

Micro- and nanoplastics and human health

Bart Koelmans

Professor of Aquatic Ecology & Water Quality

Wageningen University

bart.koelmans@wur.nl

EFSA 2016

FAO 2017

2019

WHO 2019

We know that plastic is devastating wildlife and plaguing our oceans, but until now we have known very little about the impact the broken plastic system is having on people. In this first-ever global study, we've discovered that on average, people could actually be ingesting approximately 5 grams of microplastics every week - that's the equivalent of

Mohamed Nor et al 2021

Nur Hazimah Mohamed Nor,* Merel Kooi, Noël J. Diepens, and Albert A. Koelmans

- Refinement of exposure estimates \rightarrow far from complete
- Not much evidence w.r.t. hazard → more research needed

Key to page sidebars

These sidebars are used in Chapter 2 only. They are not applied elsewhere in this report. What is known

What is partially known

What is unknown

Nanoplastic

2.3 EXPOSURE

In wastewaters too, nanoplastics are an unknown. While we think they are generated due to larger plastics ageing, we cannot be sure, because the mechanism is unknown and we cannot measure them.

One of the major unknowns across all environmental compartments relates to the question of through which mechanisms, at which timescales and where plastic debris progressively fragments to eventually reach the scale of nanomaterials. Are

2.4 OCCURRENCE

Sampling and analysis methods of nanoplastics are not yet establish therefore, information on their occurrence in freshwaters is currently unava-

2.4.7 Drinking Water and Food

Our knowledge of the occurrence of microplastics in components of the diet varies across regions. As for nanoplastics in drinking water and food, no information at all. This means that currently there is insufficient data to

2.6 RISKS

No risk assessments have been published for nanoplastics. As yet, it is unknown what the concentrations are of nanoplastics in environmental compartments or components of the human diet. Therefore, exposure cannot yet be assessed. As for effects, there is limited data, however, most of the experimental designs did not allow for constructing a dose-effect relationship. Furthermore, the limited studies use synthesised nanoparticles, most often nano-sized polystyrene, and it is unknown how well these represent nanoplastics that occur in the environment

Additional uncertainty in particle characterisation

Exposure

- Model predicts 1/7 of # MP found in stool
- Model accounts for 1/5 of diet by weight

Maximum

Median

(D) Adult

Minimum

 10^{2}

Lifetime accumulation in tissue, preliminary assumptions:

- ~1-10 μm considered bioavailable
- ~ 0.3 % considered to be absorbed
- Four biliary excetion scenarios

Mohamed Nor, N.H., Kooi, M., Diepens, N.J. Koelmans, A.A. 2021. Lifetime accumulation of nano- and microplastic in children and adults. ES&T

Size range (µm)

1-5000

50-500

QA/QC tool to screen utility of data for RA

Developed for:

Biota, water, air samples; effect studies, MP 'chemical vector' studies

Chemicals

Relevance of MP as a carrier of contaminants

- EFSA 2016, worst case: very small
- FAO 2017, worst case: very small
- SAPEA 2019: very small
- WHO 2019, worst case: very small
- Mohamed Nor, ES&T, 2021, probabilistic: very small

Dynamic modeling of MP- and food-associated chemical bioavailability in the gut

→ Context dependent, yet assessment tool available

Mohamed Nor, N.H., Kooi, M., Diepens, N.J. Koelmans, A.A. 2021. Lifetime accumulation of nano- and microplastic in children and adults. ES&T

EXPERIMENTAL DATA FOR CHEMICAL BINDING & KINETICS TO MICELLES, FOOD COMPONENTS, MP - RELEVANT SCENARIOS

Framework for MP-chemical bioavailability in the human GIT

Mohamed Nor, N.H., Koelmans, A.A. 2019. Transfer of PCBs from microplastics under simulated gut fluid conditions is biphasic and reversible. ES&T., 53, 1874–1883. Mohamed Nor, N.H., Niu, Z.., Hennebelle, M., Koelmans, A.A. 2021. Microplastics trap chemicals from contaminated food during digestion, J. Haz. Mat. submitted

Equations

5.52

6.08

6.14

7.01 7.33

7.64

5.53

6.04

6.18

MODEL DEVELOPMENT

(A) Plastic model (B) Chemical model Reported Reported Chemical concentrations in concentrations in intake from food sources food only Correction for false MERLIN Expo positive (visual simulation (0→70 years) methods <100 µm) Correction for size Correction for size Chemical Chemical range [1-5000 µm] concentration range [1-10 µm] concentration in gut at single on plastic timepoint MP concentration MP concentration Thickness. in food sources in air Lof particles Ingestion rate of Inhalation rate of Chemical leaching in gut model (5 hours) MP intake rate MP intake rate Plastic Outer: C1 deposit Amount leached from plastic in gut over lifetime (Interpolation from 20) timepoints) **PBPK** MP amount in tissue (1→70 years) MERLIN Expo simulation (0→70 years) Absorption into MP amount in circulatory system (f.s. of particles 1-10 µm) t (1→70 years) % chemical charge with MP in body MP amount excretion egested (1→70 years)

Hazard

Hazard assessment challenges

- Uncertainty around observed effects in vitro tests & in vivo animal models
- Uncertainty in translations to in vivo scenarios
- Particles used in tests not representative for those we are exposed to
- QA/QC of data with respect to applicability for hazard and risk assessment
- 5. Unknown bioavailability & PBPK parameters
- 5. Unknown hazard profile as compared to other particles

Mohamed Nor, N.H., Kooi, M., Diepens, N.J. Koelmans, A.A. 2021. Lifetime accumulation of nano- and microplastic in children and adults. ES&T

Dealing with the diversity of NMP

NMP versus other particles

- Other particle categories can have a *similar size* but then have higher density (minerals, sand, silt, clay, metal-based nanoparticles and colloids).
- Other particle categories can have similar density but then are far less persistent (organic matter flocs, detritus, algae, detritus, or organic colloids).
- Other particle categories do not exist in a nm
 to > cm size range with all other properties being similar to those of plastics.
- Other particles categories do not exist in a 'from fibre to sphere' range of shapes with all other properties being similar to those of plastics.

Microplastics and human h... science.sciencemag.org

Environmental exposure to microplastics: An overview... Potential health effects resulting f... sciencedirect.com

Micro(nano)plastics: A thre... researchgate.net sciencedirect.com

Interaction between microplastics and microorganism as... sciencedirect.com

From Fish to Humans, A ... scientificamerican.com

Effects of microplastics and nanoplastics on ... link.springer.com

pubs.rsc.org

A Detailed Review Study on Potential Effects . mdpi.com

Airborne microplastics: Consequences to human h ... semanticscholar.org

Microplastics: an emerging threat to food security ... link.springer.com

Airborne microplastics: Consequences to human health?... sciencedirect.com

You Are What You Eat: Microplastics In Our Food &... medium.com

Report: Plastic Threate... plasticpollutioncoalition....

Junk Food - Woods Hole Oceanographic Institution

Start of scientific research into the health ris... plastichealthcoalition.org

Potential human health risks due to environ...

Airborne microplastics: Consequences to human h... semanticscholar.org

Plastic & Health | Center for Inter...

pubs.iscience.in

countryliving.com

Trophic transfer of microplastics in zooplanktons towards ... How dangerous is it for humans to inge... An emerging class of air pollutants: Potential effects of mi... sciencedirect.com

Finding the right metho... ec.europa.eu

Plastic & Health | Cent... ciel.org globalcitizen.org

The Average Person Eats 70,000 Microplastics ...

PDF) Plastic and Human Hea. researchgate.net

Frontiers | Microplastics in Sea Turtles, Marine Mammal...

Microplastics - ECHA echa.europa.eu

Effect of microplastics in water and aquatic... link.springer.com

Plastic Component Fo forbes.com

there's work to be done

Thank You!

Thanks to Wageningen MicroplasticLab et al

Ellen Besseling

Noël Diepens

Merel Kooi

Paula Redondo-Hasselerharm

Hazimah Mohamed Nor

Svenja Mintenig

Vera de Ruijter

Enya Hermsen

Xiangzhen Kong

Changgui Pan

Frits Gillissen

Christiaan Kwadijk

Miquel Lurling

John Beijer

Edwin Peeters

Jeroen de Klein

Visit our website:

w.w.w.microplasticlab.com

