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EFSA implementation

What’s new?

• extension of current PROAST implementation

▷ more candidate models for continuous endpoints

▷ unifying framework across types of endpoints

▷ Bayesian implementation

▷ informative priors

▷ preliminary tests

▷ computationally sufficiently fast

▷ user R4EU interface

• all methodological and technical details
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Outline

• Main statistical methodology

▷ Components of the models

▷ Bayesian inference

▷ Model averaging

• Preliminary statistical tests

• Some further illustrations

• Summary simulation study
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Statistical methodology

Components of dose response model

• distribution of the response at a specified dose level y|x

• effect of dose x on the median Med(x) of this distribution

Simplicity
Accuracy
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Model components

y|x

response | dose

?
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Model components

Continuous response (Example 3.1, Figure C.3 in guidance)
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Model components

Continuous response (Example 3.1, Figure C.3 in guidance)
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Model components

Continuous response (Example 3.1, Figure C.3 in guidance)
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Model components

• continuous

▷ normal
y|x ∼ N(µ(x), σ2)

▷ log-normal
y|x ∼ LOGN(µ(x), σ2)

• quantal

▷ Bernoulli
y|x ∼ Bernoulli(π(x))

• Extension to clustered observations

• Extension to covariates
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Model components

Continuous response (Example 3.1, Figure C.3 in guidance)
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Model components

Data at highest dose
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Model components

Data at highest dose
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Model components

Data at highest dose
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Model components

Data at highest dose
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Normal and log-normal distribution

The fetal weight example (dataset das5.rda in PROAST)
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Normal and log-normal distribution

Fetal weight control group

P (weight < 0) = 2.05× 10−30
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Normal and log-normal distribution

y ∼ N(µ, σ2) or y ∼ LOGN(µ, σ2)
⇕

log(y) ∼ N(µ, σ2)

Mixing up notation: µ’s refer to different parameters (σ’s as well)
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Normal and log-normal distribution

y ∼ N(µ, σ2) or y ∼ LOGN(µ, σ2)
⇕

log(y) ∼ N(µ, σ2)

N(µ, σ2) LOGN(µ, σ2)

mean µ eµ+σ2/2

median µ eµ

variance σ2 (eσ
2 − 1)e2µ+σ2

coefficient of variation σ/µ
√
eσ2 − 1
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Normal and log-normal distribution

y ∼ N(µ, σ2) & y ∼ LOGN(µ, σ2)
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Normal and log-normal distribution

y ∼ N(µ, σ2) & y ∼ LOGN(µ, σ2)
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Normal and log-normal distribution

y ∼ N(µ, σ2) & y ∼ LOGN(µ, σ2)
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Normal and log-normal distribution

y ∼ N(µ, σ2) & y ∼ LOGN(µ, σ2)
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Model components

What do we mean by

median Med(x) of

response | dose=x

?
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Normal and log-normal distribution

N(µ, σ2) LOGN(µ, σ2)

mean µ eµ+σ2/2

median µ eµ

variance σ2 (eσ
2 − 1)e2µ+σ2

coefficient of variation σ/µ
√
eσ2 − 1
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Normal and log-normal distribution

N(µ(x), σ2) LOGN(µ(x), σ2)

mean µ(x) eµ(x)+σ2/2

median Med(x) µ(x) eµ(x)

variance σ2 (eσ
2 − 1)e2µ(x)+σ2

coefficient of variation σ/µ(x)
√
eσ2 − 1

The new BMD methodology - Insights and understandings 25/156



Definition of BMD for a given BMR

• Median for continuous response

▷ normal Med(x) = µ(x)

▷ log-normal Med(x) = eµ(x)

BMR =
Med(BMD)−Med(0)

Med(0)

• Adverse event probability for quantal response π(x)

BMR =
π(BMD)− π(0)

1− π(0)
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Dose response models for continuous response

The new BMD methodology - Insights and understandings 27/156



Dose response models for continuous response

Exponential model in previous guidance is defined as

a[c− (c− 1)e−bxd
]

which equals the expression in the new guidance

a[c− (c− 1)e−bxd
] = a[c− (1− c)(−e−bxd

)]

= a[c− (1− c)(−e−bxd
+ 1− 1)]

= a[c− (1− c)(−e−bxd
+ 1) + (1− c)]

= a[1− (1− c)(−e−bxd
+ 1)]

= a[1 + (c− 1)(1− e−bxd
)]
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Dose response models for continuous response

For all models

• a and c determine background and maximum response

e.g. for family 1 with the normal distribution

▷ background = a

▷ maximum response = ac

• b and d determine the monotone functional pattern
of the model from background to maximum response
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Dose response models for continuous response

Reparameterisation

• natural parameters

▷ background response

▷ maximum response

▷ BMD

• technical parameters

▷ parameter d

▷ σ for continuous responses
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Dose response models for continuous response

Back to the simulated example based on the exponential model

background = 7.5,maximum = 15,BMD = 0.229 (BMR = 0.1), d = 1.8
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Dose response models for continuous response

What is the effect of different values for the parameter d

on a particular model?
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Dose response models for continuous response

Technical parameter d in the exponential model
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Dose response models for continuous response

Technical parameter d in the exponential model
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Dose response models for continuous response

Technical parameter d in the exponential model
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Dose response models for continuous response

Technical parameter d in the exponential model
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Dose response models for continuous response

Technical parameter d in the exponential model
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Dose response models for continuous response

Maximum response at very large dose (in limit to infinity)

The new BMD methodology - Insights and understandings 38/156



Dose response models for continuous response

How do models differ with all parameters fixed,

including parameter d?
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Dose response models for continuous response

Technical parameter d = 1.8 in the exponential model
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Dose response models for continuous response

Technical parameter d = 1.8 fixed for family 1a
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Dose response models for continuous response

Technical parameter d = 1.8 fixed for family 1a,b
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Dose response models for continuous response

Technical parameter d = 1.8 fixed for family 1a,b and 2
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Dose response models for quantal response

2 parameters less

• no variance parameter σ

• max response equals 1

Same 8 candidate models

• family 1 (a & b) ac = 1⇒ c = 1/a

a(1+(c−1)F (x; b, d)) = a(1+(
1

a
−1)F (x; b, d) = a+(1−a)F (x; b, d)
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Dose response models for quantal response
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Questions ?
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Outline

• Main statistical methodology

▷ Components of the models

▷ Bayesian inference

▷ Model averaging

• Preliminary statistical tests

• Some further illustrations

• Summary simulation study
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Bayesian inference

• extension of maximum likelihood (ML) inference

• parameters get distributions as well

• prior distribution
data−→ posterior distribution
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Thyroid epithelial cell vacuolisation data

• 2-year study in rats

• 3 doses of a substance

• changes in thyroid epithelial cell vacuolisation

• in 2017 and 2022 guidance
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Thyroid epithelial cell vacuolisation data

Consider the estimation of the proportion π(0) for control group

• data: 6 out of 50

• frequency estimator

π̂(0) =
6

50
= 0.12

• ? maximum likelihood estimate (MLE)
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Thyroid epithelial cell vacuolisation data

MLE for proportion at control level

• likelihood expresses the plausibility of the observed data as a
function of proportion π(0)

• the ML estimate maximizes this plausibility or likelihood

• the likelihood function is determined by the distribution for the
response

• all evidence, obtained from an experiment, about an unknown
quantity is contained in the likelihood function

• for quantal data: the binomial distribution
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Thyroid epithelial cell vacuolisation data
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Bayesian inference

Central formula

P (B|A) =
P (A|B)P (B)

P (A)

or

f(parameters|data) = f(data|parameters)f(parameters)

f(data)

or

posterior distribution ∝ likelihood × prior distribution

or

prior distribution
data−−→ posterior distribution
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Thyroid epithelial cell vacuolisation data

uninformative U(0,1) prior for π(0)
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Thyroid epithelial cell vacuolisation data

uninformative U(0,1) prior for π(0)
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Thyroid epithelial cell vacuolisation data

uninformative U(0,1) prior for π(0)
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Bayesian inference

Central formula

posterior distribution ∝ likelihood × prior distribution

so

frequentist estimation

∼= Bayesian estimation with uninformative prior

and

other info−−−−−→ prior distribution
current data−−−−−−−→ posterior distribution
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Prior distribution

Use of informative prior

• determined before analysis

• informed decision to use (or not) prior information

• sensitivity analysis

• construction of informative prior based on

▷ literature, e.g. reported estimates, confidence intervals

▷ expert opinion

▷ historical data
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Informative prior distribution

Information from historical data about π(0)

• 10 adverse events, out of 100

• similar experimental conditions

How to use these historical data?
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Informative prior distribution

How to use these historical data?

uninformative prior
historical data−−−−−−−−→ posterior

←−−
−−−
−−−
−−−
−−−
−−−
−

informative prior
current data−−−−−−−→ updated posterior

How to construct the informative prior from posterior?
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Informative prior distribution

Posterior distribution from historical data and uninformative prior

• point estimate 0.1: 10 out of 100 adverse events

• 99% Bayesian CrI: [0.044, 0.200]

Construction of informative prior using PERT distribution with

▷ mode =0.1

▷ min = 0.044, max = 0.200

▷ shape ?
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Prior distribution

PERT distribution

• widely used in risk analysis

• defined by the minimum, most likely and maximum value, and
shape
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Construction of informative prior using PERT

Posterior distribution: 99% Bayesian CrI: [0.044, 0.200] around 0.1
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Construction of informative prior using PERT

PERT with mode =0.1, min = 0.044, max = 0.2, shape = 0

The new BMD methodology - Insights and understandings 64/156



Construction of informative prior using PERT

PERT with mode =0.1, min = 0.044, max = 0.2, shape = 1

The new BMD methodology - Insights and understandings 65/156



Construction of informative prior using PERT

PERT with mode =0.1, min = 0.044, max = 0.2, shape = 4
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Informative prior distribution

Analysis with informative prior using PERT with shape = 4
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Informative prior

Sensitivity analysis

prior π̂(0) CrIL CrIU CrIU/CrIL
uninformative 0.120 0.066 0.219 3.31
PERT shape=0 0.120 0.067 0.187 2.80
PERT shape=1 0.115 0.068 0.174 2.55
PERT shape=4 0.109 0.072 0.155 2.16
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Thyroid epithelial cell vacuolisation data revisited
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Prior distributions on model parameters

Construction of priors

• a challenge in non-linear models

• PERT prior on natural parameters, based on

▷ insights from simulations

▷ practical considerations

and normal priors on transformed technical parameters d and σ2
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Prior distributions on model parameters

Default priors for natural parameters

C,Q BMD: uniform (=PERT) on the full dose range

C,Q background: PERT with mode on observed average in control
group and with wide range

C maximum: PERT with mode on observed average at max dose
and with wide range

Default priors for technical parameters

C,Q log(d): N(1,1) truncated at 5

C log(1/σ2): normal, loosely based on the scale of the data
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Thyroid epithelial cell vacuolisation data

Inverse exponential model using BMR=0.1, with default priors

BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31
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Thyroid epithelial cell vacuolisation data

Inverse exponential model using BMR=0.1, with default priors

BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31
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Thyroid epithelial cell vacuolisation data

Inverse exponential (IE) using BMR=0.1, with default priors

BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31
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Thyroid epithelial cell vacuolisation data

Inverse exponential (IE) using BMR=0.1, with default priors

BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31

Consider informative priors on BMD

• min=2.5, mode=4, max=6, shape=4

• min=4.5, mode=7.5, max=8, shape=4
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Thyroid epithelial cell vacuolisation data

Priors on BMD

How do different priors affect the BMD estimation and the BMDL,
BMDU?
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Thyroid epithelial cell vacuolisation data

IE MODEL with default priors

BMD=3.99 (BMDL=2.64,BMDU=6.09) BMDU/BMDL=2.31
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Thyroid epithelial cell vacuolisation data

IE MODEL with BMD prior PERT(2.5,4,6,sh=4)

BMD=4.02 (BMDL=3.06, BMDU=5.28) BMDU/BMDL=1.73
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Thyroid epithelial cell vacuolisation data

IE MODEL with BMD prior PERT(4.5,7.5,8,sh=4)

BMD=6.52 (BMDL=5.36, BMDU=7.91) BMDU/BMDL=1.47
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Thyroid epithelial cell vacuolisation data

IE MODEL with BMD priors

prior BMD BMDL BMDU BMDU/BMDL

U(0,1) 3.99 2.64 6.09 2.31
PERT(2.5,4,6,sh=4) 4.02 3.06 5.28 1.73
PERT(4.5,7.5,8,sh=4) 6.52 5.36 7.91 1.47
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Thyroid epithelial cell vacuolisation data

all models with default priors
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Thyroid epithelial cell vacuolisation data

all models with default priors
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Questions ?
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Outline

• Main statistical methodology

▷ Components of the models

▷ Bayesian inference

▷ Model averaging

• Preliminary statistical tests

• Some further illustrations

• Summary simulation study
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Model averaging

• multi-model inference

• suite of models should be rich enough

• frequentist model averaging

averaged model fit =
∑
model

wmodel × fitted model

• model weight wmodel based on goodness-of-fit criterion (AIC)

• use averaged model fit to determine BMD

• BMDL (and BMDU) based on bootstrap
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Bayesian model averaging

• same rationale

• priors and posteriors on two levels

▷ on the parameters of each specific model

▷ on the models within the suite of candidate models

• different implementation

averaged BMD posterior =
weighted mixture of model specific BMD posteriors

weights = posterior probabilities of the models

• BMDL (and BMDU) defined as quantiles of averaged posterior
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Prior probabilities on candidate models

Default prior distribution on set of candidate models

C uniform distribution: probability 1/16 for each model

Q uniform distribution: probability 1/8 for each model
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Bayesian model averaging

Technical issue:

• for the posterior probabilities of the models

• not analytically tractable integrals

Solutions:

• approximation of integrand: Laplace approximation

• numerical methods to compute integrals: Bridge sampling
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Thyroid epithelial cell vacuolisation data revisited

all models with default priors

The new BMD methodology - Insights and understandings 89/156



Thyroid epithelial cell vacuolisation data

Laplace approximation

BMD=3.67 (BMDL=1.94, BMDU=5.88) BMDU/BMDL=3.04
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Thyroid epithelial cell vacuolisation data

Bridge sampling

BMD=4.08 (BMDL=2.23, BMDU=6.28) BMDU/BMDL=2.81
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Questions ?
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Outline

• Main statistical methodology

▷ Components of the models

▷ Bayesian inference

▷ Model averaging

• Preliminary statistical tests

• Some further illustrations

• Summary simulation study
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Preliminary statistical tests

• For continuous response

y|x ∼ N(µ(x), σ2), y|x ∼ LOGN(µ(x), σ2)

▷ constant variance (normality) & constant coefficient of
variation (log-normality)

▷ constant variance & coefficient of variation for individual
data

▷ normality & log-normality for individual data

• Testing for no dose effect

• Testing best model fits sufficiently well

• Data suitable for estimating the BMD (next presentation)
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Testing

• Frequentist hypothesis testing: based on p-value

• Bayesian hypothesis testing: based on Bayes factor
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Preliminary statistical tests

Frequentist For continuous response

y|x ∼ N(µ(x), σ2), y|x ∼ LOGN(µ(x), σ2)

▷ constant variance (normality) & constant coefficient
of variation (log-normality)

▷ constant variance & coefficient of variation for
individual data

▷ normality & log-normality for individual data

Bayesian Testing for no dose effect

Bayesian Testing best model fits sufficiently well
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Testing constant variance (normality)

Indirect test focusing on the variability across dose levels

Normality assumption

y|x ∼ N(µ(x), σ2)

implying null hypothesis of homoscedasticity

H0 : σ
2
1 = .... = σ2

N = σ2

Bartlett test for constant variance using only summary statistics
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Testing constant coefficient of variation (log-normality)

Log-normality assumption

y|x ∼ LOGN(µ(x), σ2) ⇔ log(y)|x ∼ N(µ(x), σ2)

implying null hypothesis of homoscedasticity

H0 : σ
2
1 = .... = σ2

N = σ2 on log-scale

⇕

H0 : CV1 = .... = CVN =
√
eσ2 − 1 on original scale

with

CV = coefficient of variation =

√
Var(y|x)
E(y|x)

Bartlett test for constant coefficient of variation
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Bartlett test for constant variance or CV

Continuous response (Example 3.1, Figure C.3 in guidance)
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Bartlett test for constant variance or CV

Continuous response (Example 3.1, Figure C.3 in guidance)

• Distributional assumption of constant variance for the normal
distribution is not met, Bartlett test p-value is 3e-04

• Distributional assumption of constant coefficient of variation is
met, Bartlett test p-value is 0.4295

Conclusion: evidence against the normal distribution
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Testing constant variance or CV for individual data

Same hypotheses

• normal distribution

H0 : σ
2
1 = .... = σ2

N

• log-normal distribution

H0 : CV1 = .... = CVN

Levene test using individual data
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Testing constant variance or CV

Continuous response (Example 3.1, Figure C.3 in guidance)

SD Distributional assumption of constant variance for the normal
distribution is not met, Bartlett test p-value is 0.0003

ID Distributional assumption of constant variance for the normal
distribution is not met, Levene test p-value is 0.0046

SD Distributional assumption of constant coefficient of variation is
met, Bartlett test p-value is 0.430

ID Distributional assumption of constant coefficient of variation is
met, Levene test p-value is 0.550

Conclusion: evidence against the normal distribution
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Preliminary statistical tests

Frequentist For continuous response

y|x ∼ N(µ(x), σ2), y|x ∼ LOGN(µ(x), σ2)

▷ constant variance (normality) & constant coefficient
of variation (log-normality)

▷ constant variance & coefficient of variation for
individual data

▷ normality & log-normality for individual data

Bayesian Testing for no dose effect

Bayesian Testing best model fits sufficiently well
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Testing normality or log-normality for individual data

Individual data: Shapiro-Wilk frequentist test for normality

• normality assumption

H0 : y|x ∼ normal distribution

• log-normality assumption

H0 : y|x ∼ log-normal distribution

⇕

H0 : log(y)|x ∼ normal distribution
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Shapiro-Wilk testing for normality or log-normality

Continuous response (Example 3.1, Figure C.3 in guidance)
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Shapiro-Wilk testing for normality or log-normality

Continuous response (Example 3.1, Figure C.3 in guidance)

• at each dose level

• collapsing all dose levels (after centering)

Results

• there is no evidence against normality at level 5%

• there is evidence against normality at level 10% for dose 3

• there is no evidence against log-normality at level 5%

• there is evidence against log-normality at level 10% for dose 3
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Preliminary statistical tests

Frequentist For continuous response

y|x ∼ N(µ(x), σ2), y|x ∼ LOGN(µ(x), σ2)

▷ constant variance (normality) & constant coefficient
of variation (log-normality)

▷ constant variance & coefficient of variation for
individual data

▷ normality & log-normality for individual data

Bayesian Testing for no dose effect

Bayesian Testing best model fits sufficiently well
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Bayesian testing with Bayes factor

• measures change prior → posterior in favor of H0

• central equation

P (H0|data)
P (Ha|data)

=
P (data|H0)

P (data|Ha)
× P (H0)

P (Ha)

P (H0|data)
1− P (H0|data)

=
P (data|H0)

P (data|Ha)
× P (H0)

1− P (H0)

prior odds for H0 = Bayes factor × prior odds for H0

prior odds for H0
Bayes factor−−−−−−−→ posterior odds for H0
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Bayesian testing with Bayes factor

BF =
P (data|H0)

P (data|Ha)

Bayes factor interpretation

BF > 10 strong evidence favoring H0 against Ha

3 < BF ≤ 10 some evidence favoring H0 against Ha

1/3 ≤ BF ≤ 3 insufficient evidence favoring any hypothesis
1/10 ≤ BF < 1/3 some evidence favoring Ha against H0

BF < 1/10 strong evidence favoring Ha against H0
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Testing for no dose effect

H0 : no effect of dose & Ha : any effect of dose

BF =
P (data|H0)

P (data|Ha)

Bayes factor interpretation

BF > 10 strong evidence favoring H0 against Ha

3 < BF ≤ 10 some evidence favoring H0 against Ha

1/3 ≤ BF ≤ 3 insufficient evidence favoring any hypothesis
1/10 ≤ BF < 1/3 some evidence favoring Ha against H0

BF < 1/10 strong evidence favoring Ha against H0
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Testing for no dose effect

H0 : no effect of dose & Ha : any effect of dose

BF =
P (data|H0)

P (data|Ha)

Bayes factor interpretation

BF > 10 sufficient evidence that there is no dose-effect
BF ≤ 10 insufficient evidence that there is no dose-effect
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Testing for no dose effect

Continuous response (Example 3.1, Figure C.3 in guidance)
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Testing for no dose effect

Output

• Bayes factor in favor of null model over SM:

BF = 0.000 ≤ 10

• there is insufficient evidence that there is no dose effect
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Testing best model fits sufficiently well

H0 : best model & Ha : saturated model

BF =
P (data|H0)

P (data|Ha)

Bayes factor interpretation

BF > 10 strong evidence favoring H0 against Ha

3 < BF ≤ 10 some evidence favoring H0 against Ha

1/3 ≤ BF ≤ 3 insufficient evidence favoring any hypothesis
1/10 ≤ BF < 1/3 some evidence favoring Ha against H0

BF < 1/10 strong evidence favoring Ha against H0
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Testing best model fits sufficiently well

H0 : best model & Ha : saturated model

BF =
P (data|H0)

P (data|Ha)

Bayes factor interpretation

BF ≥ 1/10 best fitting model fits sufficiently well
BF < 1/10 none of the models provide an adequate fit do the data
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Testing best model fits sufficiently well

Continuous response (Example 3.1, Figure C.3 in guidance)
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Testing best model fits sufficiently well

Output

• best fitting model fits sufficiently well

BF = 9.404 ≥ 1/10
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Questions ?
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Outline

• Main statistical methodology

▷ Components of the models

▷ Bayesian inference

▷ Model averaging

• Preliminary statistical tests

• Some further illustrations

• Summary simulation study
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Some further illustrations

ILLUSTRATION 1

The simulated continuous response

Example 3.1, Figure C.3 in guidance
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Illustration simulation example

Continuous response (Example 3.1, Figure C.3 in guidance)
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Illustration simulation example

• one dataset generated from a log-normal exponential model

• a = 2.015, b = 1.5, c = 1.344, d = 1.8, σ = 0.05

• natural parameters

▷ median background response = e2.015 = 7.501

▷ median maximum response = e2.015×1.344 = 15.002

▷ BMD = 0.2287, with BMR = 0.10

• dose levels 0, 0.5, 1, 2, 3

• constant group size of 20
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Illustration simulation example

Wrapping-up

• insufficient evidence that there is no dose-effect

• best model (gamma) fits sufficiently well

• evidence the homoscedastic normal distribution does not fit well

• no such evidence against the log-normal distribution

The new BMD methodology - Insights and understandings 123/156



Illustration simulation example

Two analyses: individual data & summary data

differences?
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Illustration simulation example

• Shapiro-Wilk tests only in case of individual data

• with individual data exact geometric summary statistics

▷ for control group: exact (individual data)

gmean = 7.528749, gsdev = 1.042578

▷ for control group: approximate (summary data)

gmean = 7.528454, gsdev = 1.042420
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Illustration simulation example: weights

individual data summary data

Laplace

Bridge
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Illustration simulation example: BMD estimates

individual data summary data

Laplace

Bridge
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Illustration simulation example: log-normal fits

individual data summary data

Laplace

Bridge
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Illustration simulation example: BMD posterior

individual data summary data

Laplace

Bridge
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Illustration simulation example: BMD estimates

True BMD = 0.2287

individual data summary data

BMDL BMD BMDU BMDL BMD BMDU

Laplace 0.1562 0.2350 0.3329 0.1574 0.2355 0.3326

Bridge 0.1633 0.2472 0.3378 0.1640 0.2481 0.3385
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Some further illustrations

ILLUSTRATION 2

The fetal weight example

Dataset das5.rda in PROAST
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Illustration 2

The fetal weight example (dataset das5.rda in PROAST)

BMR = 0.05
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Preliminary statistical tests

Frequentist For continuous response

y|x ∼ N(µ(x), σ2), y|x ∼ LOGN(µ(x), σ2)

▷ constant variance (normality) & constant coefficient of
variation (log-normality):
reject both, p-val 0.0000, 0.0000 resp.

▷ constant variance & coefficient of variation for individual
data: reject both, p-val 0.0003, 0.0000 resp.

▷ normality & log-normality for individual data:
reject both except at dose 970 and 1250

Bayesian Testing for no effect
insufficient evidence of no dose-effect (BF=0.0000)

Bayesian Testing best model fits sufficiently well
best fitting model fits sufficiently well (BF>2900)
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Illustration fetal weight example

weights

BMD
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Illustration fetal weight example

N fits

MA
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Illustration fetal weight example

BMD estimates

BMDL BMD BMDU

Bridge 488.80 524.21 560.64
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Illustration fetal weight example
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Illustration fetal weight example

Clustered or hierarchical data

• total of 2184 fetuses

• total of 213 litters

• within cluster/litter correlation ρ

▷ ρ = 0→ 2184 independent units of information

▷ ρ = 1→ 213 independent units of information

▷ 0 < ρ < 1→ 213 < effective sample size < 2184

• correlated data → implicit reduced sample size

• correlated data → wider CrI
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Illustration fetal weight example

independent clustered

weights

BMD
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Illustration fetal weight example

independent clustered

N fits

MA
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Illustration fetal weight example

BMD estimates

independent clustered

BMDL BMD BMDU BMDL BMD BMDU

Bridge 488.80 524.21 560.64 422.77 504.01 580.22

Intra-litter correlation

ρ estimated as 0.49 with 95% CrI [0.44,0.55]
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Some further illustrations

ILLUSTRATION 3

Effects of Th17 cells example

Luo et al, 2016
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Illustration Th17 cells example

• Th17 cell frequency in the spleen in offspring mice (%)

• covariate: groups by sex and day of measurement

• no litter effect considered
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Illustration Th17 cells example
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Covariate analysis

• no covariate effect on the distribution itself (normal or
log-normal)

• each parameter may depend on covariate → 25 × 16 = 512
submodels !!!

• reduction to 4 submodels, for each model

▷ background and variance σ2, both depend on covariate,
or none

▷ BMD and parameter d, both depend on covariate, or
none
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Covariate analysis

Strategy

• for each model: select best submodel

• at least one best submodel with covariate-dependent BMD?

▷ yes: group dependent model averaged BMD

▷ no: a single model averaged BMD
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Illustration Th17 cells example

Snapshot of submodels
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Illustration Th17 cells example
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Illustration Th17 cells example

Group dependent BMD estimates

BMDL BMD BMDU

female PND21 0.123 0.419 1.420

female PND42 0.267 1.047 3.967

male PND21 0.231 1.001 4.412

male PND42 0.976 3.444 12.407
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Questions ?
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Outline

• Main statistical methodology

▷ Components of the models

▷ Bayesian inference

▷ Model averaging

• Preliminary statistical tests

• Some further illustrations

• Summary simulation study
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Simulation study

Strengths

• mimic real case

• true mechanisms known

• effect of single & multiple factors

• different performance measures

• insight in performance

• recommendations

Limitations

• limited to selected scenarios

• data of real case generated by more complex mechanisms
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Simulation study for continuous response

General settings

• scenarios used by US-EPA

• mimic a typical rat bioassay (Piao et al. 2013)

• body weight loss and liver weight gain

• experimental designs based on FDA’s Redbook 2000

• 120 scenarios for both endpoints

• 1000 datasets generated for each scenario

The new BMD methodology - Insights and understandings 153/156



General recommendations

• background informative prior: less influential

• maximum response informative prior:

▷ very useful when data do not contain information about
asymptote

▷ can affect the estimation beneficially

• BMD informative prior: highly influential

▷ only use shape=4 if sufficient evidence about most likely
value is available
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General recommendations

• sensitivity analysis for impact of different weakly informative
priors for d, especially if fits for the default choice seem less
optimal

• if evidence is available that the BMD is to be expected within
the experimental range

▷ switch extended range off for default prior for BMD

▷ consider sensitivity analysis
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Thank you for your attention !

Questions ?
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