

IMPACT OF PHYSICOCHEMICAL PROPERTIES ON PROTEIN ALLERGENICITY: PLANT VERSUS ANIMAL ALLERGENS

JOANA COSTA

REQUIMTE-LAQV/Faculty of Pharmacy University of Porto, Porto, Portugal

jbcosta@ff.up.pt

FOOD ALLERGY

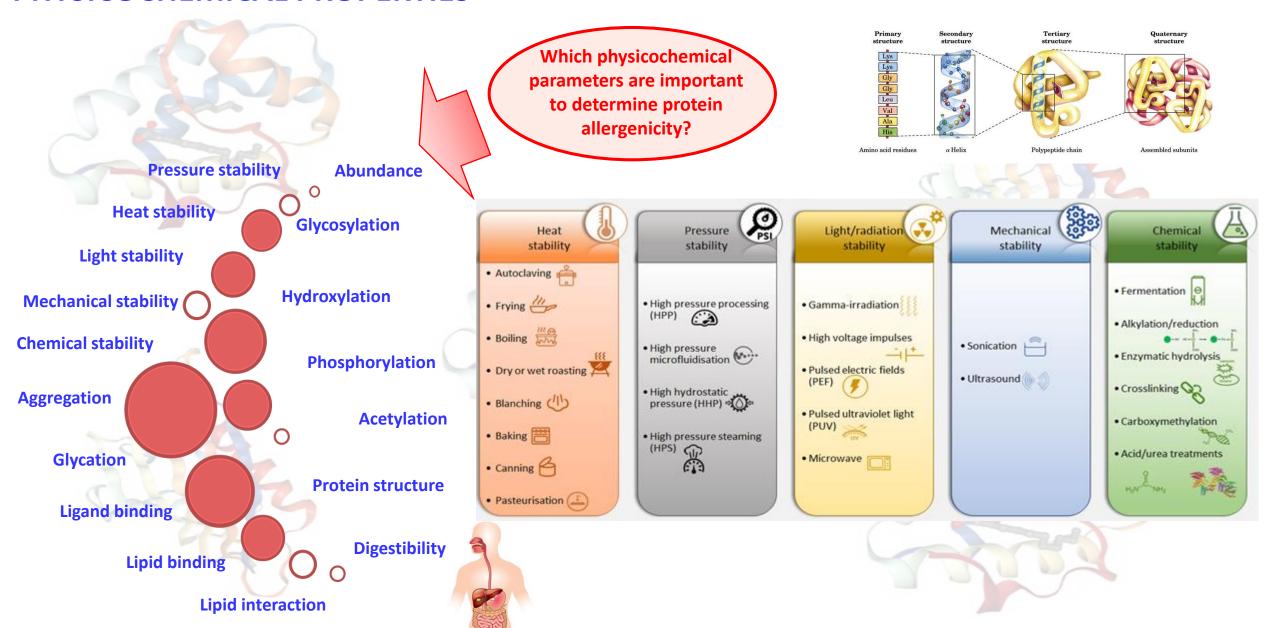
Which factors drive sustained tolerance to foods and food proteins?

Which immunological events intervene in tolerance breakdown, leading to sensitisation, and most likely to subsequent food allergy?

Why do some proteins act as allergens, while others do not?

What are the differences among proteins that increase their intrinsic allergenic potential?

WHAT MAKES A PROTEIN INTO AN ALLERGEN?



LOOKING FOR EVIDENCES Look for evidences that protein properties influence allergenicity. To gather information To verify if protein on which parameter(s) behaviour is common have been tested, and to all proteins within a which allergenicity tests family were performed. **Are physicochemical properties** shaping protein allergenicity?? To identify which To identify how these

physicochemical parameters are more related to food allergy.

parameters affect the protein allergenicity

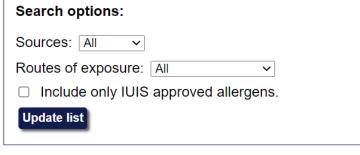
PHYSICOCHEMICAL PROPERTIES

FOOD ALLERGENS

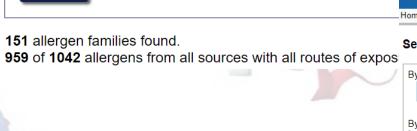
Allergens belong to a restricted number of protein families

ALLERGEN NOMENCLATURE

Financial contribution from IUIS, EAACI, and AAAAI organizations


WHO/IUIS Allergen Nomenclature Sub-Committee

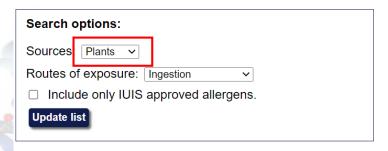
Search AllFam [Help]	
Go!	
AllFam Home	
Browse AllFam	
Help/FAQ	
About AllFam	
References	
Powered by	


Department of Pathophysiology

Medical University of Vienna > AllFam > Browse

AllFam Allergen Family List

151 allergen families found.



By Allergen Name (Three letter genus submit)	Major Taxonomic Group All		
By allergen source (common or scientific name) [a space and submit gives the list of sources]	Order All		
Limit Search To: All allergens food allergens airborne Biochemical Name	e allergens O contact allergens O injection allergens O unknown		
Submit			

Publications Carbohydrate Epitopes Executive Committee Submission Form Log In

Search Results: 1037

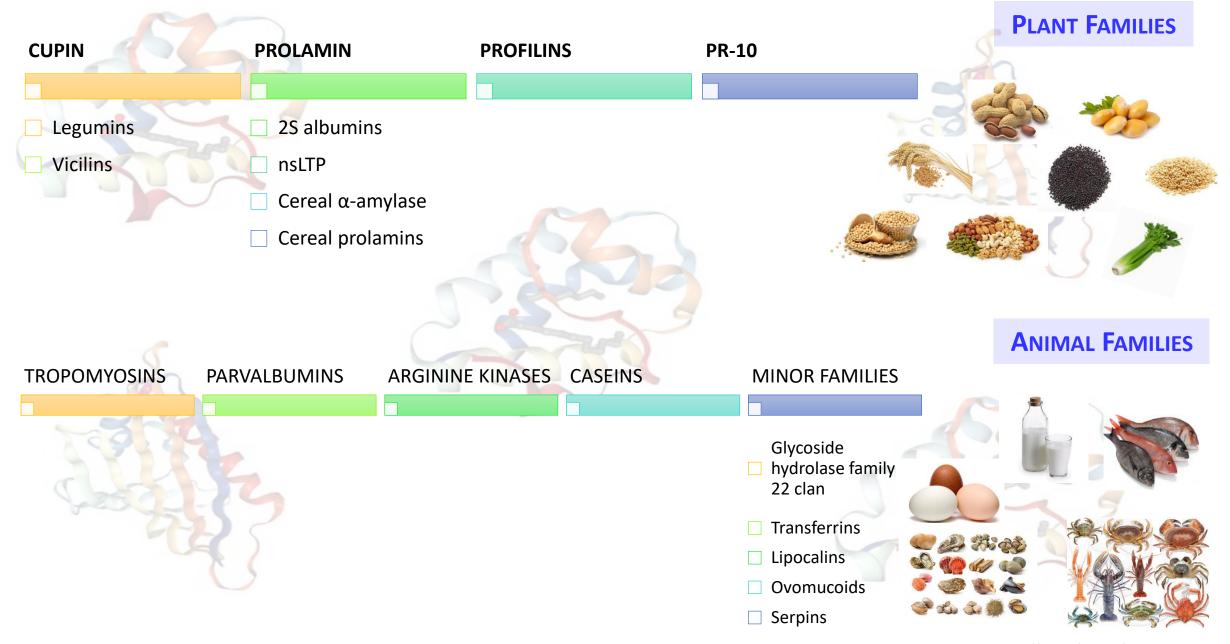
SELECTED FOOD ALLERGENS


45 allergen families found.

233 of 251 allergens from plants with ingestion as route of exposure classified into them.

		ID	Protein family name	Number of allergens
	1	AF050	Prolamin superfamily	75
~63% /	2	AF045	Cupin	36
03/0 /_	3	AF051	Profilin	26
·	4	AF069	Bet v 1 family	21
	5	AF060	Thaumatin-like protein	10

Allergens belong to a restricted number of protein families



24 allergen families found.

144 of 153 allergens from animals with ingestion as route of exposure classified into them.

		ID	Protein family name	Number of allergens	
-	1	AF054	Tropomyosin	50	
~70% /	2	AF007	EF hand family	46	
70/0	3	AF049	ATP:guanido phosphotransferase	7	
	4	AF065	Alpha/beta casein	1 4	
	5	AF031	Enolase	■ 4 <u>ht</u>	tp://www.meduniwien.ac.at/allfam/browse.php

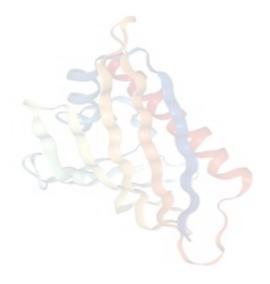
SELECTED PROTEIN FAMILIES

ASSAYS FOR ALLERGENICITY TESTING

	Specific serum screening			Cellular in vitro or ex vivo assays			In vivo assays			
Families	Immunoblot/ dot blot	ELISA	RAST/EAST/ ImmunoCAP	Basophil activation test	RBL mediator release assay	T-cell proliferation	Murine IgE response	Murine anaphylaxis	Human Skin prick tests*	Human Food challenges**
2S albumins	٧	٧	V	V	٧	V	V	٧	٧	V
nsLTP	٧	٧	V	V	٧	NR	NR	NR	٧	V
ATI	٧	٧	NR	V	NR	V	V	NR	٧	NR
Cereal prolamins	٧	٧	V	٧	٧	V	V	٧	٧	٧
Profilins	V	٧	V	NR	٧	NR	NR	NR	٧	٧
Legumins	٧	٧	NR	NR	٧	V	NR	NR	٧	NR
Vicilins	٧	٧	٧	V	٧	V	NR	NR	٧	٧
PR-10	٧	٧	V	V	٧	V	NR	NR	٧	V
Tropomyosins	V	٧	NR	V	٧	V	٧	٧	٧	NR
Parvalbumins	٧	٧	٧	V	٧	NR	٧	NR	√	NR
Arginine kinase	V	٧	NR	NR	٧	√	√	٧	NR	NR
Caseins	٧	٧	٧	V	٧	V	NR	NR	٧	V
Serum albumins	٧	٧	V	NR	NR	V	NR	٧	٧	٧
Glycoside Hydrolase	٧	٧	NR	٧	٧	٧	٧	٧	٧	٧
Transferrins	V	٧	NR	NR	NR	V	V	٧	NR	NR
Lipocalins	٧	٧	NR	٧	٧	V	V	٧	٧	V
Ovomucoids	٧	٧	NR	٧	٧	V	V	٧	NR	V
Serpins	٧	٧	NR	V	٧	V	V	٧	NR	V

V, confirmation of tests performed as reported on literature; NR, no evidence found in the literature; *, Human SPT were performed mainly with pure protein, although pure food extracts were also used. **, Food challenges are normally performed using pure food extracts or entire food (either alone or hidden within a prepared matrix), respectively.

In general, for the same allergen or set of allergens there is a high variability in the results from different assays

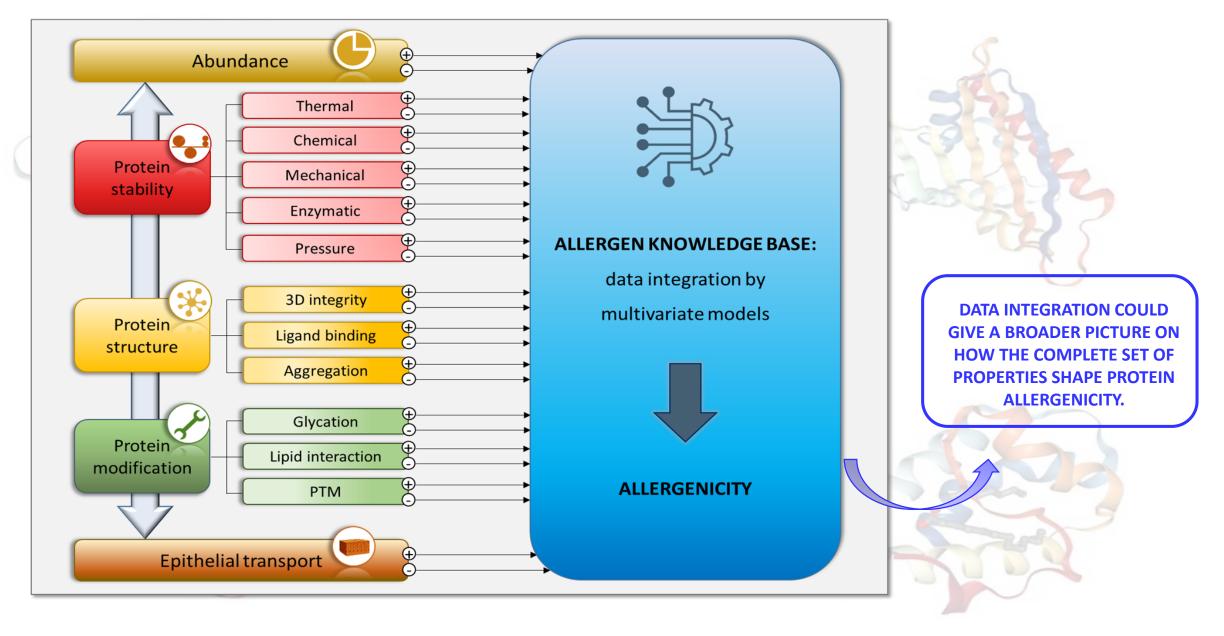

	Impact on IgE- binding capacity	Supporting evidence/Main concerns (PLANT ALLERGENS)	
ABUNDANCE (allergen content in relation to total protein)	H igh	Potent allergens are often highly abundant.	
BIOLOGICAL FUNCTION High		Potent allergens display biological functions as capacity, transport and defence.	
PTM			
Glycosylation	Limited	Increases allergenicity, most likely IgE-binding regions containing N-glycans. Information mostly limited to vicilins	
Hydroxylation	Limited	Increase the allergenic potential of Ara h 2 (limited to 2S albumins)	
Phosphorylation	-	Not reported	
LIPID-BINDING	High	Lipid binding stabilises protein structure, increasing resistance to proteolysis and processing.	
PROTEIN STRUCTURE			
Loss of 2D	High	Decreases allergenicity of most plant allergens. Loss of structural integrity. Valid for conformational epitopes	
Loss of S-S bonds	High	Decreases allergenicity of most plant allergens. Loss of structural integrity. Valid for conformational epitopes	
GLYCATION	Low or inconclusive	Depending on the protein family, glycation decreases, maintain or increase allergenicity	
AGGREGATION	Low or inconclusive	Depending on the protein family, aggregation decreases, maintain or increase allergenicity	
HEAT STABILITY	High	Potent allergens are heat stable. Fails to explain potent heat-labile allergens (e.g. profilins, PR-10 proteins)	
PRESSURE STABILITY	Limited	Potent allergens are pressure stable, but in vivo evidence has hardly been studied. Maintain protein integrity.	
LIGHT/RADIATION STABILITY	High	Potent allergens are light/radiation stable. Maintain protein integrity.	
MECHANICAL STABILITY	Low	Most allergens are stable to mechanical processing. Maintain protein integrity.	
CHEMICAL STABILITY			
Changes in protein structure	High	Maintain or reduce the IgE-binding capacity. Limited information to nsLTP and legumins	
Changes in protein size (fragmentation)	High	Maintain or reduce the IgE-binding capacity of 2S albumins, ATI, legumins, vicilins, profilins and PR-10 families. Fragmentation of protein into peptides. Loss of protein primary structure.	
Changes in protein size/structure	High	Enhance and maintain the IgE-binding capacity. Limited information to cereal prolamins and 2S albumins	
DIGESTIBILITY			
Pepsin resistance	Low or inconclusive	Fails to explain potent pepsin-labile allergens (e.g. Ara h 3, Gly m 6)	
Trypsin/chymotrypsin resistance	High	Most allergens are resistant to trypsin/chymotrypsin activities.	
Lipid interaction	High	Presence of lipids protects allergens from proteolysis. Maintain protein integrity.	

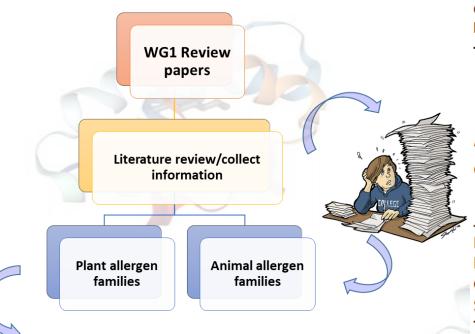
	Impact on IgE-	Supporting evidence/Main concerns (ANIMAL ALLERGENS)	
	binding capacity	Supporting evidence/ Main concerns (AMMAL ALLENGLINS)	
ABUNDANCE	Low	Low abundant as well as high abundant proteins are known as potent allergens, e.g. tropomyosins (low), caseins (high abundant).	
BIOLOGICAL FUNCTION	High	Potent allergens display biological functions as storage, regulation, transport, and defence.	
РТМ			
Glycosylation	Low	Contradictory effects are found for potent allergens. Information is limited to tropomyosins, arginine kinases, caseins, ovomucoids.	
Acetylation	Limited	Increase the IgE-binding capacity of parvalbumins. Information limited to parvalbumins	
Phosphorylation	Limited	Phosphorylation increases IgE-binding capacity. Information limited to caseins and serpins	
LIPID-BINDING	Limited	Reduces allergenicity. Information limited to Bos d 5 (lipocalins).	
LIGAND-BINDING	Low	Contradictory effects are found for different potent allergens. Information limited to parvalbumins, caseins, transferrins, lipocalins.	
PROTEIN STRUCTURE			
Loss of 2D/Loss of S-S bonds	Low	Contradictory effects. Loss of structural stability decrease (destruction of conformational epitopes) or maintain/increase (unmasking hidden linear epitopes) IgE-binding capacity.	
GLYCATION	Low/inconclusive	Chemical changes (formation of advanced glycation products) can decrease, maintain, or increase IgE-binding capacity (depending on protein family or within the same family). Data missing for transferrins and serum albumins.	
AGGREGATION	Low/inconclusive	Structural changes (formation of aggregates and potentially new conformational epitopes) can decrease, maintain, or increase IgE-binding capacity. Data missing for transferrins.	
HEAT STABILITY	Low	Heat stable allergens are potent allergens. Fails to explain potent heat-labile allergens (e.g. arginine kinase, lipocalins)	
PRESSURE STABILITY	Low	Pressure alone has a limited effect on allergens. Maintain protein integrity. Data missing for arginine kinases and transferrins.	
LIGHT/RADIATION STABILITY	High	Light/radiation stable proteins are potent allergens. High doses of radiation decrease IgE-binding capacity (promotes unfolding).	
MECHANICAL STABILITY	Low	Most allergens are stable to mechanical processing, preserving their IgE-binding capacity. Maintain protein integrity. Data missing for caseins, transferrins, and ovomucoids.	
CHEMICAL STABILITY			
Changes in protein structure	High	Reduce the IgE-binding capacity.	
Changes in protein integrity (fragmentation)	High	Reduce/mitigate the IgE-binding capacity. Loss of protein primary structure.	
DIGESTIBILITY			
Pepsin resistance	Low/inconclusive	Fails to explain potent pepsin-labile allergens (e.g. some members of tropomyosins)	
Trypsin/chymotrypsin resistance	High	Most allergens are labile to trypsin/chymotrypsin activities.	
Lipid interaction	High	Presence of lipids protects allergens from proteolysis. Maintain protein integrity.	
		<u> </u>	

MAIN CONCLUSIONS

- ✓ Each property has DIFFERENT IMPACT depending on the protein family or even on the allergen itself.
- ✓ Independently on the effect of each property, they all converge to a COMMON OUTCOME, which concerns PROTEIN INTEGRITY.
- ✓ GLYCOSYLATION IS NOT AN UNIVERSAL TRAIT OF ALLERGENS.
- ✓ HEAT STABILITY and PROTEOLYTIC RESISTANCE ARE NOT ALWAYS A SYNONYM OF INCREASED PROTEIN ALLERGENICITY.
- ✓ With the increasing number of proteins that has been identified and classified as food allergens, there are several important allergens that do not fit into the general classification of allergens (ex: potent heat-labile allergens, potent pepsin-labile allergens).
- ✓ Properties affecting PROTEIN INTEGRITY and COMPOSITION can be correlated with the ELICITATION CAPACITY of certain allergens, but WHAT RENDERS A PROTEIN TO BE ALLERGENIC IN THE FIRST PLACE and WHICH PROPERTIES MIGHT IMPACT SENSITISATION ARE STILL QUITE UNCLEAR.
- ✓ Several physicochemical properties shape the allergenicity of proteins, although at different extents. THE LEVEL IS NOT THE SAME AMONG PLANT OR ANIMAL ALLERGENS.

	PLANT ALLERGENS	ANIMAL ALLERGENS		
PROPERTIES	IMPACT ON IGE-BINDING CAPACITY			
ABUNDANCE	High	Low		
BIOLOGICAL FUNCTION	High	High		
PTM				
Glycosylation	Limited	Low		
Acetylation	-	Limited		
Hydroxylation	Limited	-		
Phosphorylation	-	Limited		
LIPID-BINDING	High	Limited		
LIGAND-BINDING	-	Low		
PROTEIN STRUCTURE				
Loss of 2D	High	Low		
Loss of S-S bonds	High	Low		
GLYCATION	Low or inconclusive	Low or inconclusive		
AGGREGATION	Low or inconclusive	Low or inconclusive		
HEAT STABILITY	High	Low		
PRESSURE STABILITY	Limited	Low		
LIGHT/RADIATION STABILITY	High	High		
MECHANICAL STABILITY	Low	Low		
CHEMICAL STABILITY				
Changes in protein structure	High	High		
Changes in protein integrity (fragmentation)	High	High		
Changes in protein size/structure	High	-		
DIGESTIBILITY				
Pepsin resistance	Low or inconclusive	Low or inconclusive		
Trypsin/chymotrypsin resistance	High	High		
Lipid interaction	High	High		

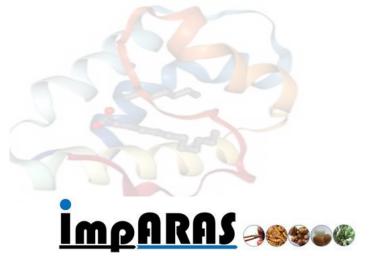



Can we use parameters associated with protein stability for allergenicity prediction???

CRITICAL OBSERVATIONS/GAPS

- ✓ Using this information for ALLERGENICITY PREDICTION OF NOVEL PROTEINS REMAINS A FUTURE CHALLENGE.
- ✓ HARMONISATION OF PROTOCOLS is much needed.
- ✓ RING TRIALS data from interlaboratory analysis is practically inexistent (could help clarify if the contradictory effects observed for specific allergens are real or if they result from cumulative differences in protocols.
- ✓ COMPARATIVE STUDIES allergens vs non-allergens are also needed.
- ✓ Weight of evidence from different assays to test allergenicity is quite different (serological vs cellular/in vitro vs in vivo assays).
- ✓ Studies about the IMPACT OF PROCESSING IN VIVO IN HUMANS are very scarce but much needed.
- ✓ Work on single allergens, processed under lab conditions may help to better characterize allergens at molecular level but this setting might not fully reflect in vivo reality.
- ✓ Possible solution: would be to CREATE A LINK USING ALLERGY ANIMAL MODELS.

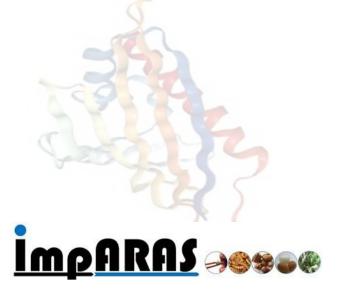
FUTURE?


Are Physicochemical Properties Shaping the Allergenic Potency of Animal Allergens?

Joana Costa¹ · Caterina Villa¹ · Kitty Verhoeckx² · Tanja Cirkovic-Velickovic^{3,4,5} · Denise Schrama⁶ · Paola Roncada⁷ · Pedro M. Rodrigues⁶ · Cristian Piras^{8,9} · Laura Martín-Pedraza¹⁰ · Linda Monaci¹¹ · Elena Molina¹² · Gabriel Mazzucchelli¹³ · Isabel Mafra¹ · Roberta Lupi¹⁴ · Daniel Lozano-Ojalvo¹⁵ · Colette Larré¹⁴ · Julia Klueber^{16,17} · Eva Gelencser¹⁸ · Cristina Bueno-Diaz¹⁹ · Araceli Diaz-Perales²⁰ · Sara Benedé¹² · Simona Lucia Bavaro^{11,21} · Annette Kuehn¹⁶ · Karin Hoffmann-Sommergruber²² · Thomas Holzhauser²³

Clinical Reviews in Allergy & Immunology https://doi.org/10.1007/s12016-020-08810-9

Are Physicochemical Properties Shaping the Allergenic Potency of Plant Allergens?



GMO Workshop on allergenicity assessment

Acknowledgments: This work was supported by COST Action FA1402 (IMPARAS) with the involvement of several of its WG1 members. J. Costa thanks FCT for funding through program DL 57/2016 – Norma transitória (SFRH/BPD/102404/2014).

