
e.m. scattering

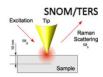
Optical Trapping

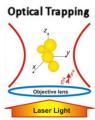
EFSA Scientific Colloquium N°25

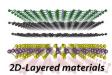
Optical trapping and Raman spectroscopy of micro- and nano- plastics

Pietro G. Gucciardi

CNR – Istituto Processi Chimico-Fisici


Viale F. Stagno D'Alcontres 35, 98158 Messina


Email: gucciardi@ipcf.cnr.it

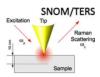


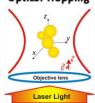
Overview

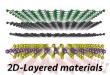
- Analytical tools for nanoplastics analysis: technological gaps
- Optical trapping and Raman spectroscopy can help bridging the gap
- Tweezers

 Raman

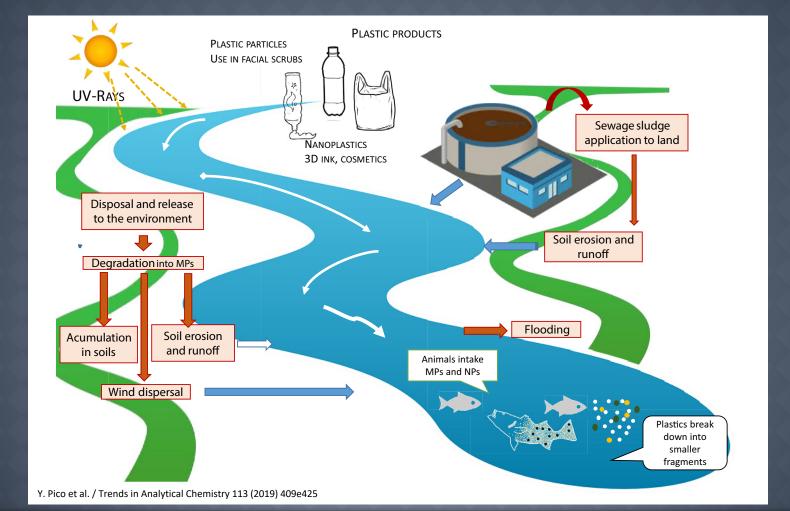
 ACS Publications


 Most Product Most Rest.
- Analysis of model and environmental plastic particles
- Conclusions & outlook





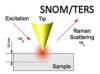
Optical Trapping

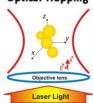


Source, transport, and fate of MPs and NPs.

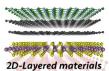
Between 5 and 13 million tons of plastic debris are released into freshwater per year through domestic/industrial discharges and sewage plants. Among this, an indetermined fraction is NANO.

- Primary sources: Waterborne paints, adhesives, cosmetics, 3D printers
- Secondary sources: Photo/Thermal oxidation yields fragmentation of micro- into nano- plastics





e.m. scattering



Optical Trapping

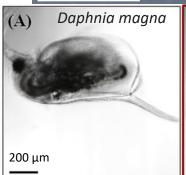
Germany Pilsener beer

Small Micro- and Nano- plastics in food

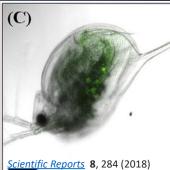
PE, Cellulose, PS, Wiesheu et

PET and PE-PS

Environmental Pollution 268 (2021) 115811

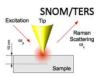

	200							
Table 1 A summary of recent worldwide studies that reported microplastics from commercial drinking products for human consumption.								
A summary or recent workdwide studies that reported inicroplastics from commercial drinking products for numan consumption.								
Country	Source	Sample container	$\begin{array}{c} \text{Microplastics} \\ (\text{average items} \\ L^{-1}) \end{array}$	Shape	Size	Color	Polymer types	References
Bottled drinking water								
	Bottled (mineral water)	NR	1	Fiber	NR	NR	Cellulose	Wiesheu et al. (2016)
Germany	Bottled (mineral water); Commercial store	Single use PET Reusable PET Glass	2649 ± 2857 4889 ± 5432 6292 ± 10,521	NR	>5 μm	NR	PET in plastic bottles, PE and styrene butadiene	Oβmann et al. (2018)
Germany	Bottled (mineral water)	Single use Returnable	14 ± 14 118 ± 88	Fragments	5, 10 and < 20 μm	NR I	PET, PP, PE	Schymanski et al. (2018)
		Glass	50 ± 52					
		Beverage	11 ± 8					
Global	Bottled (mineral	Single use PET	315	Fragments,	NR	NR	PP, Nylon (50%	Mason et al.
	water)			fibers and films			samples analyzed)	(2018)
Italy	Bottled (mineral	Single use PET	148 ± 253	NR	0.5-40 μm	NR	PET, HDPE	Winkler et al.
	water)	capped with HDPE						(2019)
Italy	Mineral still and sparkling	Single use PET TO brands	5.42 × 10 ⁷ ±1.95 × 10 ⁷	NK	NK		NK	Zuccarello et al. (2019)
Thailand	Bottled (sparkling	Single use PET	140 ± 19	Fibers and	6.5-> 50	Blue, reddish brown, bluish	PET, PE, PP, PA and	Kankanige and
	and still water)	Returnable glass	52 ± 4	fragments		green, transparent, black.	PVC	Babel (2020)
U.K.	Bottled water	Single use plastic bottle	NR	Fibers and fragments	NR	NR	NR	Stanton et al. (2019)
Beer								
Germany	NR	NR	Fibers: 2-79 Fragments: 12- 109 Granules: 2-66	Fibers, fragments and granules	NR	Transparent, blue, black and green	NR	Liebezeit and Liebezeit 2014
Germany	NR	Glass bottle	Fibers: 16 ± 15 Fragments: 21 ± 16 Granules:	Fibers, fragments and granules	NR	NR	NR	Lachenmeier et al. (2015)

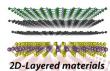
1-5000 μm NR


10-19

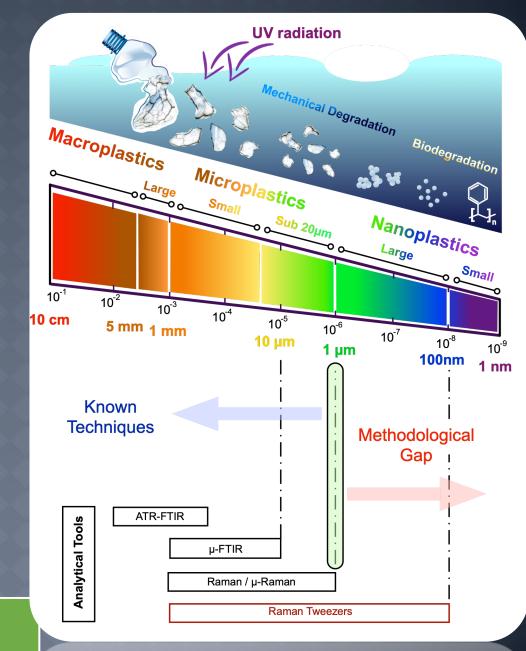
Not exposed

Exposed to nanosized (60nm) fluorescent PS spheres




e.m. scattering

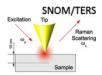
Optical Trapping

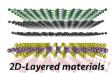


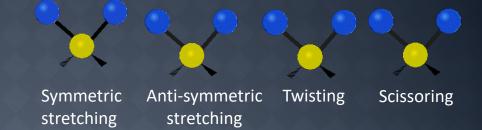
Analytical tools and size limits

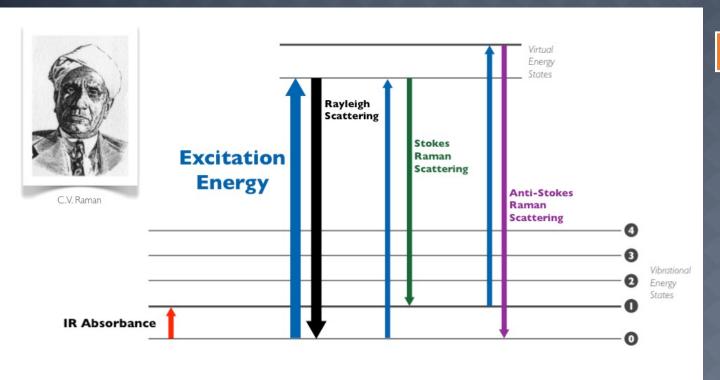
Particle size analysis:

- Dynamic Light Scattering,
- NP-Tracking
- Microscopy
- SEM/TEM/EDX
- AFM
- Chemical analysis:
- Gap
- FT-IR spectroscopy
- Raman spectroscopy
- Py-GC-MS
- NanoPlastics < 1 μm
- Small micro— and nano- plastics analysis ... in liquid


Raman Tweezers


e.m. scattering


Optical Trapping



Raman spectroscopy

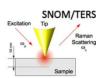
Vibrational spectroscopy using visible/NIR laser light

Detect «the sound» of molecules

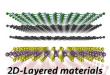
http://www.kamat.com/database/content/pen_ink_portraits/c_v_raman.htm Adapted from http://upload.wikimedia.org/wikipedia/commons/8/87/Raman_energy_levels.jpg

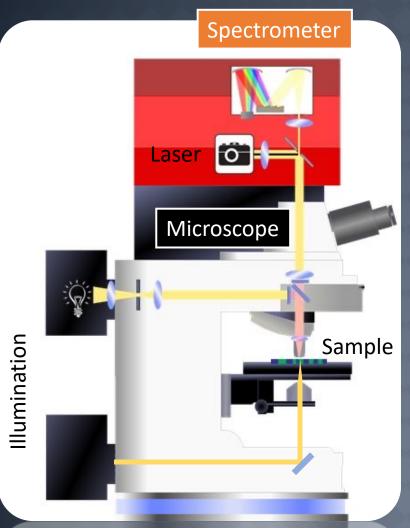
- Applications: materials recognition, structure and electronic properties
- Specific fueatures: Imaging capabilities, Non invasive, works in water

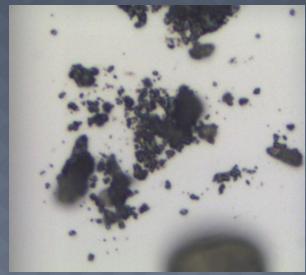
MicroRaman spectroscopy

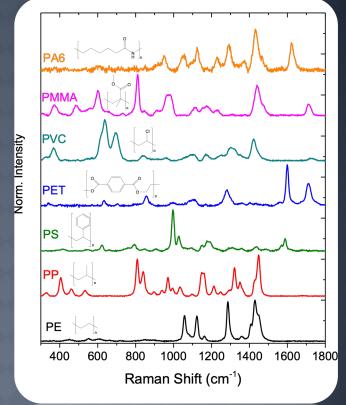

Raman spectra: what is made of what

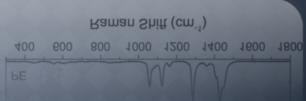
NanoSoftLab


e.m. scattering



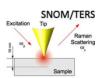

Optical Trapping

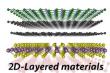


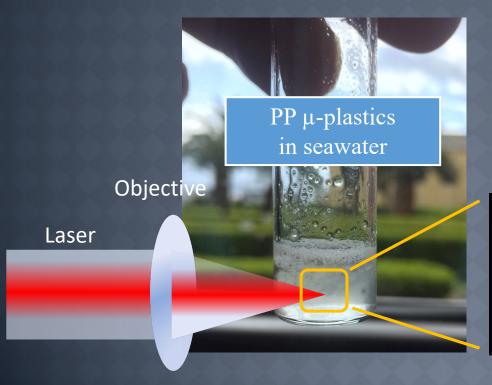


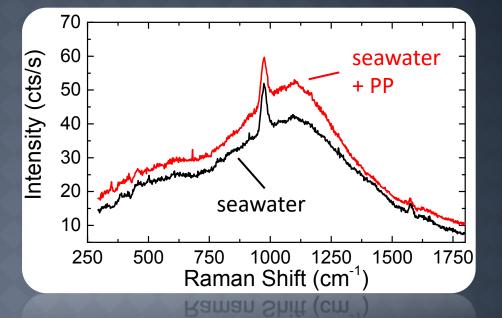
Optical image of dried microplastics

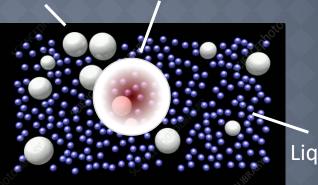
- Raman works well:
 - on dried samples
 - liquids
 - molecular solutions
 - Precipitated samples in liquid environment




e.m. scattering

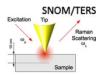

Optical Trapping

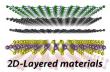



Criticalities of Raman for µPlastics analysis

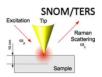
Dispersions of sparse particles are hard to analyzed because of limited interrogation time

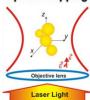
μ-Plastic Laser spot

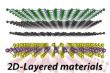

https://www.sciencephoto.com/media/6116 08/view/brownian-motion-animation Liquid medium

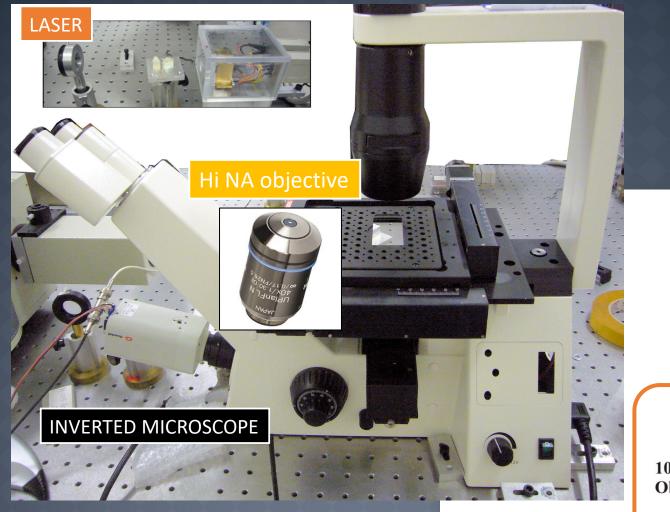

e.m. scattering

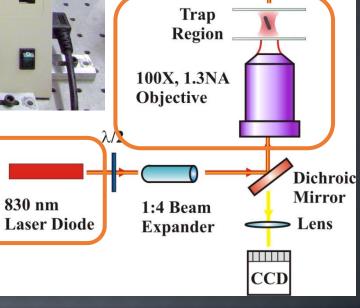
Optical Trapping






e.m. scattering




Optical Trapping

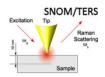
Optical Tweezers

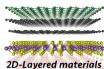
BFP

Condenser

trap

Illumination


Dichroic Mirror


e.m. scattering



Optical Trapping

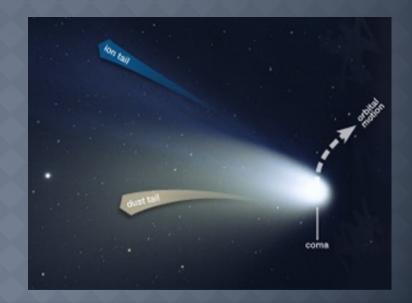
Optical Forces

$$\langle \vec{F} \rangle = \frac{1}{2c\varepsilon_0 n_m} \operatorname{Re}(\alpha_p) \vec{\nabla} I(r, z) + \frac{n_m}{c} \sigma_{\text{ext}} I(r, z) \hat{z} + \frac{c\varepsilon_0}{4\omega i} \sigma_{\text{ext}} \vec{\nabla} \times \vec{E} \times \vec{E}^*$$

Intensity gradient

Attractive Force, responsible for optical trapping

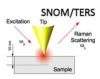
Optical Trapping of carbon nanotubes

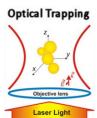


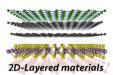
Radiation pressure

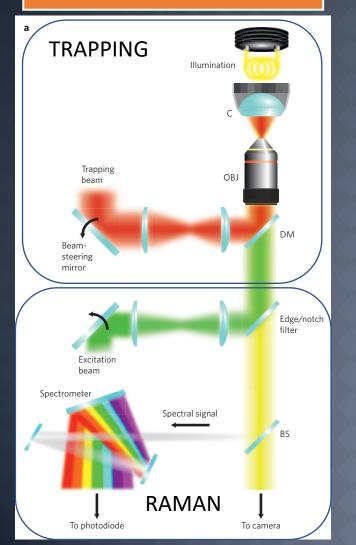
Polarization gradient

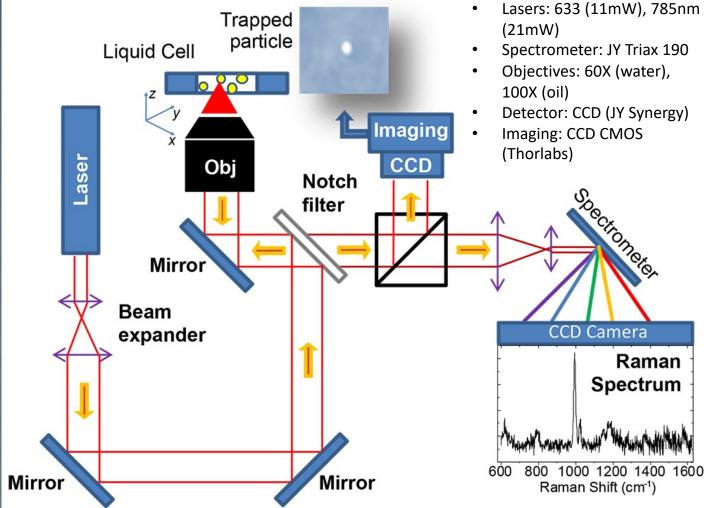
Non-conservative Forces: repulsive


Radiation pressure on comet star





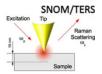


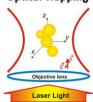


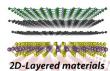
Optical Tweezers + Raman = Raman Tweezers

2 BEAMS RAMAN TWEEZERS

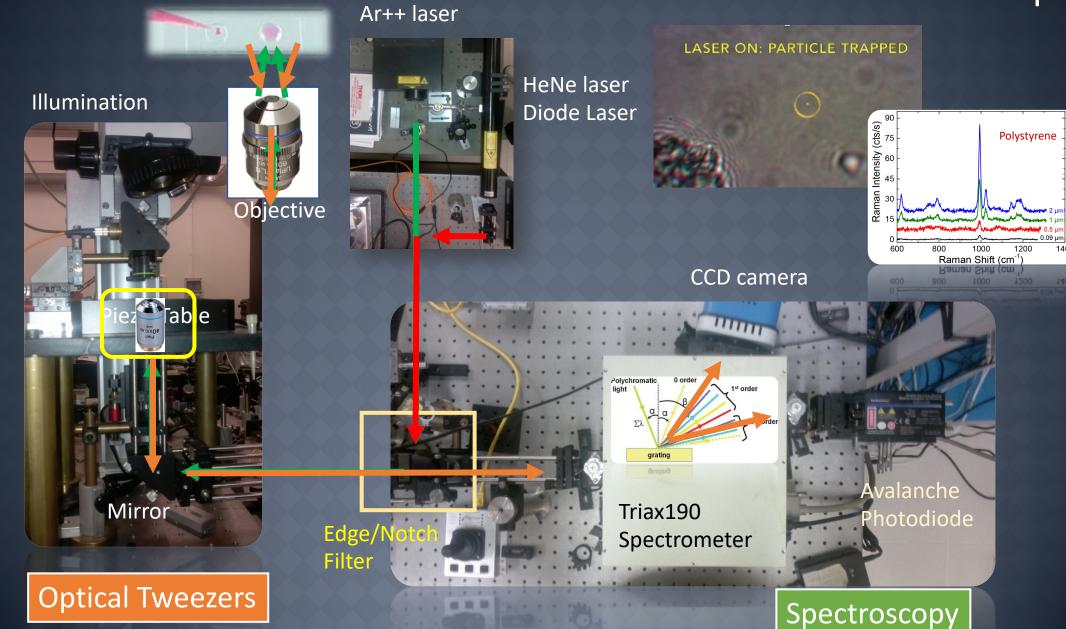
SINGLE BEAM RAMAN TWEEZERS






e.m. scattering

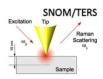
Optical Trapping

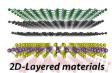


Laser Sources

Sample compartment

Photo of the setup



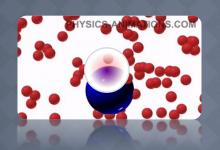

e.m. scattering

Optical Trapping

Can we trap micro and nanoplastics?


Zu

Microplastics



Microplastics (d > 1 μ m) in water are always trapped n_{plast} (~1.5) > n_{H2O} (1.33)

Nanoplastics

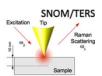
Brownian fluctuations can drive the particle out of the trap

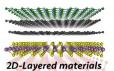
The optical potential must overcome the Brownian energy

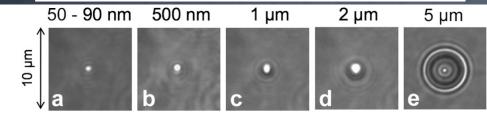
Existence of a threshold power

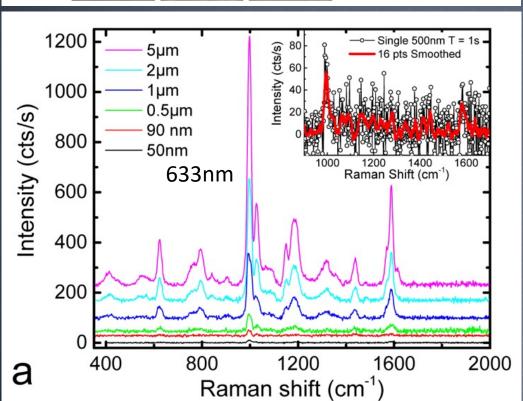
$$P_{\rm thr} > \frac{1.12 c k_{\rm B} T \lambda^2 (n_{\rm p}^2 + 2n_{\rm m}^2)}{a^3 N A^2 n_{\rm m} (n_{\rm p}^2 - n_{\rm m}^2)}$$

100 nm PS @ 633nm

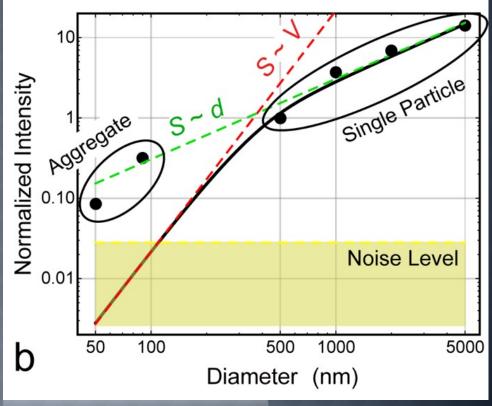

 $P > P_{\rm thr} \sim 15 \text{ mW}$


e.m. scattering

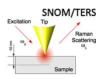


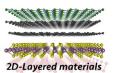


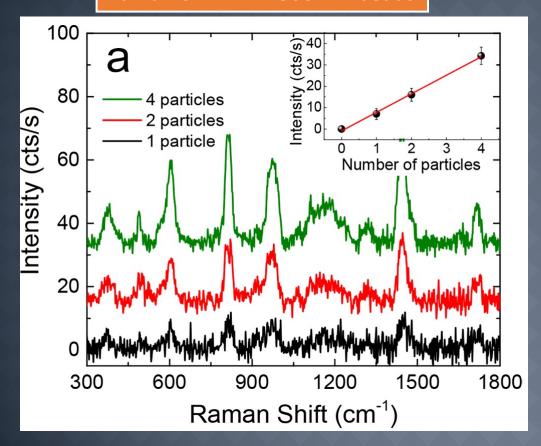
PS particles in distilled water

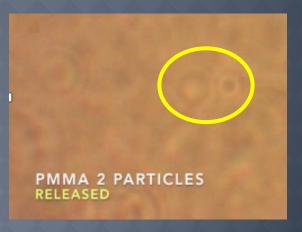

Identification of 500nm PS particle in 0.5s

LASER ON: PARTICLE TRAPPED


Once the particle is trapped we can «Raman» it

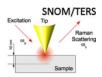


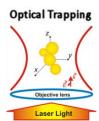


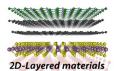

Single particle detection

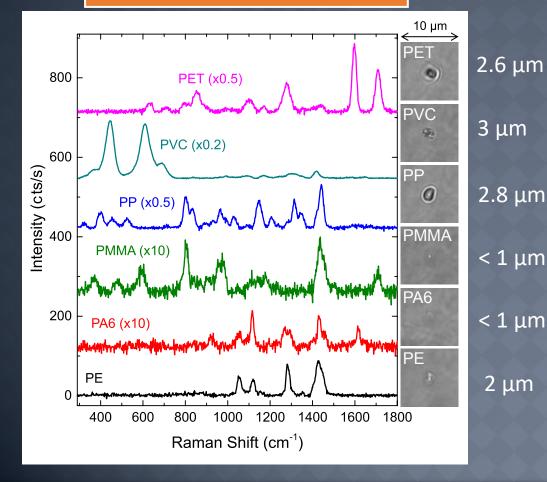
Raman of PMMA 300 nm beads

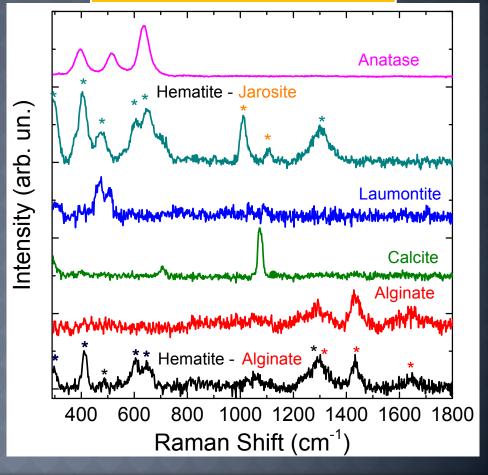
OPTICAL IMAGING OF TRAPPING PROCESS




Single particle analysis is demonstrated down to 300nm

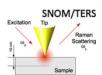


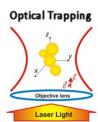


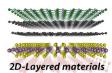

Raman Tweezers analysis of different microplastics

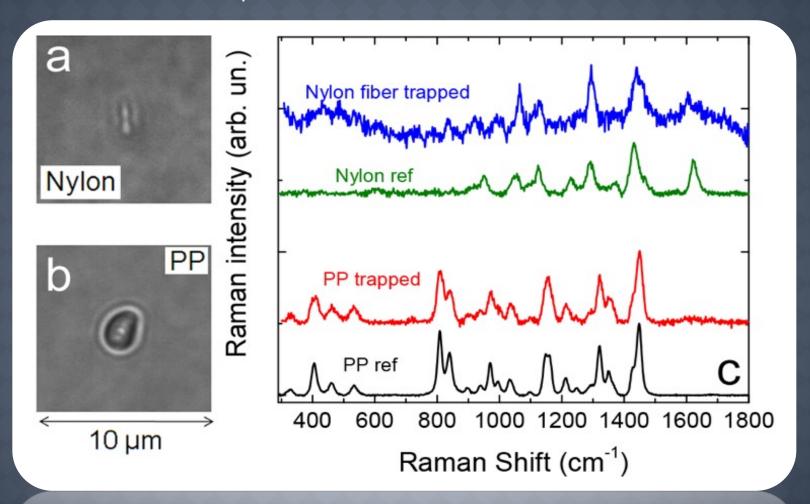
Nanoplastics produced by stone-grinding in seawater

Microplastics and Nanoplastics

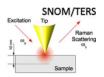

Micro-sediments in seawater

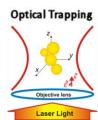


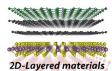




Optical trapping and analysis of fibers in PP particles dispersd in seawater

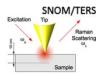

Textile fibres could have been accidentally mixed to the PP during fabrication, or maybe the fibre was already present in the seawater sample

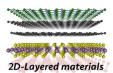


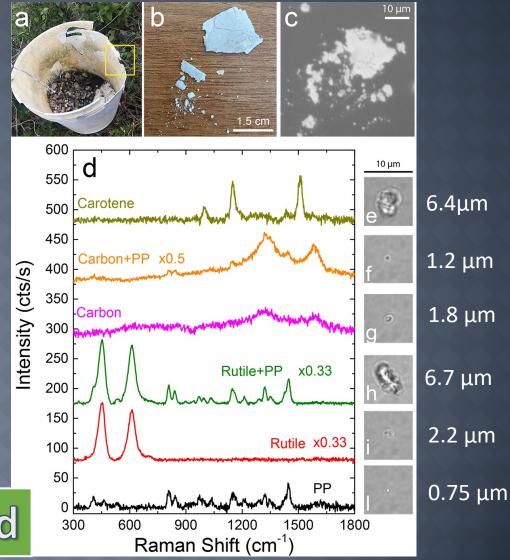




Environmental sample 1: a weathered polyethylene bottle cap

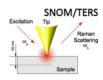


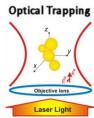


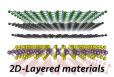


Environmental sample 2: a weathered polypropylene paint bucket

Naturally aged PP paint bucket from Lakes of Ganzirri, fragmented under mechanical pressure in seawater

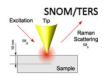

Nanoplastics are observed

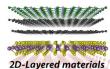




Conclusions

- 3D trapping and Raman detection of PE, PP, PET, ... microplastics in seawater and distinction from sediments
- Single particle sensitivity proved down to 300nm
- Detection of aggregates 50nm particles (few tens)
- Observation of nanoplastics in weathered environmental samples mechanically broken

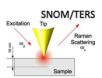


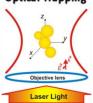

e.m. scattering

Optical Trapping

Extraction

Trapping & Analysis


Raman Tweezers can play a role




e.m. scattering

Optical Trapping

People & Funding

CNR-IPCF: R. Gillibert (now @IIT-Rome), A. Magazzù, D. Bronte-Ciriza, A. Foti, MG Donato, O. M. Maragò

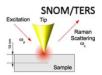
IFREMER - Brest: Q. Desoules, M. Tardivel, F. Colas (now @Safran Aerotechnics)

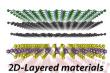
UniMans - IMMM: G. Balakrishnan, M. Lamy de La Chapelle, F. Lagarde

Uni-Gothenburg: A. Callegari, G. Volpe

MERLIN - MICROPLASTIQUES

ASI-INAF n. 2018-16-HH.0


MSCA ITN (ETN) project "Active Matter"


e.m. scattering

Optical Trapping

Thank you

