female PND21
0	1.348	0.31	10	female PND21
0.475	1.625	0.343	10	female PND21
4.75	2.2	0.663	10	female PND21
47.5	3.336	0.637	11	female PND21
0	1.222	0.233	10	female PND42
0	1.252	0.326	10	female PND42
0.475	1.541	0.325	10	female PND42
4.75	1.819	0.556	10	female PND42
47.5	2.477	0.477	11	female PND42
0	1.347	0.369	10	male PND21
0	1.327	0.282	10	male PND21
0.475	1.554	0.242	10	male PND21
4.75	1.774	0.501	10	male PND21
47.5	2.405	0.532	11	male PND21
0	1.194	0.235	10	male PND42
0	1.234	0.287	10	male PND42
0.475	1.426	0.278	10	male PND42
4.75	1.646	0.477	10	male PND42
47.5	2.226	0.526	11	male PND42

V

- no covariate effect on the distribution itself (normal or log-normal)
- each parameter may depend on covariate $\rightarrow 2^5 \times 16 = 512$ submodels !!!
- reduction to 4 submodels, for each model
 - $\triangleright\,$ background and variance $\sigma^2,\,{\rm both}$ depend on covariate, or none
 - BMD and parameter d, both depend on covariate, or none

Strategy

- for each model: select best submodel
- at least one best submodel with covariate-dependent BMD?

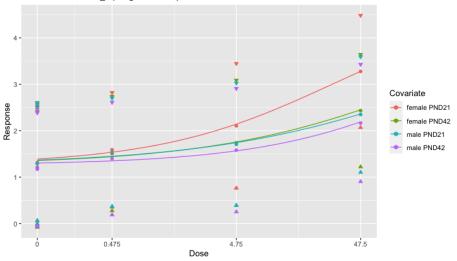
▷ yes: group dependent model averaged BMD
 ▷ no: a single model averaged BMD

Snapshot of submodels

	Model	Weight	Submodel	Submodel.weight	Cova	ariate	BMDL	BMD	BMDU
41	H4_LN	0.9015	BMD_d	0.9910175	female	PND21	0.1231119	0.4126029	1.396848
42	H4_LN	0.9015	BMD_d	0.9910175	female	PND42	0.2674835	1.0315713	3.950697
43	H4_LN	0.9015	BMD_d	0.9910175	male	PND21	0.2275329	0.9828678	4.250223
44	H4_LN	0.9015	BMD_d	0.9910175	male	PND42	0.9651136	3.3858943	11.940734
45	LN4_LN	0.0000	all	1.0000000	female	PND21	2.2337773	3.6123927	5.812152
46	LN4_LN	0.0000	all	1.0000000	female	PND42	0.1668996	0.7215784	3.199886
47	LN4_LN	0.0000	all	1.0000000	male	PND21	18.6858249	33.4590809	60.606824
48	LN4_LN	0.0000	all	1.0000000	male	PND42	0.3438165	1.6891112	8.248429
49	G4_LN	0.0000	a_sigma2	0.9993374	female	PND21	0.2115289	0.6003031	1.717347
50	G4_LN	0.0000	a_sigma2	0.9993374	female	PND42	0.2115289	0.6003031	1.717347
51	G4_LN	0.0000	a_sigma2	0.9993374	male	PND21	0.2115289	0.6003031	1.717347
52	G4_LN	0.0000	a_sigma2	0.9993374	male	PND42	0.2115289	0.6003031	1.717347

Illustration Th17 cells example

Fitted model: H4_LN Best submodel: BMD d (Weight = 0.9015)



The new BMD methodology - Insights and understandings

Group dependent BMD estimates

	BMDL	BMD	BMDU
female PND21	0.123	0.419	1.420
female PND42	0.267	1.047	3.967
male PND21	0.231	1.001	4.412
male PND42	0.976	3.444	12.407

The new BMD methodology - Insights and understandings

Questions ?

The new BMD methodology - Insights and understandings

150/156

Outline

- Main statistical methodology
 - Components of the models
 - Bayesian inference
 - \triangleright Model averaging
- Preliminary statistical tests
- Some further illustrations
- Summary simulation study

V

Strengths

- mimic real case
- true mechanisms known
- effect of single & multiple factors
- different performance measures
- insight in performance
- recommendations

Limitations

- limited to selected scenarios
- data of real case generated by more complex mechanisms

General settings

- scenarios used by US-EPA
- mimic a typical rat bioassay (Piao et al. 2013)
- body weight loss and liver weight gain
- experimental designs based on FDA's Redbook 2000
- 120 scenarios for both endpoints
- 1000 datasets generated for each scenario

- background informative prior: less influential
- maximum response informative prior:
 - very useful when data do not contain information about asymptote
 - can affect the estimation beneficially
- BMD informative prior: highly influential
 - only use shape=4 if sufficient evidence about most likely value is available

- sensitivity analysis for impact of different weakly informative priors for d, especially if fits for the default choice seem less optimal
- if evidence is available that the BMD is to be expected within the experimental range
 - \triangleright switch extended range off for default prior for BMD
 - consider sensitivity analysis

The new BMD methodology - Insights and understandings