

Assessing and communicating uncertainties for risk assessment and risk management: recent international developments

Andy Hart

Fera, York, UK

Visiting Professor of Risk Analysis Practice, Newcastle University

andy.hart@fera.co.uk

Some recent developments...

- Codex Working Principles for Risk Analysis, 2003-
- EFSA Uncertainties in Exposure Assessment, 2006
- IPCS Uncertainties in Exposure Assessment, 2008
- ECHA REACH Guidance, Chapter R19, 2008
- IPCS Uncertainties in Hazard Characterisation, 2014
- EFSA Draft Guidance on Uncertainty, 2015
- and others...

Red River Flood, Grand Forks USA, 1997

- Levee height: 51 feet
- River height prediction: 49 feet

Actual flood height: 54 feet

51

49

Red River Flood, Grand Forks USA, 1997

Cost: \$3-4 billion + credibility & trust

51

49

Red River Flood, Grand Forks USA, 1997

- Levee height: 51 feet
- River height prediction: 49 feet

• Uncertainty: ±9 feet (Silver 2012)

Risk managers and stakeholders need to know:

- How much higher might the river rise?
 - Quantitatively
 - Taking account of as much of the uncertainty as possible
- How likely is it to exceed the levee height?

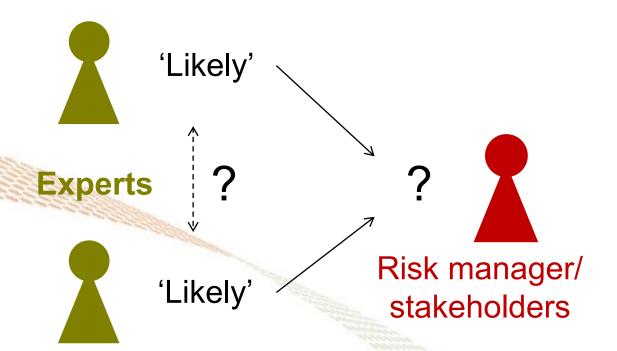
49

±9

Example 2: 'Likely'

What probability do you associate with the word 'Likely'?

 Write down your probability, expressed as a percentage between 0 and 100%


0% | |

Macleod & Pietravalle

Example 2: 'Likely'

 Words are ambiguous – mean different things to different people

Example 3: Bin Laden

President Obama: "Some of our intelligence officers thought that it was only a 40 or 30% chance that Bin Lader the

Quantify likelihoods if possible

For expert judgements as well as statistical estimates

"At the com

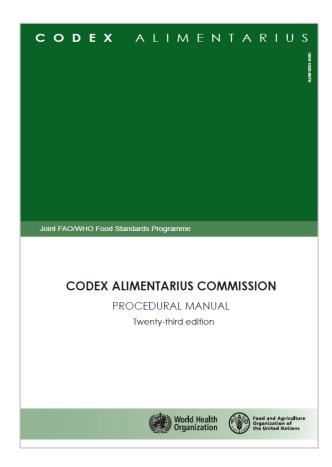
fairly langthy discussion where

Different experts may give

This is okay - and importa

And it's the risk manager's job to decide what to do about it

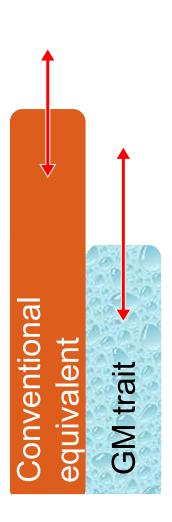
Wa


Ultimately it's the risk managers' understanding of the uncertainty that will matter

was

Key principles

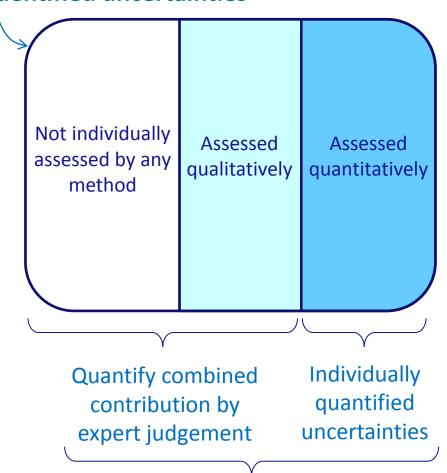
- 'Uncertainties...should be explicitly considered at each step in the risk assessment and documented in a transparent manner'
- 'Expression of uncertainty...may be qualitative or quantitative, but should be quantified to the extent that is scientifically achievable'
- 'Responsibility for resolving the impact of uncertainty on the risk management decision lies with the risk manager, not the risk assessors'



Codex Working Principles for Risk Analysis (2003-)

The same principles apply to all EFSA's scientific advice

- How different might the outcome be?
- How likely are the outcomes of interest to risk managers?
- Quantify as much of the uncertainty as possible
- Leave risk management to risk managers



Draft EFSA Guidance (2015)

- Systematic identification of uncertainties
- Flexible toolbox of assessment methods
 - Qualitative and quantitative
- Start simple; refine as far as needed
- Express overall uncertainty quantitatively

Identified uncertainties

Combine by calculation or expert judgement to assess overall uncertainty

Example: T-2 and HT-2 toxins

- Hazard: Tolerable Daily Intake (TDI) = 100 ng/kg bw/day
- Exposure: 95th percentile for Toddlers (12-36 months)
 - 23 ng/kg bw/day assuming non-detects are zeroes
 - 91 ng/kg bw/day assuming non-detects = limit of detection
- Other sources of uncertainty assessed qualitatively

Sources of uncertainty	Direction ^(a)
Uncertainty of the analytical measurements	+/-
Occurrence data on feed not representative for all feed materials in which T-2 and HT-2 toxins	+/-
could be present	
Effect of food and feed processing	+/-
High variability of feedstuffs used and feeding systems for livestock	+/-
Use of UB occurrence data in the exposure estimations	+
Use of LB occurrence data in the exposure estimations	-
Limited exposure data on infants	+/-
Limited data on exposures for vegetarians	+/-
No toxicokinetic data on T-2 and HT-2 toxins in humans and in most animal species	+/-
Lack of information on the contribution of the toxicity of HT-2 toxin and other metabolites to	+/-
overall toxicity	
Combined effects with other mycotoxins or other toxic substances in food and feed	+/-

(a): + = uncertainty with potential to cause over-estimation of exposure/risk; - = uncertainty with potential to cause under-estimation of exposure/risk

EFSA, 2011 13

Example: T-2 and HT-2 toxins

- Hazard: Tolerable Daily Intake (TDI) = 100 ng/kg bw/day
- Exposure: 95th percentile for Toddlers (12-36 months)
 - 23 ng/kg bw/day assuming non-detects are zeroes
 - 91 ng/kg bw/day assuming non-detects = limit of detection
- Other sources of uncertainty assessed qualitatively
- Expert judgement of overall uncertainty:

The CONTAM Panel concluded that given the uncertainties, the risk assessment of human and animal exposure to the sum of T-2 and HT-2 toxins is more likely to over- than under-estimate the risk.

- This is a quantitative judgement: <50% probability that risk is under-estimated
- Panel also concluded 'No health concern'

Many assessments already imply quantitative judgements about overall uncertainty

EFSA, *2011*

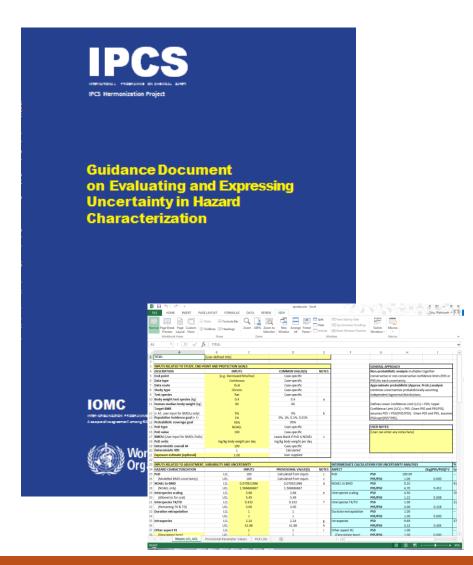
Defined scales may help...

- EFSA suggests an optional scale for probabilities
 - adapted from a similar scale used by IPCC*

Probability term	Probability range
Extremely likely	99-100%
Very likely	90-100%
Likely	66-100%
As likely as not	33-66%
Unlikely	0-33%
Very unlikely	0-10%
Extremely unlikely	0-1%

- Record the rationale for judgements
- Consider using formal expert elicitation techniques

Limits to quantification



- EFSA Draft Guidance recognises assessors may not always be able to quantify overall uncertainty
 - In such cases, they should not give qualitative expressions that imply quantitative judgements
 - Instead, they should:
 - Report that the overall uncertainty cannot be quantified
 - Consider partial quantification, conditional on assumptions about the unquantified uncertainties
 - Highlight & describe the unquantified uncertainties

IPCS Guidance (2014)

- Focus on uncertainty in chemical hazard characterisation
- Guidance and Excel spreadsheet tool

IPCS Guidance (2014)

- Quantifying uncertainty requires precise definition of the parameter to be estimated
- Existing reference doses are ambiguous
 - E.g. Tolerable Daily Intake = 'dose that can be ingested daily over a lifetime without posing significant risk to health'
- IPCS Guidance defines HD_M^I: the Human Dose at which a fraction (or incidence) I of the population shows an effect of magnitude (or severity) M or greater

IPCS Guidance (2014)

- Quantifies uncertainty of HD_M^I based on:
 - Databases on intra- and inter-species variation for multiple chemicals
 - Statistical modelling
- Example: Deoxynivalenol
 - BMDL10 for body weight = 170 μg/kg bw/day
 - Conventional reference dose = 1.7 μg/kg bw/day
 - HD_{05}^{01} : 90% CI = 0.44 19.2 µg/kg bw/day
 - Probabilistic reference dose = 0.44 μg/kg bw/day
 - Conventional reference dose has 68% coverage

Implications for risk assessors

- Need to apply the Codex Working Principles
- EFSA Guidance provides a general toolbox
 - flexible and scalable to the needs of each case
 - basic approaches require expert judgements comparable to current assessments, with increased transparency
- IPCS Guidance offers specific tools for chemical hazard characterisation
 - similar initiatives may be needed in other areas
- Training and specialist help will be needed

Implications for risk managers & stakeholders

- Better information on uncertainty
 - Range and likelihood of possible outcomes
 - Identify and describe unquantifiable uncertainties
- More transparency about:
 - Justification for expert judgements
 - Variation in expert opinion
- Better basis for decision-making
 - Including participatory approaches
- More transparency about how the impact of uncertainty on decision-making is resolved

Challenges ahead

- Culture change for risk assessors & managers
 - Recognition of need
 - Understanding of roles
 - New methods
 - Quantification

- Communication
 - New strategies needed