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BACKGROUND

AT Y IO\
» Protein allergenic reactions can be clinically important G I\ b

— e.g., peanut allergens can cause anaphylactic i
responses Dairy  Gluten Seafood Soy

» Typical Type | food allergy reactions are caused by Q ) @
proteins; some new food sources include A\ e
new/broader food allergen exposure when distributed  Egg Peanuts Shellfish Tree Nuts
to new populations

» Predictive knowledge on distinguishing allergenic

from non-allergenic proteins is lacking ®
. . e _—
o0 ®
e °

amino acids peptide protein

Peanyts
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MODEL DEVELOPMENT STEPS

Method: Random
Forest

Subjects:
Proteins

Pilot study

Variables:
Protein properties

Checks on:

Method
Proteins
Properties

Predicting allergenicity

Rebuilding Validation

Final test

model Validation set

Selected

New data properties
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THE RANDOM FOREST MODEL

» Estimate classification based on combination of properties
» Create a large number of decision trees &
» Each tree consists of branches, splits and leaf
) For each split a variable is selected, @
which is then split to diminish entropy
» Each branch marks a sidepath after a split
» Each leaf marks a final point (“decision”) © b © 4 o

Predicting allergenicity



RANDOM FOREST:
ACCURACY, SPECIFICITY, SENSITIVITY

TP

) Sensitivity = irn 100% —> correctly predict positives
) Specifity = TNTJIrVFP * 100% —> correctly predict negatives
) Accuracy = TP+:§:;}’§+FN * 100% -> correctly predict both
TP: True positives ~P: False positives

TN: True negatives ~N: False negatives

Predicting allergenicity

innovation
for life s ——



m innovation
for life s ——

SUBJECTS: PROTEINS

> Resources include well-described, clinically relevant allergens and their sequences in
available database(s). AN
> Open source data: Uni-prot y
» 85.000.000 proteins 1y B netiute o
» 550.000 reviewed proteins WIE e Bieinfermatics
» 1680 allergenic proteins

CE®NPARE

Cemprehensive Protein Allergen Resource

Predicting allergenicity
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Obtained subset of proteins:
Selected Training set: 40.000 non allergens, 839 allergens

Only parameters obtained from amino acid sequence
Inclusion of parameters calculated by
Inclusion of secondary structure values obtained from PSI-PRED

Three kingdoms
Animal, Plant, Fungi - Bacteria and virus hold too few allergens

No need to reduce number of variables = all information is derived from the Amino Acid
seguence

Predicting allergenicity
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RESULTS

Mean decrease in Gini index

Six variable

Final model
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MODEL VALIDATION

» Predict allergenicity for new set
> Animal: 10.000 non-allergenic proteins, 140 allergenic proteins
» Fungi: 10.000 non-allergenic proteins, 50 allergenic proteins
> Plant: 10.000 non-allergenic proteins, 229 allergenic proteins

89% 89% 89%

85% (-4%)  85% (-4%) 91% (+2%)
86% (-2%)  86% (-3%) 88% (-1%)
89% (-0%)  89% (-0%) 91% (+2%)

> These are good results for the validation: Accuracy is never below 85%

Predicting allergenicity
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ALL INTACT PROTEINS WERE CORRECTLY PREDICTED

Sequence comparable

species to known allergens Predicted allergen Allergenic

Larval cuticle protein A2B Tenebrio molitor N Y

Larval cuticle protein A1A Tenebrio molitor N Y Y
Larval cuticle protein A3A Tenebrio molitor N Y Y
Alpha-amylase Tenebrio molitor Y Y Y
Tropomyosin-1, isoforms 9A/A/B rl?lre(z)lz(r)llca)g!&er Y Y Y
Arginine kinase r[r)lréjlz(:lgggaster Y Y Y
Arginine kinase (Fragment) Tenebrio molitor ? N Y
Cytochrome b Tenebrio molitor N N N
E:(c))?éqiﬁtion of very long chain fatty acids Tenebrio molitor N N N

Predicting allergenicity
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The biological relevance of the biochemical properties with strongest effect on prediction
model remain oftentimes a question. Some possible explanations:

The percentage of cysteine and the instability index are related to the stability of the
protein. High stability of a protein is correlative with allergenic proteins.

The percentage of arginine and lysine are both involved in the fate of the protein in the
gastrointestinal tract (stability and transport), but have opposite correlation with
allergenic proteins.

Predicting allergenicity
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Important to predict allergenic potency of new proteins early in the development pipeline
and to protect the allergic consumers.

Using Data-driven methods, we created a model with over 85% accuracy, sensitivity and
specificity

The model might be applicable for (novel) food dossiers for safety assessment

Statistical models and biological knowledge evolve over time, so new variables can be
added in the future.

Good collaboration between different areas of expertise is required for applied research

Future steps: test on other, new proteins

Predicting allergenicity
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