

RISK CHARACTERIZATION OF CIGUATERA FOOD POISONING IN EUROPE (GP/EFSA/AFSCO/2015/03)

EuroCigua

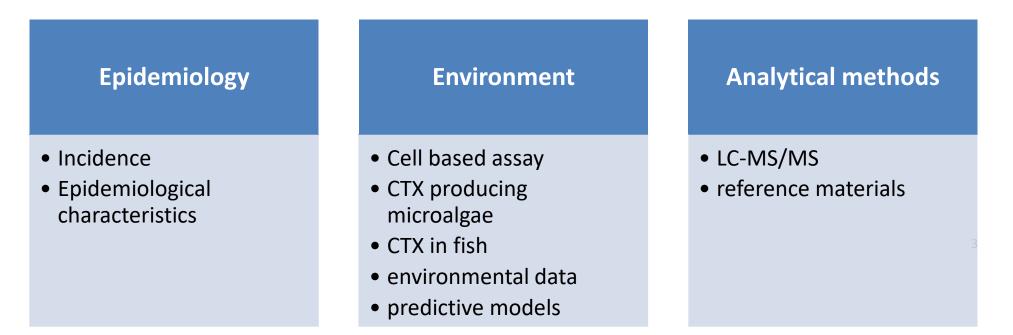
79th MEETING OF THE EFSA ADVISORY FORUM 3-4 March 2021

> Ana Canals Caballero Scientific Advisor AESAN

EuroCigua

Ciguatera in Europe

- In 2004 Gambierdiscus spp., in the waters of the Canary Islands and Madeira. First autochthonous ciguatera outbreak in Canary Islands
- 2008: autochthonous ciguatera outbreaks in Spain (Canary Islands) and in Portugal (Madeira)
- Between 2008 and 2015 continuous outbreaks and cases appeared in Canary Islands



- These new findings suggested CP is becoming an increasing risk for European countries.
- No official reference method
- No certified reference materials
- No toxicology data
- CP not well known in EU: under-reported

EuroCigua

- EuroCigua co-funded by the European Food Safety Authority (EFSA) Framework
 Partnership Agreement (FPA), coordinated by AESAN
- Cooperation between EFSA and 14 partners from six Member States.
- June 2016-January 2021

Characterize the risk of ciguatera poisoning in Europe

EuroCigua

MDPI

Epidemiology: Surveillance protocol

- Guidelines for surveillance of ciguatera at EU level from 2012 to 2019
- Case definition consensus
- Case and outbreak report forms
- List of fish previously associated with ciguatera
- Collecting Epidemiological data to implement prevention and control measures

An Updated Review of Ciguatera Fish Poisoning: Clinical, Epidemiological, Environmental, and Public Health Management

Melissa A. Friedman ^{1,*}, Mercedes Fernandez ², Lorraine C. Backer ³, Robert W. Dickey ⁴, Jeffrey Bernstein ^{5,6}, Kathleen Schrank ⁵, Steven Kibler ⁷, Wendy Stephan ⁶, Matthew O. Gribble ⁸, Paul Bienfang ⁹, Robert E. Bowen ¹⁰, Stacey Degrasse ¹¹, Harold A. Flores Quintana ¹², Christopher R. Loeffler ¹², Richard Weisman ⁶, Donna Blythe ¹³, Elisa Berdalet ¹⁴, Ram Ayyar ¹⁵, Danielle Clarkson-Townsend ⁸, Karen Swajian ¹¹, Ronald Benner ¹², Tom Brewer ¹⁶ and Lora E. Fleming ¹⁷

2017

CIGUATERA FOOD POISONING IN THE

Annex. List of fish previously associated with ciguatera

SPECIES	ENGLISH NAMES		
Acanth			
Acanthurus achilles	Redblotch surgeonfish		
Acanthurus dussumieri	Black-spot surgeonfish		
Acanthurus gahhm	Black surgeonfish		
Acanthurus leucopareius	Whitebar surgeonfish		
Acanthurus linearis	Lined surgeonfish		
Acanthurus maculicops	Earbar surgeonfish		
Acanthurus nigricans	Whitecheek surgeonfish		
Acanthurus nierofuscus	Brown surgeonfish		
Acanthurus nigroris	Bluelined surgeonfish		
Acanthurus olivacaus	Orangespot surgeonfish		
Acanthurus striatus	Striated surgeonfish		
Acanthurus xanthopterus	Yellowfin surgeonfish		
Ctenochaetus flavicauda	Whitetailed surgeonfish		
Ctenochaetus striatus	Striated surgeonfish		
Naso brackycentron	Humpback unicornfish		
Naso brevirostris	Spotted unicomfish		
Naso hexacanthus	Sleek unicornfish		
Naso lituratus	Orangespine unicomfish		
Naso unicornis	Bluespine unicomfish		
Albu			
Albula vulpes	Bonefish		
Balist			
Balistapus undulatus	Orange-lined triggerfish		
Balistes capriscus	Grey triggerfish		
Balistes vetula	Queen triggerfish		
Balistoides viridescens	Titan triggerfish		
Canthidermis sufflamen	Ocean triggerfish		
Melichthys niger	Black triggerfish		
Melichthys vidua	Pinktail triggerfish		
Pzeudobalistes fuscus	Yellow-spotted triggerfish		

Epidemiology: CP outbreaks/cases in Europe 2012-2019

Autochthonous outbreaks

14 outbreaks 77 cases related

2 outbreaks 19 cases related

Imported and traveler outbreaks

3 imported; 1 traveler 16 cases related

6 imported; 3 traveler 84 cases related

EuroCigua

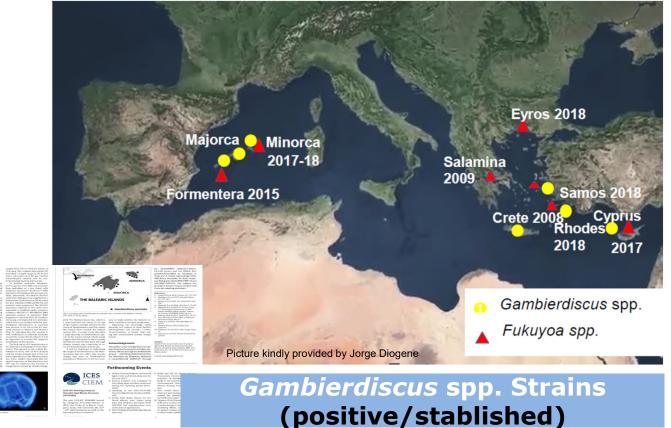
Conclusions

- Information on outbreaks was provided by public health/food safety authorities and the information on single cases was provided by poison centres and travel and tropical medicine units. Information was fragmented.
- The total incidence rate of the ciguatera reported cases in the EU/EEA was very low 0,0055 cases/100.000 inhabitants. The incidence rate in the Canary Islands was 0,47 cases/100.000 inhabitants. No statistically significant trend in the number of reported outbreaks was observed between 2012-2019.
- PROBABLY UNDEREPORTED

EuroCigua

Conclusions

- Outbreaks due to consumption of fish from the EU/EEA (autochthonous outbreaks) were reported only by Spain (Canary Islands) and Portugal (Madeira)
- Outbreaks due to imported fish were mostly reported by Germany and France. Netherlands reported one outbreak in 2020
- The type of fish most frequently associated with ciguatera in the EU/EEA were groupers and amberjack for autochthonous fish and *Lutjanus* spp. for imported fish from India and Vietnam.



Environment: Gambierdiscus and/or Fukuyoa in Europe

Identified in:

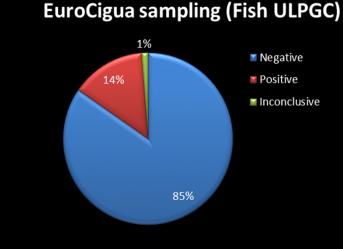
- Canary Islands
- Madeira & Selvagens
- Crete, Cyprus, Samos and Rhodes
- Balearic Islands

Confirmation of Gambierdiscus in Western Mediterranean

- Canary Islands: 39/93
- Madeira & Selvagens: 1/86
- Balearic Islands: 26/113
- Crete, Cyprus, Samos and Rhodes: 2/195

CTX-like toxicity(N2a)

Fish sampling in Canary Islands


In The Canary Islands ciguatera was included as mandatory notifiable disease. Official Control Program (Fish species selected - specific weight):

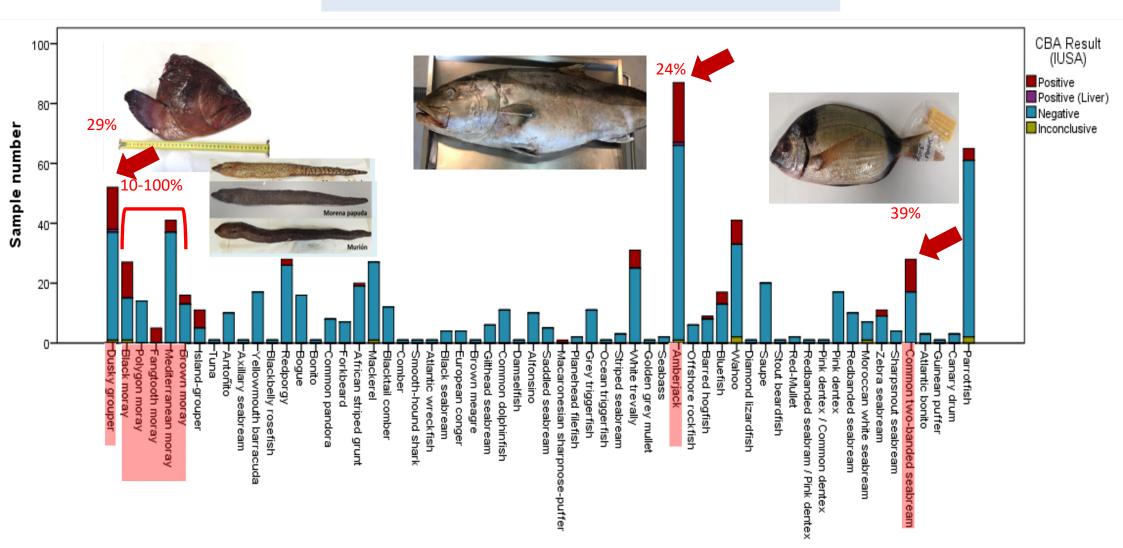
- 2018: 1128 samples (16 % positive samples)
- 2019: 839 samples (12 % positive samples)

865 Fish from Canary Islands (ULPGC):

- 747 EuroCigua sampling Data analysis
- 118 Official Control (O.C.) High positive simples selected for Reference materials

CTX in fish_Canary Islands

SPECIES	Latin name	Total	Negative	Positive	Inconci.	Positive %	Weigh of positives (Kg)	LC-MS/MS detection
Island-grouper	Mycteroperca fusca		5	6		55	2.5-8	Yes
Tuna	Thunnus sp.		1			0		
Antoñito	Dentex macrophthalmus	10	10			0		
Axillary seabream	Pagellus acarne	1	1			0		
Yellowmouth barracuda	Sphyraena viridensis	17	17			0		
Blackbelly rosefish	Helicolenus dactylopterus dactylopterus	1	1			0		
Redporgy	Pagrus pagrus	28	26	2		7	1.65-4	Yes
Bogue	Boops boops	16	16			0		
Bonito	Katsuwonus pelamis	1	1			0		
Common pandora	Pagellus erythrinus	8	8			0		
Forkbeard	Phycis phycis	7	7			0		
African striped grunt	Parapristipoma octolineatum	20	19	1		5	0.29	Other CTX?
Mackerel	Scomber colias	27	26		1	0		
Blacktail comber	Serranus atricauda	12	12			0		
Comber	Serranus cabrilla	1	1			0		
Smooth-hound shark	Mustelus mustelus	1	1			0		
Atlantic wreckfish	Polyprion americanus	1	1			0		
Black seabream	Spondyliosoma cantharus	4	4			0		
European conger	Conger conger	4	4			0		
Brown meagre	Sciaena umbra	1	1			0		
Gilthead seabream	Sparus aurata	6	6			0		
Common dolphinfish	Coryphaena sp.	11	11			0		Other CTX?
Damselfish	Chromis limbata	1	1			0		
Alfonsino	Beryx splendens	10	10			0		
Saddled seabream	Oblada melanura	5	5			0		
Macaronesian sharpnose-puffer	Canthigaster capistrata	1		1		100	0.03	Sample N/A
Planehead filefish	Stephanolepis hispidus	2	2			0		
Grey triggerfish	Balistes capriscus	11	11			0		
Ocean triggerfish	Canthidermis sufflamen	1	1			0		
Striped seabream	Lithognathus mormyrus	3	3			0		
White trevally	Pseudocaranx dentex	31	25	6		19	0.23-7	•
Golden grey mullet	Liza aurata	1	1			0		
Seabass	Dicentrarchus labrax	2	2			0		

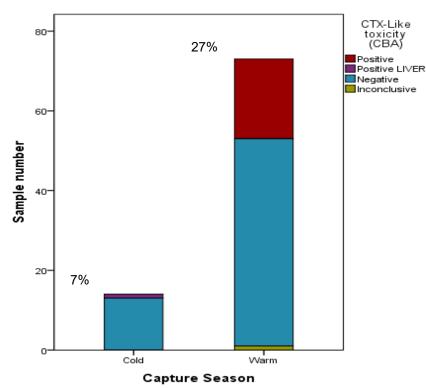


SPECIES	Latin name	Total	Negative	Positive	Inconcl.	Positive %	Weigh of positives (Kg)	LC-MS/MS detection
Amberjack+	Seriola sp*.		65	21	1	24	20-70	Yes
Dusky grouper*	Epinephelus marginatus*	52	36	15	1	29	6-30	Yes
Black moray‡	Muraena augusti*	27	14	12	1	44	0.40-2.81	Yes
Polygon moray	Gymnothorax polygonius	14	14			0		
Fangtooth moray	Enchelycore anatina	5		5		100	0.36-1.44	Yes
Mediterranean moray	Muraena helena	41	37	4		10	1.05-5	Yes
Brown moray	Gymnothorax unicolor	16	13	3		19	0.51-2.72	Yes
Offshore rockfish	Pontinus kuhlii	6	6			0		
Barred hogfish	Bodianus scrofa	9	8	1		11	1.56	Other CTX?
Bluefish	Pomatomus saltatrix	17	13	4		24	6.10-8.80	Yes
Wahoo	Acanthocybium solandri	41	31	8	2	20	14-30	Yes
Diamond lizardfish	Synodus synodus	1	1			0		
Saupe	Sarpa salpa	20	20			0		
Stout beardfish	Polymixia nobilis	1	1			0		
Red-Mullet	Mullus surmuletus	2	2			0		
Redbanded seabram / Pink dentex	Pagrus auriga / Dentex gibbosus	1	1			0		
Pink dentex / Common dentex	Dentex sp.	1	1			0		
Pink dentex	Dentex gibbosus	17	17			0		
Redbanded seabream	Pagrus auriga	10	10			0		
Moroccan white seabream	Diplodus sargus cadenati	7	6		1	0		
Zebra seabream	Diplodus cervinus cervinus	11	9	2		18	0.69-1.15	Yes
Sharpsnout seabream	Diplodus puntazzo	4	4			0		
Common two-banded seabream	Diplodus vulgaris	28	17	11		39	0.26-0.71	Yes
Atlantic bonito	Sarda sarda	3	3			0		
Guinean puffer	Sphoeroides marmoratus	1	1			0		
Canary drum	Umbrina canariensis	3	3			0		
Parrotfish	Sparisoma cretense	-	59	4	2	6	0.37-0.48	Other CTX?
TOTAL SAMPLES (60 SPECIES STUDIED, 17	CIGUATOXIC)	747	632	106	9	14		

14k

EuroCigua

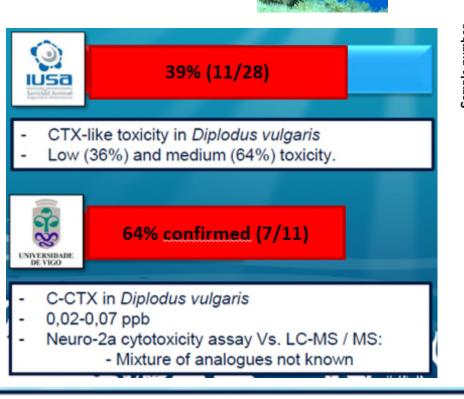
17 toxic species / 60 species studied


EuroCigua

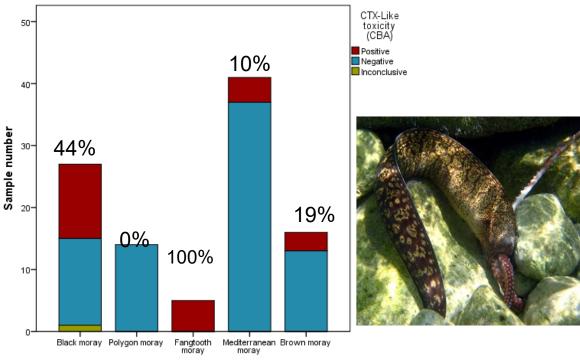
REMARKABLE FISH SPECIES

Amberjack – *Seriola* spp.

Dusky Grouper – Epinephelus marginatus


29 % Positive

Involved in CP cases in the Canary Islands, 35 people affected


REMARKABLE FISH SPECIES

Common two-banded seabream

– Diplodus vulgaris

No evidence of ciguatera outbreaks caused by *Diplodus vulgaris* in the Canary Islands but this species is known to be carriers of ciguatoxin (EuroCigua)

Moray eel species

Moray eel

Important fish species for human consumption

	Fish species	CTX-like toxicity ^a	LC-MS/MS ^b
lus	Dusky grouper (E. marginatus)	0.032 ± 0.009 ppb	0.03 ppb C-CTX1
vn	Black moray (<i>M. augusti</i>)	0.037 ± 0.015 ppb	0.05 ppb C-CTX1

EuroCigua

EuroCigua

El Hierro Island

- High contamination rate:
- 75% for seabream (*Diplodus vulgaris*) (9/11)
- 33% for moray eels (5/15)
- Similar results have been reported previously, showing high percentages (90.9%) of CTX in dusky groupers (*Epinephelus marginatus*) (Sánchez-Henao et al., 2019)
- An algae bloom of G. caribaeus occurred in October 2016 in El Hierro (Soler-Onís et al., 2016)
- These facts considered together with previous results obtained in this island, suggest El Hierro as a ciguatoxin hot spot in the Canary Archipelago.

RISK CHARACTERIZATION OF CIGUATERA FOOD POISONING IN EUROPE (GP/EFSA/AFSCO/2015/03) EUROCTCUA PROJECT CTX in fish Madeira

_		-		
E 1 1	Real			
EU			ЕU	
-				1.000

EUROCIGU/	SCO/2015/03) A PROJECT	<u>CTX</u>	in fish	<u>Madeira</u>	(A)		
	FISH SPECIES	POSITIVE	ALL FISH	H Weight (I	(g) Length	(mm)	
	Epinephelus marginatus	1	1	19,5	97	70	
	Bodianus scrofa	20	20	0.77-3.0	1 250-	-530	
1 fish + by LC-MS	Balistes capriscus						
and - by N2A		3	7	1.966-2.0	64 444-	-500	
	Mictoperca fusca	1	1	4,533	69	90	
1 fish + by LC-MS	Serranus atricauda						
and - by N2A		6	10	0.193-0.8	81 250-	-380	
	Dentex gibbosus	1	3	8,097	84	16	
	Seriola dumerili	2	11	20,117-2	7,6 1232-	-1432	
	Diplodus cervinus	1	1	2,84	52	20	
	Sparisoma cretense	6	32	0.424-0.8	49 280-	-350	
	Sphyreanea viridensis	2	4	4.139-5.9	55 1060-	-1170	
	Seriola rivoliana	1	13	12,308	10	60	
	Katsuwonus pelamis	0	9				
	Kyphosus sectator	0	2				
	Makaira nigricans	0	1	LOCATION	POSITIVE	ΤΟΤΑ	AL
	Kyphosus sectatrix	0	7	Selvagens	41	74	
	Pomatus saltatrix	0	2	Madeira	3	48	
	Seriola sp.	0	1				
	Seriola fasciata	0	2	Desertas	0	5	
	Aluterus scriptus	0	1	Total	44	127	7
	Total	44	128				

EuroCigua

CTX in fish_Macaronesia

- Among 747 samples from the Canary Islands, **14%** were CTX-like positive
- Hotspot El Hierro: 34%
- Among 128 samples from Madeira and Selvagens, 34% were CTX-like positive
- Hotspot Selvagens: 54%

CIGUATERA POISONING IN EUROPE: EUROCIGUA INTERNATIONAL WORKSHOP 2020

(GP/EFSA/AFSCO/2015/03)

EuroCigua

Evaluation of the presence/absence of CTX-like toxicity in fish

	Sampling areas	Tentative Plan	Collected fish	Weight (kg)	CTX-like toxicity (level)	
Conora					CTX-like positive: 216 cases,	
Canary	7	525	747 fish		CTX-like negative (negative): 632 cases	
Islands					CTX-like dubious: 17 cases	
Madeira			128 fish		CTX-like positive: 44 cases	
and	3	100		0,2 – 300	CTX-like negative (negative): 87 cases	
Selvagens			(131 extracts)		CTX-like dubious: 0 cases	
	2		75 (145 extracts)	0,3 – 30	CTX-like positive: 1 cases	
Cyprus		70			CTX-like negative (negative): 144 cases	
					CTX-like dubious: 0 cases	
	2 70		70 (140	0,6 - 12,2	CTX-like positive: 0 cases	
Crete		70	0 70 (140 extracts)		CTX-like negative (negative): 140 cases	
					CTX-like dubious: 0 cases	
Balearic			26 (70		CTX-like positive: 0 cases	
Islands	2	Δ()	2 40 (70 0,7 - 3	36 (70 oxtracts)	0,7 - 3	CTX-like negative (negative): 70 cases
15101105	CALIBELS		CTX-like dubious: 0 cases			
TOTAL	16	805	1174			

EuroCigua

Conclusions

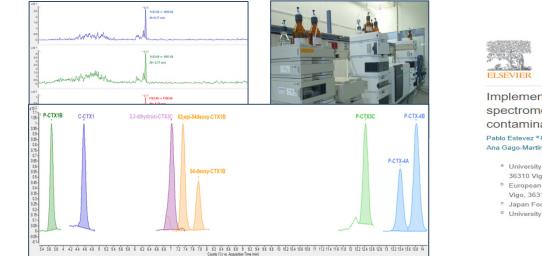
- Several dinoflagellates: Gambierdiscus spp. and Fukuyoa spp. as the causative organisms were identified in the Macaronesia area (Canary Islands and Madeira), Crete, Cyprus, and Balearic Islands.
- Cytotoxicity assays showed CTX-like toxicity in *Gambierdiscus* spp strains from the Canary Islands, Crete and the Balearic Islands.
- Evaluation for the toxicity in fish shows CTX-like toxicity (Cellbased assay) in fish from Madeira and the Canary Islands, and no toxicity in other fish from the Mediterranean Sea including Balearic Islands

Analytical methods: CTX characterisation

SOP for LC -MS determination of CTXs

Confirmación of CTXs by LC-MS/MS and HRMS and CTX profile characterization

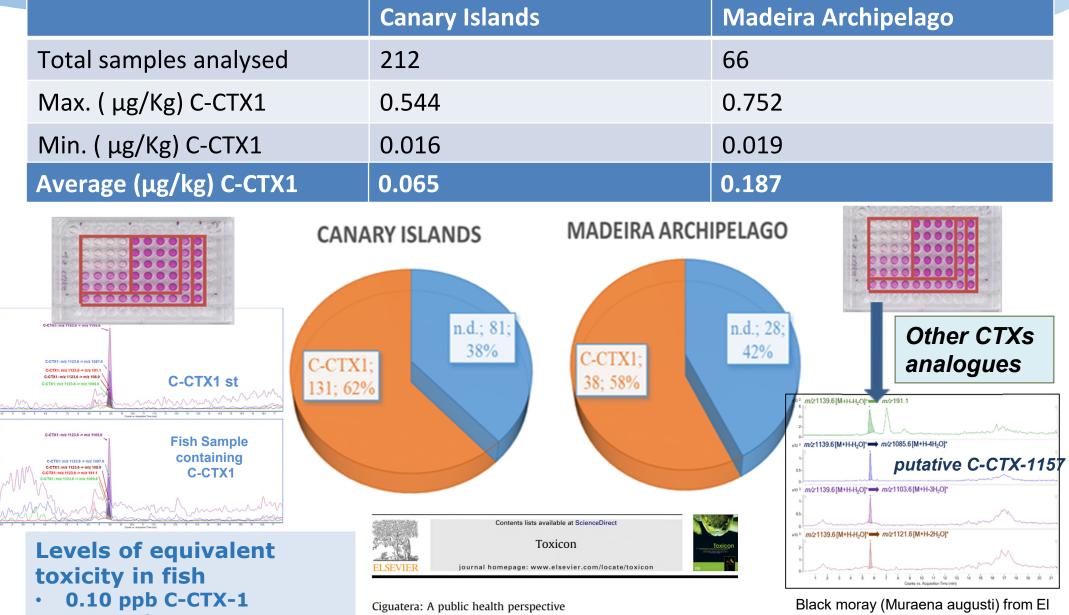
- LC-MS/MS SOP
- C-CTX1 identified
- LC-HRMS
- CTX profile characterization
- Reference materials



EuroCigua

After the screening of fish samples from Canary Islands, Madeira and Selvagens Islands, by N2a cell assay, the toxicity of CTX-like positive samples was confirmed by using the optimized LC-MS/MS

Food Chemistry Volume 280, 15 May 2019, Pages 8-14


Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts

Pablo Estevez * 8 , David Castro * 8 , J. Manuel Leao *, 5 8 , Takeshi Yasumoto ° 8 , Robert Dickey ^d 8 , Ana Gago-Martinez *, ⁵ 옷 8

- ^a University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo, Spain
- ^b European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain
- ° Japan Food Research Laboratories, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan
- ^d University of Texas at Austin Marine Science Institute, Port Aransas, TX 78373, United States

C-CTX1 is confirmed as the main responsible for the CP contamination of fish from Canary Islands and Madeira

EuroCigua

0.01 ppb P-CTX-1

Robert W. Dickey*, Steven M. Plakas U.S. FDA Center for Food Safety and Applied Nutrition, Office of Food Safety, Division of Seafood Science and Technology, Gulf Coast Seafood Laboratory, 1 Iberville Drive, Dauphin Island, AL 36528, USA

Hierro (Canary Islands, Spain)

EuroCigua

Reference Materials

Fish tissue reference materials autoclaved (\approx 12 kg):

Amberjack \approx 0.26 ng C-CTX1/g Amberjack \approx 0.15 ng C-CTX1/g Grouper \approx 0.09 ng C-CTX1/g Grouper \approx 0.31 ng C-CTX1/g

Purified materials containing C-CTX1

Extraction and purification of \approx 70 kg of fish tissue and liver

• Vials containing between 5-10 ng C-CTX1

EuroCigua

Conclusions:

- An efficient LC-MS/MS method has been developed which allowed the characterization of C-CTX1 as the main responsible for the CP in the EU Coasts selected for this project. Further confirmation was carried out by LC-HRMS as well as using alternative tools.
- The LC-MS/MS method has been transferred to the EU REFERENCE LABORATORY FOR MARINE BIOTOXINS to make it available to the EURLMB NRLs Network

EuroCigua

Conclusions

- The low toxin concentration on the samples evaluated from the selected areas, has been the main limitation that justifies the establishment of contingency plans, not only for the confirmation of the toxic profiles, but also for the toxin isolation and purification required for the preparation of reference materials. Neuroblastoma cell assay (N2a) played an important role on the accomplishment of this Task
- The analysis of *Gambierdiscus* sp from the areas selected did not allow to establish a correlation with the CTX profiles obtained for contaminated samples, several Maitotoxin analogues, including new ones, seem to be implicated in the toxic profile of these *Gambierdiscus* sp.

EUROCIGUA PUBLICATIONS

First report of Gambierdiscus in the Western Mediterranean Sea (Balearic Islands)

Gambierdiscus (Dinophyceae) species Mediterranean Sea. The present study producers of potent neurotoxins: cigua- western Mediterranean Sea. I to a to charme)

formed using electron micros To facilitate molecular i are benthic dinoflagellates living in ma- confirms the presence of G. australes in tion to species level, DNA was rine littoral zones of circumtropical ar- the two Balearic Islands of Majorca and from individual or a few cle eas and have recently been described in Minorca, and this constitutes the first using the Arcturus™ PicoPu temperate waters [1]. Some species are report of Gambierdiscus genus in the Extraction Kit (Applied Biosyster) USA). Afterwards, the domai

C.1 1 (011 D114

MDPI

Emerging Marine Biotoxins in Seafood from European Coasts: Incidence and Analytical Challenges

Pablo Estevez¹, David Castro¹, Ana Pequeño-Valtierra¹, Jorge Giraldez¹ and Ana Gago-Martinez 1,2,*

Design of experiments for the optimization of electrospray

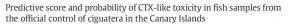
ionization in the LC-MS/MS analysis of ciguatoxins

Guillermo Moreiras, José Manuel Leão, Ana Gago-Martínez 🗙

- ¹ Department of Analytical and Food Chemistry, University of Vigo, Campus Universitario de Vigo, 36310 Vigo, Spain; paestevez@uvigo.es (P.E.); dcastro@uvigo.es (D.C.); apequeno@uvigo.es (A.P.-V.); igiraldez@uvigo.es (I.G.)
- ² EU Reference Laboratory for marine biotoxins, Campus Universitario de Vigo, 36310 Vigo, Spain an any Tal . . 24 647 242 415

he Librarv

RESEARCH ARTICLE


toxins

An Attempt to Characterize the Ciguatoxin Profile in Seriola fasciata Causing Ciguatera Fish Poisoning in Macaronesia

1 .1.1 . 1

. . .

Pablo Estevez¹, David Castro¹, Ana Pequeño-Valtierra¹, José M. Leao^{1,2}, Oscar Vilariño^{1,2}, Jorge Diogène 3 and Ana Gago-Martínez 1,2,*

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitoten

J. Andres Sanchez-Henao^a, Natalia García-Álvarez^{a,*}, Antonio Fernández^a, Pedro Saavedra^b, Freddy Silva Sergent^a, Daniel Padilla^a, Begoña Acosta-Hernández^a, Manuela Martel Suárez^a, lorge Diogène^c, Fernando Real^a

Ciguatera fish poisoning outbreaks from 2012 to 2017 in Germany caused by snappers from India, Indonesia, and Vietnam

Miriam Friedemann¹

Received: 9 January 2018 / Revised: 25 September 2018 / Accepted: 16 October 2018 © Bundesamt für Verbraucherschutz und Lebensmittelsicherheit (BVL) 2018

Assessment of cytotoxicity in ten strains of Gambierdiscus australes from Macaronesian Islands by neuro-2a cell-based assays

Laia Reverté¹ • Anna Toldrà¹ • Karl B. Andree¹ • Santiago Fraga² • Giada de Fako¹ • Mònica Campàs¹ • Jorge Diogène¹

MS Number: TFAC-2019-466 R1

Title: Caribbean Ciguatoxin-1 stability under strongly acidic conditions: Characterization of a new C-CTX1 methoxy congener. Authors: Estévez, Pablo ; Leao, Jose; Yasumoto, Takeshi; Dickey, Robert; Gago-Martinez, Ana

MDPI

Presence of CTXs in moray eels and dusky groupers in the marine

Derioning y neu resum oum rainning; omerang manum og rumma num oran our root appet (CoSe), omerang og car b Palmas, Spain ¹ University of Vigo, Department of Analytical and Food Chemistry, Campus Universitation de Vigo, 36310 Vigo, Spain ⁴ European Union Reference Laboratory for Marine Blocomis, CITEXVI, Campus Universitation de Vigo, 36310 Vigo, Spain ⁴ Campre Hohl Sarvice, Directorate General for Public Health, Campr Islands, Spain

Andres Sanchez-Henao^a, Natalia García-Álvarez^{a,*}, Freddy Silva Sergent^a, Pablo Estévez^b, Ana Gago-Martínez^{b,c}, Francisco Martín^d, María Ramos-Sosa^a, Antonio Fernández^a,

ental Waters Environmental Monitorine. IRTA: Ctra: Poble Nov. km 5.5. 43540 Sont Carles de la Ràvita. Spain

Division of Fish Health and Pathology, University Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, 35416 Arucas, Las

environment of the Canary Islands

Jorge Diogène^e, Fernando Real^a

Contents lists available at ScienceDirect Aquatic Toxicology journal homenage: www.elsevier.com/locate/agtox

EuroCigua

Gambierdiscus and Fukuyoa as potential indicators of ciguatera risk in the **Balearic Islands**

^bPharmacology Unit, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, C/St. Llorenç 21, E-43201, Reus (Tarragona), Spain

G. Gaiani^a, S. Leonardo^a, À. Tudó^a, A. Toldrà^a, M. Rey^a, K.B. Andree^a, T. Tsumuraya^b, M. Hirama^b, J. Diogène^a, C.K. O'Sullivan^{c,d}, C. Alcaraz^a, M. Campàs^a,

Rapid detection of ciguatoxins in Gambierdiscus and Fukuyoa with

^a IRTA, Ctra. Poble Nou Km 5.5, 43540, Sant Carles de La Ràpita, Spain ^b Department of Biological Science, Graduate School of Science, Osaka Prefecture University, Osaka, 599-8570, Japan e Departament D'Enginyeria Química, URV, Av. Països Catalans 26, 43007, Tarragona, Spain ^d ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain

toxinas@mscbs.es

immunosensing tools

Food Chemistry Volume 280, 15 May 2019, Pages 8-14

Contents lists available at ScienceDirec

Ecotoxicology and Environmen.....

iournal homepage: www.elsevier.com/locate/eco

Implementation of liquid chromatography tandem mass spectrometry for the analysis of ciguatera fish poisoning in contaminated fish samples from Atlantic coasts

Pablo Estevez ª 🖾, David Castro ª 🖾, J. Manuel Leao ª, ʰ 🖾, Takeshi Yasumoto º 🖾, Robert Dickev d 🖾 Ana Gago-Martinez *, b 😤 🖾

- a University of Vigo, Department of Analytical and Food Chemistry, Campus Universitario de Vigo, 36310 Vigo Spain
- ^b European Union Reference Laboratory for Marine Biotoxins, CITEXVI, Campus Universitario de Vigo, 36310 Vigo, Spain
- ^c Japan Food Research Laboratories, 6-11-10 Nagayama, Tama, Tokyo 206-0025, Japan
- ^d University of Texas at Austin Marine Science Institute Port Aransas TX 78373 United States

L. Cebadera-Miranda¹, A. Canals^{*1}, F. Melo², E.V. Martíne², D. Núñez³, C. Varela^{*3}, F. Martín⁴, M. Friedemann⁵, M.Oleastro⁶, I. Boziaris⁷ Sánchez⁸, N. García⁸, P. Reis-Costa⁹, N. Gouveia¹⁰, G. Papageorgiou¹¹, A. Aligizaki¹², J. Diogène^{*13}, D. Castro¹⁴, A. Pequeño¹⁴, P. Estevez¹⁴

Spanish Agency for Consumer Affinis, Food Safety and National (AECOSNI): Biortiguese Anthonis for Food and Economic Safety (ASAE): Institute of health Caniso (III (CECIII): Conserve Health Service (OF Agriculture (RTA): Vinitety of Viso (UVICO). Corresponding authors:

100

EuroCigua

Pedro Reis Costa 10, Pablo Estevez 2, David Castro 2, Lucía Soliño 1, Neide Gouveia 3, Carolina Santos⁴, Susana Margarida Rodrigues¹, José Manuel Leao²

New Insights into the Occurrence and Toxin Profile of

Ciguatoxins in Selvagens Islands (Madeira, Portugal)

and Ana Gago-Martínez 2,*

toxins

Further Advance of Gambierdiscus Species in the Canary Islands, with the First Report of Gambierdiscus belizeanus

Àngels Tudó¹, Greta Gaiani¹, Maria Rey Varela¹, Takeshi Tsumuraya², Karl B. Andree¹, Margarita Fernández-Tejedor ¹, Mònica Campàs ¹ and Jorge Diogène ^{1,*}

Brotes de ciguatera identificados en España. 2012-2018 GP/FESA/AESCO/2015/03

C. Varela^{1,2}, I. Falcón³, C. Crespillo⁴, C. Subirá^{5,6}, J. Muñoz^{5,6}, D. Nuñez³, EV. Martínez^{7,2}, R. Carmona^{1,2}, A. Canals⁸ ¹Instituto de Salud Carlos III, ²CIBERESP, ³Dirección General Salud Pública Canarias, ⁴Hospital Universitario La Paz-Carlos III, IdiPAZ, ⁵Hospital Clínic-Universitat de Barcelona, ⁶ISGlobal, Instituto de Salud Global, Barcelona, ⁷Ministerio de Sanidad Consumo y Bienestar Social. ⁸Agencia Española de Seguridad Alimentaria y Nutrición mvarelam@isciii.es ciguatoxinas@mscbs.es

EuroCigua

External Communication Plan for dissemination

Leaflet

 materials;
 Establish reliable methods to identify and quantify ciguatoxins in fish and microalgae;

 Understand the temporal and spatial distribution of *Gambierdiscus*: spp. in EU waters;

• Evaluate the toxicity of CTX-type populations of *Gambierdiscus* spp.

• To assess the possible presence of CTX in fish, in EU waters;

 Determine the incidence and epidemiological characteristics of ciguatera cases in Europe.

Tt BfR

Italian

BUILD UP AWARENESS

English Portuguese Spanish German French Greek

EuroCigua website

EuroCigua

HOME CIGUATERA FOOD POISONING THE PROJECT NEWS AND EVENTS CONTACT US

Home / Ciguatera Food Poisoning

Ciguatera Food Poisoning

AN EMERGING RISK IN THE EUROPEAN UNION

Factsheet

Ciguatera food poisoning (CFP) is a type of food poisoning associated with the consumption of seafood with an estimate number of 20,000–500,000 poisonings per year worldwide. Ciguatera is endemic in tropical and subtropical regions of the world. Isolated outbreaks have occurred sporadically but with an increasing frequency in temperate areas such as Europe.

This seefood-borne illness is typically caused by the consumption of fish that have accumulated **ciguatoxins** in their flesh. Ciguatoxins are produced by benthic dinofalgellates from the genus *Cambiovalicus* sp. that represents a key aspect in studies of harmful algae in recent years due to the danger to human health.

In the properties of the function of the strategies in loss of properties of the strategies of the st

EuroCigua

International EuroCigua Workshop

network for scientific excellence

Conclusions

- New endemic food-borne disease: emerging risk
- Surveillance protocol
- Harmonized methodologies for the extraction of toxins in microalgae and fish
- Implementation of N2a-cell based assay
- Develop methods to identify CTXs
- C-CTX1 was identified as the main responsible of CP in Macaronesia area
- Hierro and Selvagens were the main CP hotspots
- Network of scientific excellence

EuroCigua

EuroCigua

FUTURE

- RAISING AWARENESS AND COLLECTING DATA OF CIGUATERA
 CASES AND OUTBREAKS AUTOCHTHONOUS AND IMPORTED FISH
- ✓ ESTABLISHMENT OF PREDICTION MODELS TO ANTICIPATE CIGUATERA EVENTS
- ✓ CONTINUE THE DATA COLLECTION FOR AN EFFICIENT STRATEGY FOR CIGUATERA RISK ASSESSMENT
- METHODOLOGICAL IMPLEMENTATION, DISSEMINATION, TRAINING AND PROFICIENCY