Heavy metal exposure of Finnish children and preliminary cumulative exposure assessment

Matti Aho
Background of assessment

- Dietary exposure of Finnish children of 1 – 6 years to Cd, Pb, As and Hg
 - Probabilistic assessment computed using **MCRA program** (https://mcra8.rivm.nl)
- **Consumption data** from DIPP study
 - children living in SW Finland, nondiabetic but with genetical diabetes risk
 - data collected ca. 10 years ago, but largest study currently available
- **Concentration data**: mainly Finnish control samples or data from previous projects, supplemented by averages in EFSA reports
 - Inorganic arsenic calculated as 70% of total As in other foods unless speciation data available, 2 – 3.5% of total As in fish/seafood, 100% of total As in water
 - Methyl mercury assumed main component only in fish/seafood; inorganic mercury 20% of total Hg in fish, 100% of total Hg in other foods
Part of age group with exposure(*) exceeding tolerable weekly intake or benchmark dose values

<table>
<thead>
<tr>
<th></th>
<th>TWI / BMDL (EFSA values)</th>
<th>% of 1Y above TWI/BMDL</th>
<th>% of 3Y above TWI/BMDL</th>
<th>% of 6Y above TWI/BMDL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cd</td>
<td>2.5 µg/kg bw/week</td>
<td>90 (85 – 94)</td>
<td>88 (82 – 93)</td>
<td>64 (50 – 74)</td>
</tr>
<tr>
<td>Pb</td>
<td>0.50 µg/kg bw/day</td>
<td>66 (19 – 81)</td>
<td>14 (7 – 22)</td>
<td>1 (0 – 4)</td>
</tr>
<tr>
<td>iAs</td>
<td>0.3 – 8.0 µg/kg bw/day(**)</td>
<td>79 (72 – 84)</td>
<td>43 (36 – 52)</td>
<td>29 (21 – 37)</td>
</tr>
<tr>
<td>iHg</td>
<td>4 µg/kg bw/week</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>MeHg</td>
<td>1.3 µg/kg bw/week</td>
<td>0.6 (0 – 2)</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(* Middle bound estimates, CI 95% in parentheses.
(** Compared with the lowest value. None exceeded JECFA BMDL for iAs, 3.0 µg/kg bw/day.)
Cumulative exposure assessment

- Heavy metals damage many of the same organs/processes in body
 - Lack of directly comparable toxicological dose-response data in literature
 - **Kidney toxicity** and **neurotoxicity** chosen for preliminary study ... data for all heavy metals found → relative potency factors to compare toxicity
 - Sum effect of heavy metal mixture assumed to be **additive** (1+1=2), exposure calculated from RPF-weighed concentrations using MCRA v.8

- Neurotoxicity of mixture for children
 - Pb contributed over 70% of total effect
 → decreasing Pb intake has more effect than decreasing MeHg intake
Some of the conclusions of risk assessment

- Youngest children consume more in relation to body weight, therefore have highest risk of exceeding toxicological reference values
 - Median Cd exposure exceeded the TWI for all studied age groups
 - Pb exposure of 1-year-olds high compared with the BMDL, but decreases rapidly with age and changes in dietary habits

- Heavy metal levels in some food groups different in Finland than in EFSA reports
 - E.g. Pb in cereals lower, Pb in tap water much lower, but Cd in oilseeds higher although decreasing
 - Switch to lead-free gasoline in early 1990s → Pb levels in raw agricultural commodities decreasing
Consequences of risk assessment

- Risk management approaches to risk assessment results
 - Some existing recommendations (rice drinks not for young children; fish use recommendations) and effect of new MLs assessed in report → OK
 - Recommendations to follow varied and versatile diet with moderate serving sizes – good nutrition gives better tolerance, deemed better than avoiding totally some food groups

More information:
Suomi et al., Evira Research Reports 2/2015
http://www.evira.fi/portal/en/about+evira/publications/?a=view&productId=426
johanna.suomi@evira.fi