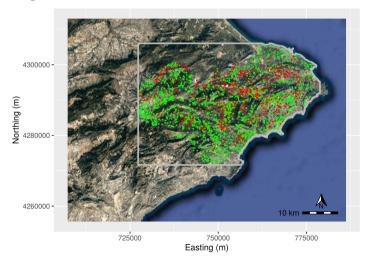


3rd European Conference on Xylella fastidiosa and XF-ACTORS final meeting

Effects of dispersal barriers in the demarcated area in Alicante, Spain, for *Xylella fastidiosa*. A non-stationary modelling approach.

Martina Cendoya, Ana Hubel, David Conesa and Antonio Vicent.



Xylella fastidiosa in Alicante

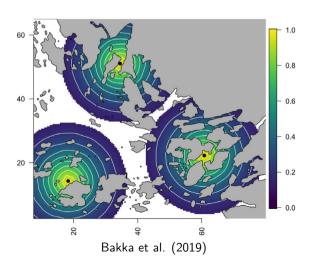
- First detection in Alicante in 2017 in almond trees.
- X. fastidiosa subsp. multiplex.
- Delimitation of the Demarcated Area and intensive sampling.

Official surveys for X. fastidiosa in Alicante (2018)

- 1151 positives
- 3054 negatives

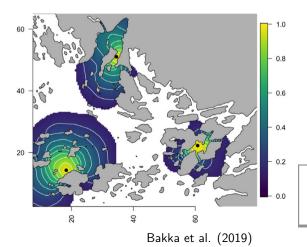
Objective

- Analysis of the spatial distribution of X. fastidiosa in Alicante and the effect of different types of barriers.
 - Geographic features
 - Control measures


Why spatial?

- Ignoring the spatial dependence of the observations can lead to inaccurate results.
- Tobler's first law of geography and foundation of spatial autocorrelation: "everything is related to everything else, but near things are more related than distant things."

However...


- Spatial models usually asume stationarity and isotropy:
 - Spatial dependence is the same at different points on the map and in all directions
- This is not realistic when there are barriers to the spread of the pathogen.

However...

- Spatial models usually asume stationarity and isotropy:
 - Spatial dependence is the same at different points on the map and in all directions
- This is not realistic when there are barriers to the spread of the pathogen.
- Non-stationary (and anisotropic) spatial models

Non-stationary Gaussian models with physical barriers

Haakon Bakka ^{a,*}, Jarno Vanhatalo ^b, Janine B. Illian ^c, Daniel Simpson ^d, Håvard Rue ^e

Model

Presence/absence data

Bayesian hierarchical model

INLA

[Rue et al., 2009]

SPDE

[Lindgren et al., 2011]

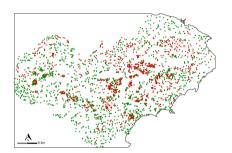
$$y_i \sim \operatorname{Bernoulli}(\pi_i), i = 1, ..., n,$$
 $\operatorname{logit}(\pi_i) = \beta_0 + u_i,$
 $\operatorname{P}(\beta_0) \propto 1,$
 $\boldsymbol{u} \sim N(0, \boldsymbol{Q}^{-1}(r, \sigma_u)),$
 $r \sim \operatorname{PC-prior}(\mu_r, 0.5),$
 $\sigma_u \sim \operatorname{PC-prior}(10, 0.01),$

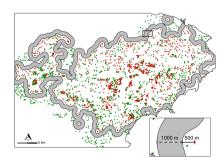
- **u** is the spatial effect.
- ightharpoonup r is the range and σ_u is the standard deviation of the spatial effect.
- $ightharpoonup \mu_r$ was chosen as 50% of the diameter of the study region.

Non-stationarity

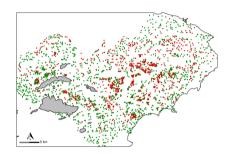
In the **barrier** areas the correlation was eliminated by introducing a different Matérn field, with the same σ_u but **range** (r) **close to zero** [Bakka et al., 2019].

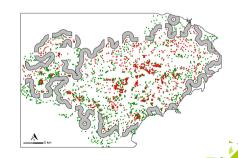
$$u(s) - \nabla \cdot \frac{r^2}{8} \nabla u(s) = r \sqrt{\frac{\pi}{2}} \sigma_u W(s), \text{ for } s \in \Omega_n,$$
 $u(s) - \nabla \cdot \frac{r_b^2}{8} \nabla u(s) = r_b \sqrt{\frac{\pi}{2}} \sigma_u W(s), \text{ for } s \in \Omega_b$

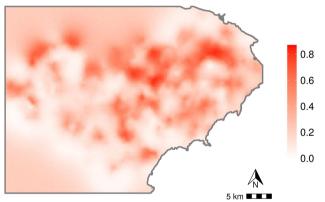

- Ω_n is the normal area and Ω_b is the barrier area.
- Barriers were assumed to be totally impermeable:
 - Areas without host plants and through which vectors or plant material cannot pass



- StationaryWithout barriers
- Mountain barrier
 Areas over 1065 m as barriers
- Continuous barrierBarrier surrounding the infested area
- Discontinuous barrier
 Barrier with breaks surrounding the infested area


Stationary


Continuous barrier

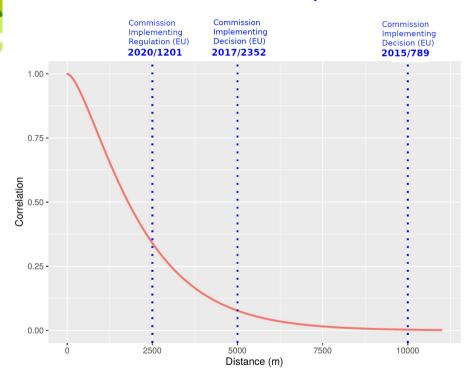

Mountain barrier

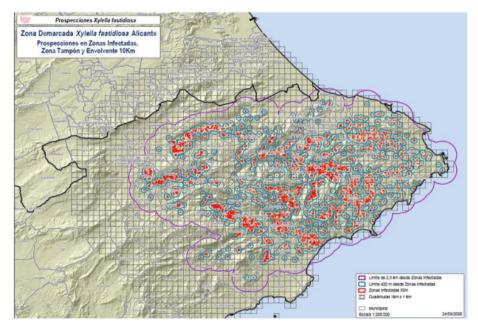
Discontinuous barrier

Results: Stationary model

Many of the mundinting mantanian	_					
5 km		Kange (III)	4030.17	(2901.41, 3303.00)		
A		Pango (m)	<i>/</i> /1020 17	(2907.41, 5563.88)		
In the same of the	0.0	$\sigma_{\it u}$	1.52	(1.28, 1.80)		
	0.2			,		
Jan	0.4	Intercept	-1.68	(-2.21, -1.23)		

Mean

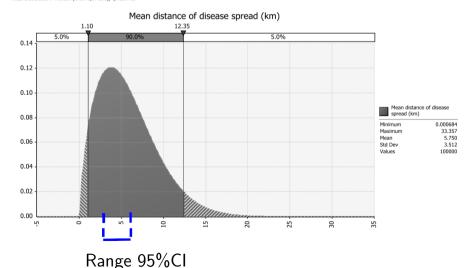

Mean of the predictive posterior distribution of the **probability** of presence



(95% CI)

Stationary Model (r = 4030.17 m)

Minimum Buffer Zone


EFSA(2019) expert knowledge elicitation (EKE)

Mean distance of disease spread (km)

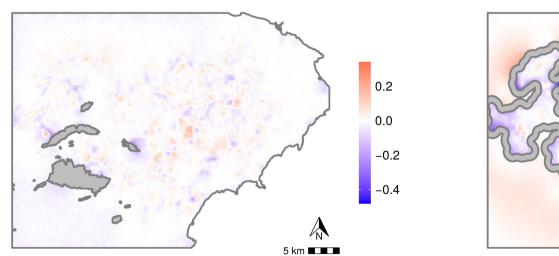
Table F.2: Fitted values of the uncertainty distribution on the mean distance of disease spread (km)

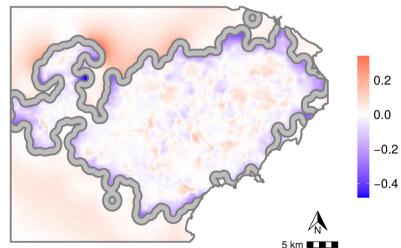
Percentile	1%	2.5%	5%	10%	17%	25%	33%	50%	67%	75%	83%	90%	95%	97.5%	99%
Expert agreement	1.0					3.0		5.0		8.5					12.0
Expert 1	0.5					4.0		8.0		10.0					8.0
Expert 2	1.2					1.5		3.0		6.0					8.0
Expert 3	0.5					2.0		4.0		7.0					15.0
Expert 4	2.0					4.0		7.0		9.0					20.0
Expert 5	2.0					4.0		6.0		8.0					10.0
Expert 6	3.0					3.0		6.0		9.0					15.0
Expert 7	0.5					1.7		3.0		7.0					15.0
Fitted distribution	0.42	0.73	1.10	1.69	2.37	3.07	3.74	5.18	6.85	7.82	9.05	10.57	12.35	13.98	15.10

Fitted distribution: Weibull (1,6840,6,4398), @RISK7.5.

Includes 95%Cl of the posterior mean of the range of the stationary model.

However...

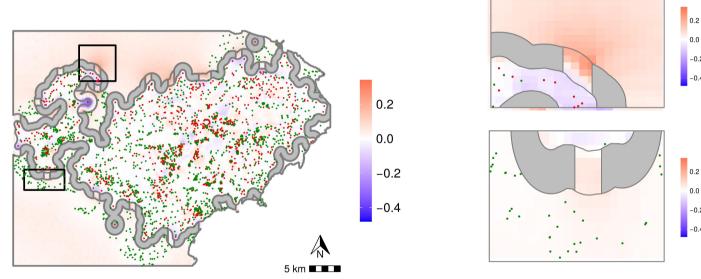

- EKE was conducted under specific assumptions
- Extrapolation to Alicante is not straightforward


Results: Non-stationary models

Difference of the mean of the predictive posterior distribution with the stationary model

Stationary VS. Mountain barrier

Stationary VS. Continuous barrier


Red areas \rightarrow higher probability in the **stationary** model

Results: Non-stationary models

Difference of the mean of the predictive posterior distribution between the perimeter barriers

Discontinuous barrier VS. Continuous barrier

Red areas → higher probability in the **discontinuous** barrier model

Conclusions

- The **spatial range** obtained was used as a reference to establish the buffer zone surrounding the infested area in Alicante.
- This methodology can be **extrapolated** to other study areas, adapting it to the corresponding data.
- Non-stationary models have allowed us to take into account elements that can hinder the spread of the pathogen.
- **Perimeter barriers** that simulate control measures have reduced the probability of Xf presence in the external area.
- The results can assist to **prioritize** the areas where control measures should be implemented first
 - Areas with lower sampling intensity and therefore more uncertainty.

Barrier effects on the spatial distribution of Xylella fastidiosa in Alicante, Spain

Martina Cendoya, Ana Hubel, David Conesa, Antonio Vicent doi: https://doi.org/10.1101/2021.04.01.438042

https://doi.org/10.1101/2021.04.01.438042

https://doi.org/10.5281/zenodo.4656029

3rd European Conference on Xylella fastidiosa and XF-ACTORS final meeting

Thank you!

Horizon 2020 project (European Union) No 727987 XF-ACTORS (Xylella Fastidiosa Active Containment Through a multidisciplinary-Oriented Research Strategy) and the project E-RTA 2017-00004-C06-01 FEDER INIA-AEI IAOE Ministerio de Economía y Competitividad. Martina Cendoya held an IVIA grant partially funded by the European Social Fund Comunitat Valenciana 2014-2020.

