

3rd European Conference on Xylella fastidiosa and XF-ACTORS final meeting

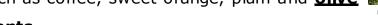
Artificial inoculation of *Xylella fastidiosa* subsp. *pauca* strains in olive plants; an overview of greenhouse experiments.

Armange EM¹, Souza AA¹, Coletta-Filho HD¹

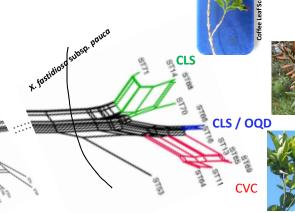
¹Centro APTA Citros Sylvio Moreira, Instituto Agronômico, Cordeirópolis, Brazil.

INTRODUCTION

Xylella fastidiosa: Multi host bacteria but causing severe problems in smaller number of plantbased food


X.f. subsp.	Total Host species	Major Host species*
fastidiosa	4	4 (Coffea sp, Vitis vinifera , Prunus sp .)
multiplex	51	4 (Prunus sp ., Olea europaea)
pauca	28	3 (Citrus sinensis, Coffea sp ., Olea europaea)

*Plant-based foods


Adapted from: Baldi & La Porta (Frontier Plant Sci, 2017)

In Brazil:

severe problems with the subsp. multiplex and pauca causing problems in plant-based food such as coffee, sweet orange, plum and olive

INTRODUCTION

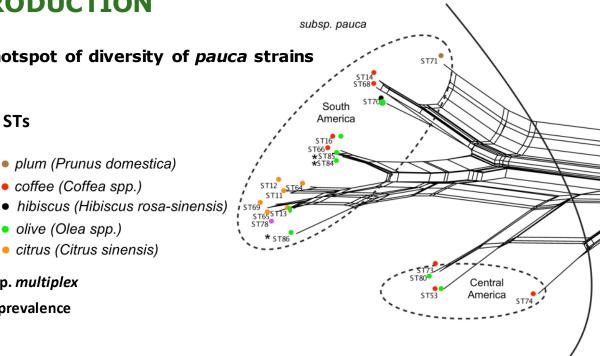
In Brazil: hotspot of diversity of pauca strains

plum (Prunus domestica)

coffee (Coffea spp.)

olive (Olea spp.)

Different STs


14, 16, 66, 68

16**, 84, 85, 86

11, 12, 13, 64, 65 • citrus (Citrus sinensis)

*ST25 - X. f. susbp. multiplex

**ST16 – 75% of prevalence

Adapted from Safady et al., 2019 – Phytopathology

Addressed question:

1- Does the olive plant can be infected by others STs from the subsp. pauca?

METHODOLOGY

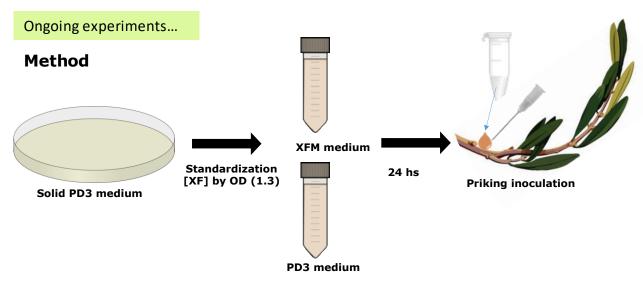
- 1. Rescue the bacteria from -80°C
- 2. Grown the bacteria on PW or BCYE mediums for 6 7 days
- 3. Resuspended in PBS buffer at 10⁷ UFC/ml (OD 1.2 1.4)
- 4. Prinking inoculation in younger branches
 - 3x weekly \cong 10 μ L / x
 - **✓** Different STs
 - ✓ Grapollo and Manzalina varieties
 - **✓** Different plant sizes
- 5. *X. fastidiosa* detection by RST31/33 primers

 Minsavage et al., (1993)

Summary of 5 different experiments conduced in a period of 30 months

Artificial inoculation in olive trees in green-house by using different STs of *Xylella fastidiosa*

Sequence Type (ST)	Host Origen	Positive infection by artificial inoculation in greenhouse		
` '		pos/inoc plants	%	
X. fastidiosa s	subsp. pauca	_		
ST16	Olea europea	9/16	56.2 -	
ST84	Olea europea	2/5	40.0	
ST86	Olea europea	1/6	16.6	
ST16	Coffea arabica	11/17	64.7	
ST66	Coffea arabica	2/3	66.6	
ST11	Citrus sinensis	8/16	50.0	
ST65	Citrus sinensis	6/16	37.5	
ST13	Citrus sinensis	4/19	21.0	
ST70	Hibiscus rosa-sinensis	6/15	40.0	
ST71	Prunus domestica	0/5	0.00	
X. fastidiosa s	subsp. multiplex			
ST25	Prunus domestica	0/3	00.0	

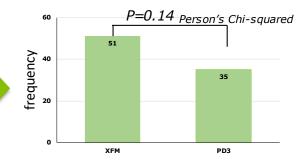

Highlights

- ✓ Most of STs from pauca were able to infect olive plants.
- ✓ None STs of X. fastidiosa isolated from Prunus tress (subsp. multiplex or pauca) was able to infect olive plants.
- ✓ Variable efficiency of inoculation.
- but unfortunately, there were no systemic establishment of bacteria in the host and consequently no symptoms were observed.

¹Number of positive PCR / total of inoculated plants at **60 dai**

Addressed question

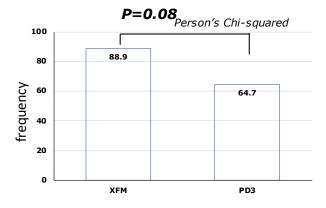
2- Does the passage of *X. fastidiosa* in XFM minimal medium could provide better conditions for the host colonization?


- ✓ Different STs
- ✔ Olive, citrus, and tobacco plants
- ✓ X. fastidiosa detection by RST31/33 primers

Artificial inoculation <u>in olive plants</u> using *Xylella fastidiosa* strains with passage in minimal - XFM and rich – PD3 mediums

Sequence Type (ST)	Host Origen	Positive infection by artificial inoculation using cells with passage in	
(=-,		PD3	XFM
Olive as tested pla	ints		
ST16	Olea europea	2/4	1/4
ST84	Olea europea	1/5	2/5
ST86	Olea europea	1/5	2/5
ST11	Citrus sinensis	2/4	3/4
ST13	Citrus sinensis	6/14	9/15
ST65	Citrus sinensis	0/3	4/5
ST16	Coffea arabica	1/4	1/4
ST70	Hibiscus rosa-sinensis	2/3	2/5

Overall frequency of *X. fastidiosa* infection in olive plants



✓ No symptoms in positive PCR olive tree yet, after 240 days from inoculation.

¹Number of positive PCR / total of inoculated plants at **180 dai**

Overall frequency of *X. fastidiosa* infection in citrus plants using passage of bacteria in minimal - XFM and rich - PD3 mediums

Analysis at 180 dai

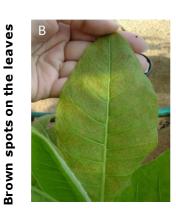
5 STs: 11, 13-2x – from CVC 84 and 85 – from OQDS

XFM: 20 inoculated plants **PD3:** 17 inoculated plants

CVC symptoms in X. fastidiosa-PCR positive at 240 dai

Medi		Number of plants with	Severity		
iviedi	um	CVC symptoms	Low	Medium	High
XFI	M	14	6	6	2
PD	3	4	1	2	1

P=0.001 Person's Chi-squared


Artificial inoculation in tobacco plants using Xylella fastidiosa strains with passage in minimal

- XFM and rich – PD3 mediums

Sequence Type (ST)	Host Origen	Positive infection by artificial inoculation using cells with passage in	
		PD3	XFM
Tobaco as tested p	lants		
ST13	Citrus sinensis	3/3	3/3
ST84	Olea europea	2/3	2/3

¹Number of positive PCR / total of inoculated plants at **90 dai**

On leaves

Symptoms in tobacco

Reduction of plant tall

Sequence Type	Plant height (cm)		
inoculated	PD3	XFM	
ST13	28 (1.53) ¹	29 (4.36)	
ST 84	38 (2.52)	45 (3.00)	
Non inoculate	86 (4.58)		

¹Standard deviation

ST13

ST84

Highlights

- ✔ Passage of X. fastidiosa in minimal medium XFM improves the infection efficiency mainly for the resilient plants for infection in greenhouse such as olive and citrus.
- ✓ The CVC symptom was significantly increase by the passage of bacteria in XFM medium.
- ✓ For our conditions, the latency of OQDS in greenhouse conditions seems to be longer mainly when *Xylella fastidiosa* is artificially inoculated.

By rooting XF-infected but asymptomatic sprouts -> 3.5 years in greenhouse to show the OQD symptoms.

Thanks for your attention

Acknowledgments:

