

BIOLOGICAL HAZARDS & ANIMAL HEALTH AND WELFARE UNIT

Scientific Network on Animal Health

Minutes of the 19th meeting

Held on
27 June 2022, 09.00 – 18.00
28 June 2022, 09.00 – 13.00

EFSA, Parma (Italy) and online

(Agreed on 15 July 2022)¹

Participants

■ Network Representatives of Member States (including EFTA countries)

Austria: Friedrich SCHMOLL (online)
Belgium: Kristine CEULEMANS (online)
Bulgaria: Nadezhda LUKANOVA (online)
Croatia: Dražen KNEŽEVIĆ (in person)
Cyprus: Georgios KRASIAS (in person)
Czech Republic: Petr ŠATRÁN (in person)
Denmark: Anette BOKLUND (online)
Estonia: Age KÄRSSIN (in person)
Finland: Saara RAULO (online)
France: Charlotte DUNOYER (online)
Greece: Sofia BOUTSINI (online)
Iceland: Auður ARNTHORSDÓTTIR (online)
Italy: Fabrizio DE MASSIS (in person)
Latvia: Edvīns OĻŠEVSKIS (in person)
Lithuania: Paulius BUŠAUSKAS (in person)
Luxembourg: Carlo GEORGES (online)
Malta: Pantaleo GEMMA (online)
Netherlands: Lodi LAMÉRIS (in person)
Norway: Dean BASIC (in person)

¹ Minutes should be published within 15 working days of the final day of the relevant meeting.

Poland: Przemysław CWYNAR (online)
Portugal: Yolanda VAZ (in person)
Romania: Ioana NEGHIRLA (online)
Slovak Republic: Anna ONDREJKOVÁ (online)
Slovenia: Jedrt MAURER WERNIG (online)
Spain: Elena GARCÍA VILLACIEROS (online)
Sweden: Arianna COMIN (online)

■ **Network Representatives of IPA countries**

Bosnia and Herzegovina: Aleksandar NEMET (in person)
Montenegro: Marko NIKOLIC (in person)
North Macedonia: Vanya KONDRAHENKO (in person)
Turkey: Anıl DEMELİ (in person)

■ **Hearing Experts**

Jeroen DEWULF
Francesco FELIZIANI
Ezio FERROGLIO
Annette NIGSCH
Wim VAN DER POEL
Joaquín VICENTE BAÑOS

■ **EFSA**

BIOHAW Unit: Sotiria-Eleni ANTONIOU, Inma AZNAR (Animal Health Team Leader), Francesca BALDINELLI, Frank BOELART, Alessandro BROGLIA, Kateryna CHUZHAKINA, Sofie DHOLLANDER, Mariana GEFFROY, Andrea GERVELMEYER, Lisa KOHNLE (Chair), Ernesto LIEBANA CRIADO (Head of Unit), Linnea LINDGREN KERO, Lina MUR, Gabriele ZANCANARO (Chair)

ENREL Unit: Julia FINGER

iDATA Unit: Roxani AMINALRAGIA, Perry KOEVOETS

RAL Unit: Martina CAPELLI

1. Welcome and apologies for absence – Introduction and Tour de table

The chair welcomed the meeting participants. Apologies were received from representatives from Hungary, Ireland, Serbia and Switzerland.

All attendees introduced themselves with an elevator pitch of one/two minutes each.

2. Adoption of agenda

The agenda was adopted without changes. The agenda points on monkeypox, *Brucella canis*, sharing platform and legal framework for participants on the second day had to be postponed.

3. Agreement of the minutes of the 18th meeting of the Scientific Network on Animal Health held on 1 June 2021

The minutes of the 18th meeting of the Scientific Network on Animal Health held on 1 June 2021 were agreed by written procedure on 16 June 2021 and published on the EFSA website on 17 June 2021.

4. Session 1: One Health

4.1. Introduction and mandate

EFSA presented the direct grant opportunity (CP-g-22-04.01) and related mandate received from EC on establishing a One Health surveillance system for cross-border zoonotic pathogens that threaten the Union. The Terms of Reference (ToRs) and EFSA's interpretation, list of activities planned to address the three main ToRs, and deadlines of the mandate were presented.

Under the framework of the EU4Health programme, which aims to protect people in the Union from serious cross-border threats to health, these direct grants to Member State authorities are intended for setting up a coordinated surveillance system for cross-border zoonotic pathogens in animals and the environment under the One Health approach. These direct grants will be available for Member States, but they specifically offer the opportunity for collaboration with neighbouring third countries.

Systematic ongoing data collection and reporting to EFSA will be one of the main tasks for Member States, while they shall also identify already existing surveillance activities to build up on or set up a new surveillance system under the One Health approach, carry out preliminary national risk assessments to identify country-specific priorities in terms of public health risks. EFSA, in coordination with ECDC, will be designing the proposed surveillance system and set up a coordination mechanism for regular exchange.

It was emphasised that the mandate does not include surveillance of water- and food-borne pathogens or antimicrobial resistance.

4.2. Questionnaire for mapping of existing surveillance activities

Joaquín Vicente Baños, representative of the **ENETWILD consortium**, presented the questionnaire for mapping of existing surveillance activities in the Union to be sent out to countries for capturing information that has not been published. This questionnaire shall include questions on surveillance system characteristics in humans, domestic animals and wildlife as well as information about the country, such as contact persons, stakeholders involved, sampling methods and sources, main target species and pathogens.

4.3. Country presentations

Austria presented the current structure of the governmental management, the organisations involved in zoonotic disease control (Federal Zoonoses Commission ensures the nation-wide cooperation of the work areas concerned), and the main objectives of the competent authority. Relevant current legislation such as the Zoonoses Act, Epidemics Act, Food Safety and Consumer Protection Act, and Feed Act were introduced. Austria intends to apply for a direct grant under CP-g-22-04.01.

Finland presented the structure of the governmental management and the CCA, which is subjected to the Ministry of Agriculture and Ministry of Social Affairs. The Zoonoses Centre network represent existing regular One Health collaboration and information exchange between the Finnish Food Authority and the Institute for Health and Welfare, and the ministries of Agriculture and Forestry and Social Affairs and Health. The Finnish Food Authority has expressed interest in the grant opportunity under CP-g-22-04.01, and the Ministry of Agriculture and Forestry supports the idea to launch such a project in Finland.

The Netherlands presented the current signalling structure related to emerging zoonoses and relevant governmental institutions involved in the Netherlands. The Ministries of Health, Welfare and Sport and Agriculture, Nature and Food quality will soon decide on whether to apply for the direct grant under CP-g-22-04.01.

Italy declared an interest in applying for the direct grant under CP-g-22-04.01. The relevant competent authority is currently being identified.

Sweden informed that they were considering this direct grant opportunity under CP-g-22-04.01 but would still be in the process of identifying the competent authority and other joining organisations. The three main actors of the current acting government offices of Sweden were introduced: the National Veterinarian Institute, Sweden Board of Agriculture, and National Food Agency, which have continuous collaborations.

Denmark informed that they were considering to apply for the direct grant under CP-g-22-04.01, but negotiations were still ongoing. Interest was expressed from both the Statens Serum Institut and the Veterinary and Food Administration. The OHEJP MATRIX project (led by Denmark) was presented, which concerns professional networks and the improvement of collaboration activities along all steps of surveillance. In addition, a recent example of a zoonotic disease prioritisation exercise was shown.

4.4. Presentation of the prioritisation method

EFSA presented the work in progress on a method to be used for prioritising zoonotic diseases within the framework of the mandate. The aim of this prioritisation exercise is to come up with a list of priority zoonotic diseases for which surveillance strategies will be developed. A contractor had already worked on a literature review to describe and characterise different disease ranking tools, which compares different methodological frameworks, including their advantages and disadvantages, and provides specific recommendations (multi-criteria decision analysis to be used in combination with the Delphi method). The list of zoonotic diseases to feed into this exercise (50 in total), and the criteria to be used for evaluation and comparison of zoonotic diseases were defined. The way of scoring these zoonotic diseases against the criteria, and identification of stakeholders to take part in the exercise are still ongoing.

4.5. The role of the SIGMA project in the One Health mandate

EFSA presented on the SIGMA project, which is a data model for collecting data on livestock population and diseases from the Member States currently being launched. It will first be used for the collection of data for African swine fever and avian influenza but will later replace older systems for animal diseases. The positive aspects of reporting in SIGMA compared to the current data collection systems are a greater harmonisation and standardisation between Member States and that there can be separate population data providers and laboratory data providers at the same time. SIGMA may also adapt easier to the different data collection system used by the Member States, which will reduce the workload for data providers and ESFA. It will also be easier to include other types of information such as habitat which will result in a broader risk analysis. SIGMA will initially require some effort for harmonisation and configuration as well as education for users. The first part of the project has been finalised and the second one is about to start.

5. Session 2: SARS-CoV-2

5.1. SARS-CoV-2 in wildlife and activities of the COVRIN project (OHEJP)

The presentation focused on the zoonotic aspects of SARS-CoV-2, outbreaks in minks in the Netherlands, its impact on public health and the COVRIN project. A journey into the origins of the virus was presented. SARS-CoV-2 probably originated in a bat but neither an intermediate host nor direct transmission to humans has been definitely proven. Susceptibility and transmission potential was discussed for different animal species. There have been outbreaks of SARS-CoV-2 in minks in the Netherlands with animals showing mild respiratory symptoms. Sequencing of the virus from minks and humans showed transmission in both directions. Other animal species that have been tested and found seropositive or excreting the virus are cats, dogs, and hamsters, among others. In the USA, white-tailed deer have been found seropositive for SARS-CoV-2. The COVRIN project is an EU-funded project for generating and sharing data from research on virus-host interaction, virus evolution and drivers for emergence, risk assessment and risk modelling to increase preparedness for future outbreaks of SARS-CoV-2.

5.2. Updates from EFSA

EFSA presented a current update on the mandate on SARS-CoV-2. A first report was produced from December 2020 to January 2021, as several Member States had reported outbreaks amongst farmed minks. The current report reviews literature on susceptible animal species that could be included in monitoring programmes. The report will also revise and recommend options for monitoring strategies, and explore the main possible options for SARS-CoV-2 prevention and control in animals.

5.3. Covid-19 outbreak in a large mink farm in Latvia

Latvia presented on the 2021 outbreak of SARS-CoV-2 in the largest mink farm in Latvia. The outbreak started when a dead mink was tested positive for SARS-CoV-2 as well as an employee on the same day. Restriction and control measures were put in place as well as intensive testing by PCR (including sequencing of positive samples) and serology. The minks showed no increased morbidity or mortality. The minks were not culled. Sequencing showed transmission from humans to minks and from minks to humans. The Omicron variant was not found in the minks and none of the sub-mink lineages was found outside of the farm workers.

6. Session 3: Avian influenza

6.1. Updates from EFSA

EFSA presented ongoing work on the upcoming quarterly report. Since 2017, EFSA is assessing the current situation of avian influenza every three months, and quarterly reports are jointly produced with ECDC and the EU Reference Laboratory for avian influenza. The geographical distribution of cases during three large epidemics, the distribution of the total number of HPAI virus detections reported in Europe by week of suspicion and virus subtype, affected poultry categories, and affected wild bird categories, were showcased. In the current epidemic season there has been an extension within Europe, reaching from Iceland and Norway in the North to Spain and Portugal, as well as to Italy and Greece, in the South. The most heavily affected countries in this reporting period have France and Hungary. A general conclusion was that this epidemic season has been the largest ever observed in Europe, and is still ongoing. This situation may indicate that the virus has become endemic in some parts of Europe and poses a risk not only during the autumn and winter months. The persistence and continuous circulation of HPAI viruses in wild birds will continue to pose a risk for the poultry sector requiring the definition and the rapid implementation of suitable and sustainable HPAI strategies:

appropriate biosecurity measures, surveillance plan, and early-detection strategies must be regularly applied in the different poultry production.

6.2. Avian influenza in France for the 2021-2022 period

France presented the situation of avian influenza in the country for the 2021-2022 period. During the winter season, in January 2022, outbreaks occurred mainly in the Southwest and a second epizootic wave, in March, affected the region of Vendée in the west of France. Mostly ducks were affected, accounting for 63% of the poultry outbreaks. France reported high genetic diversity of avian influenza viruses. Eight genotypes were identified, which suggest different introductions. The risk associated with the exit of hatching eggs and ducklings from the restricted area was assessed.

6.3. Status of avian influenza in Iceland

Iceland briefly described the status of HPAI in Iceland, which has been affected for the first time ever. The first wild bird diagnosed with influenza A(H5N1) virus in the country was a white-tailed eagle found dead in October 2021. Since then, around 460 notifications from people around the country were received and 111 samples were collected, of which 25 tested positive for avian influenza viruses (22 of them for HPAI). A security awareness campaign was launched to improve passive surveillance (clinical symptoms or increased mortality) and biosecurity implementation for poultry and other captive birds.

6.4. The role of SIGMA in the avian influenza reporting

EFSA briefly introduced the advantages of using SIGMA in the avian influenza reporting and its perspectives. The tool is going to collect information about the sampling programme, including the legal framework to distinguish between surveillance, monitoring and outbreak containment. There will be information about the sample taken, sample analysis, laboratory methods and test results. The tool also provides the possibility of reporting environmental samples. The first official submission using the SIGMA approach will be March 2024. In between, a pilot phase will be launched with volunteering countries in 2023 to set up the data model.

7. AOB

7.1. Recent epidemiological activities at the animal health department in Turkey

Turkey presented on their recent epidemiological activities. A vaccination programme and emergency vaccination in case of an outbreak were mentioned as available options for the control of foot-and-mouth disease, which is endemic in the country (except from Thrace, European part of Turkey). Training of veterinarians through EuFMD both online and in real life continue. In addition, control options for peste des petits ruminants, including wildlife surveillance, were presented. Lumpy skin disease was reported to be close to eradication after the successful implementation of a vaccination programme.

8. Session 4: African swine fever

8.1. Updates from EFSA

EFSA presented the epidemiological analyses of African swine fever in Europe between September 2020 and August 2021. ToRs included a descriptive analysis of African swine fever in Europe, risk factor analysis in the wild boar population and in the domestic/wildlife interface, and an analysis of white zones for preventing spread of the disease in wild boar. Data were collected from Member States

on outbreaks and surveillance, pig population, wild boar population, and hunting as well as data on the environment. The descriptive analysis showed that African swine fever has continued to spread in wild boar in southern and western directions in Europe. Larger farms were shown to be at higher risk than smaller farms. The peak in the number of cases in domestic pigs was in the summer months and for wild boar during the hunting season. For wild boar, many risk factors were linked to the habitat.

In addition, a short overview of EFSA's work on wild boar management was provided, with a focus on the efficiency of the measures applied in white zones. White zones are areas free of African swine fever that are adjacent to an African swine fever-infected wild boar area, where wild boar reduction measures are implemented with the aim to stop the infection when it would enter the area. Different outcomes were obtained by a stochastic model, depending on the location of the white zone (after focal introduction, or adjacent to a large infected wild boar population), the target population density to be achieved in the white zone, the distance of the affected area, and the period in which the measures are implemented. The implementation of white zones adjacent to large, affected areas is more challenging than in the focal introduction context. A very low target population density needs to be decided upon a priori, and the white zone has to be wide enough, and of appropriate distance to the affected area to achieve the required target before the African swine fever infection arrives at the white zone.

Moreover, EFSA spoke about the assessments on the ability of different matrices to transmit African swine fever virus with the presentation focusing on feed and bedding material. The assessments rank different matrices based on their ability and risk for spreading African swine fever virus as well as proposing how to manage the risks. The mapping was made in three steps covering what happens at the primary production site (the field), how much virus infected matrices are still contained on the site of usage, and the proportion of the matrices that still contain an infectious dose. The opinion identifies some types of feed which may present a risk for transferring African swine fever to a farm, but other risk pathways, such as moving live domestic pigs or contact between wild boar and domestic pigs, are more likely to require risk management.

8.2. African swine fever in North Macedonia

North Macedonia reported that the Food and Veterinary Agency has since 2018 put in place several actions aiming for the prevention, and in case of entry of the disease, early detection and eradication of African swine fever. These actions are aimed for domestic pigs and wild boar. In early January 2022, the first case of African swine fever was confirmed in a domestic pig on a backyard farm, and in March 2022, was confirmed in wild boar. The most likely source of infection for the farm was indirect contact through humans hunting wild boar. Within the protection zone, stamping out of all pigs was implemented. The programme for preventing new outbreaks and eradicating the disease continues. North Macedonia will also increase the awareness campaign, look for better cooperation with hunters, improve biosecurity in hunting grounds, categorise hunting grounds based on biosecurity measures, and try remotely controlled traps.

8.3. African swine fever in Italy

Italy reported that in the beginning of January 2022 several dead wild boar in Northern Italy were found positive for African swine fever, and since then, the outbreak in the wild boar population in the area has continued. Sequencing showed that the virus did not spread to Northern Italy from Sardinia, where the disease is endemic. Increased surveillance and an eradication plan as well as fencing is ongoing in Northern Italy. In April, the first case of African swine fever in wild boar in urban Rome was detected. After that, several more cases of African swine fever in wild boar within a bigger radius around Rome continued to spread, including two pigs on a farm.

9. Session 5: Biosecurity

9.1. Biosecurity implementation on farms

Principles of biosecurity implementation at farm level, to prevent both disease introduction into the farm as well as spread within the farm, were presented. A scoring system for evaluation of biosecurity (in pigs, poultry and cattle), which is publicly available in different languages, was introduced. This tool (Biocheck.UGent) assesses the level of biosecurity at farm level and suggests action plans for improvement. The tool allows to compare data between different countries.