

CUMULATIVE AND AGGREGATED EXPOSURE TO PESTICIDES (ACROPOLIS PROJECT)

Partners: RIVM, FERA, University of Milan, CRD, IRAS, INRAN, NIPH, DLO, NFA, Freshfel Europe and University of Ghent

Associated partners: DTU (Denmark), CSL (Cyprus), ANSES (France), FVC (Latvia), NIPH (Slovenia), BPI (Greece)

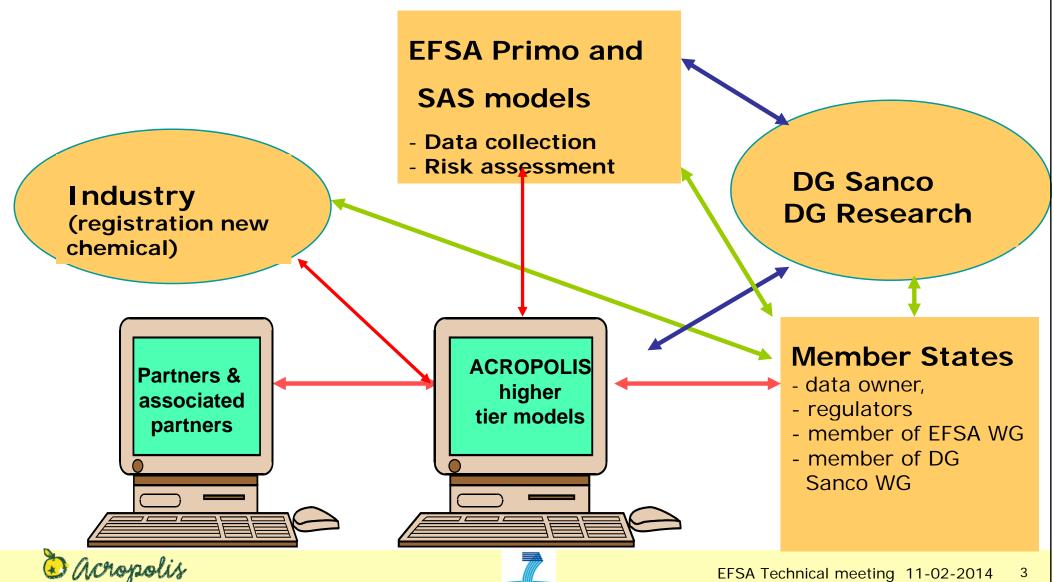
AGES (Austria)

Jacob van Klaveren

Jacob.van.klaveren@rivm.nl

Aims of EU project ACROPOLIS

- Improved cumulative exposure assessment and cumulative hazard assessment;
- To integrate cumulative and aggregate risk models in a web-based tool, including accessible data for all stakeholders;
- Improving the understanding of cumulative risk assessment methodology of different stakeholders.



Internet exchange of models and results

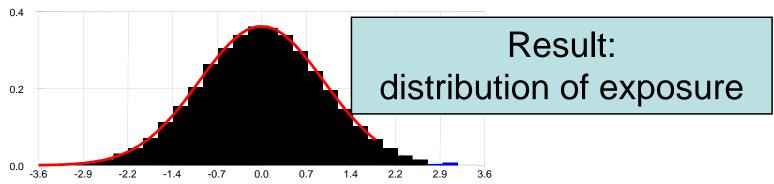
Stakeholder involvement

- is concept understandable?
- usefulness?
- attitudes

First stakeholders conference

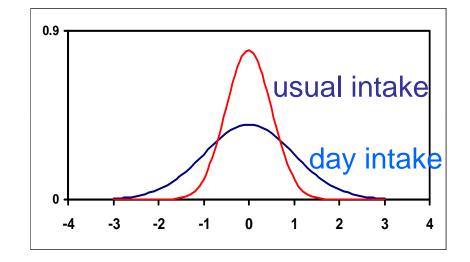
- DG SANCO expectation from ACROPOLIS
 - call for cooperation EFSA and ACROPOLIS
 - > IT tool accessible to all stakeholders
- Carl Schlyter (European Parliament)
 - difficult to explain that it has not been regulated since 2005 Go for it, and fix the hole!
- Trust in ACROPOLIS from (nearly) all stakeholders





MCRA: How it works acute

Random sampling from a concentration and a consumption database



How it works chronic (ETUI project)

- Observed individual Mean EFSA Guidance
- variance components model
 - between individuals
 - days within individuals
 - transformation to a log or power (Box-Cox) scale
 - remove within persons variation

MCRA: Data

ummary

Foods*

Selected file: No file selected. Select a file

Consumptions*

Selected file: No file selected. Select a file

Compounds*

Selected file: No file selected. Select a file

Concentrations*

Selected file: No file selected. Select a file

Effects*

Selected file: No file selected. Select a file

-Hide advanced settings

Processing

Selected file: No file selected. Select a file

Unit variability

Selected file: No file selected. Select a file

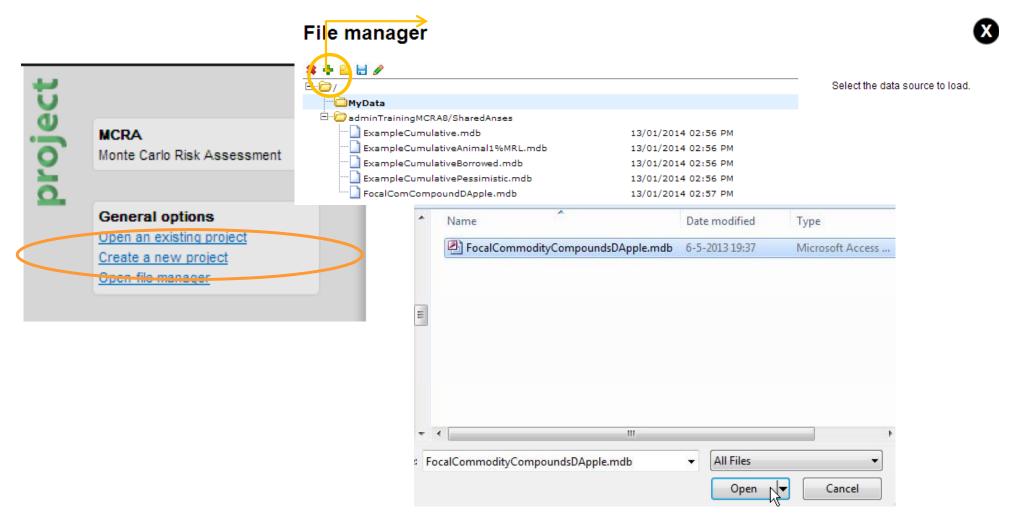
Data

E-Platform and get data connected

21/06/2013 02:29 PM
12/04/2013 09:48 AM
26/08/2013 09:53 AM
12/04/2013 09:49 AM
12/04/2013 09:49 AM
19/04/2013 04:20 PM
26/08/2013 09:55 AM
12/04/2013 09:52 AM
04/06/2013 09:54 AM
12/04/2013 09:53 AM
12/04/2013 09:53 AM
20/06/2013 06:52 PM
12/04/2013 10:08 AM
12/04/2013 09:53 AM
12/04/2013 09:54 AM
20/06/2013 06:48 PM
12/04/2013 09:54 AM
12/04/2013 09:55 AM
12/04/2013 09:55 AM
12/04/2013 10:02 AM
12/04/2013 10:03 AM
12/04/2013 10:08 AM
12/04/2013 10:08 AM

New or adjusted information

Data to add/modify for MCRA 8.0 simulations.


- Supervised trial data
- Adjust toxicological information
- View and update unit variability information
- Adjust variability factors
- Adjust unit variability usage
- Prepare processing factors
- Exit

MCRA: upload focal commodity database

MCRA: common assessment group

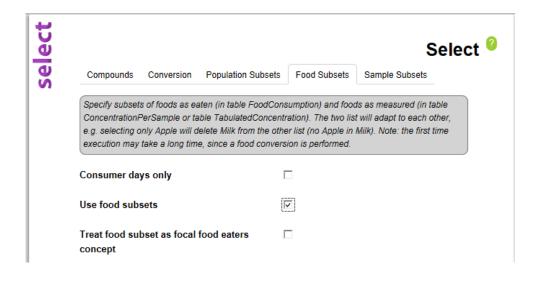
Food survey Population Subsets Food Subsets Compounds Conversion

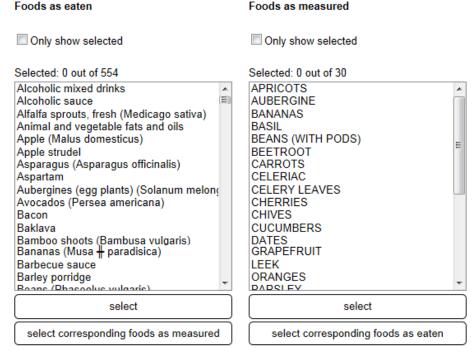
Sample Subsets

A Cumulative Assessment Group (CAG) is defined by linking Compounds to an Effect in table DoseResponseModel (or RelativePotencyFactor). Click on 'Support' and subsequently 'Data Formats Manual' for more information. One compound should be selected as the reference (index) compound (not necessarily a compound with Limit Dose or RPF 1).

Cumulative Assessment Group

Reference compound


(effect) Cranio-facial effect (effect) Hepatoxicity


Bitertanol (RPF 2.1) Cyproconazole (RPF 2.2) Diniconazole (RPF 1) Epoxiconazole (RPF 1.5)

Next step >>

MCRA: consumer only approach

Show subset statistics

Next step >>

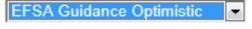
MCRA: Model (1)

model

Model 6

Concentrations Intakes Monte-Carlo Uncertainty Output

Concentration data can be sampled directly from the data (empirical model) or from parametric models. Concentrations < LOR (Limit Of Reporting) (non-detects) can be co-modelled (censored models) or one can specify a non-detects handling method for imputation. Agricultural use data can be used to impose true zeroes for all or part of the non-detects. Effects on concentrations from food processing can be specified in processing factors.


Concentration model

Concentration model

Default concentration model

Non-detects replacement

· Factor f (f x LOR)

EFSA Guidance Pessimistic	•	

Non-Detect	Spike	LogNormal	•
------------	-------	-----------	---

By f* LOR	•
-----------	---

1					
---	--	--	--	--	--

MCRA: Model (2)

model

				1
V٨	^	d	Δ	١
v	v	ч	C	

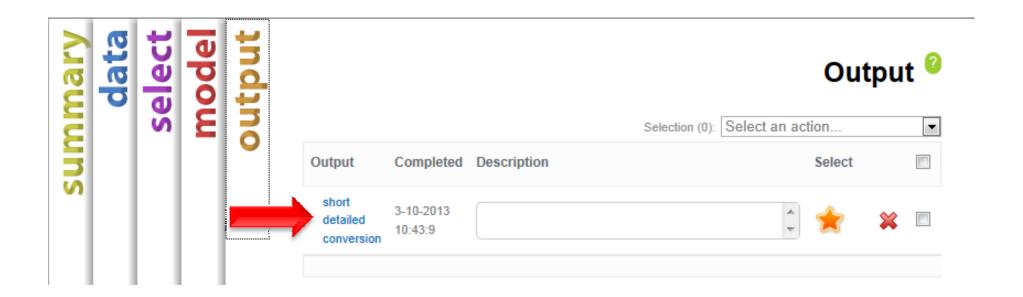
Concentrations Unit-variability Intakes Monte-Carlo Uncertainty Output	ıt
Repeated analyses are made using resampled data. Results are displayes in the form approximate confidence intervals. Warning: computation times may be substantially lo	
Perform uncertainty analysis	
Number of iterations per resampled set 10000	
Number of resample cycles 100	
Resample concentrations	
Parametric uncertainty	
Resample individuals	
Show advanced settings	

Next step >>

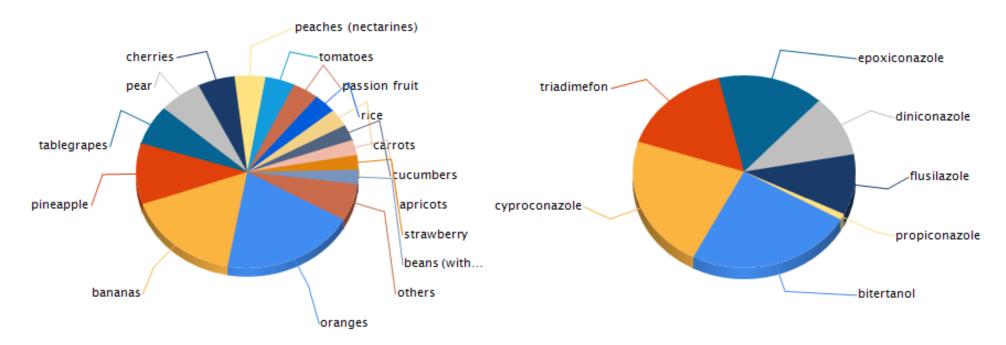
MCRA: output requirements

mode

						Model		
Concentrations	Unit-variability	Intakes	Monte-Carlo	Uncertainty	Output			
Specify details of o	output that will be	generated						
Show percentiles	s for		50 75 90	95 99 99.9				
Percentage for d	rilldown		99.9					
Percentage for u	pper tail		97.5					
Show % of popu	lation below lev	rel(s)	Manual		•			
Exposure leve	els		1 10 50 1	00 200 500			% of	ARfD
Exposure leve	els are		Percenta	ge	•]		
		—Show a	dvanced settin	gs				



MCRA: Output (1)



Output (2): Contribution foods and compounds

Contribution to total exposure distribution for foods as measured

Contribution to the total exposure distribution

Output (3): Number of person-days per million

Exposure percentages

Reference: Flusilazole, ARfD = 500 (µg/kg bw/day), Safety factor = 100

Exposure (µg/kg bw/day)	Percentage of reference dose	Margin of Exposure	Percentage	Lower Bound (p2.5)	Upper Bound (p97.5)	Number of people per million exceeding individual days
5	1.00%	1E+04	79.51 %	77.91 %	80.85 %	204,873
50	10.00 %	1000	99.98 %	99.91 %	100.00 %	199
250	50.00 %	200	100.00 %	100.00%	100.00 %	0
500	100.00 %	100	100.00 %	100.00%	100.00 %	0
1000	200.00 %	50	100.00 %	100.00 %	100.00 %	0
2500	500.00 %	20	100.00 %	100.00 %	100.00 %	0

Output (4): Number of person-days per million (example)

Exposure (µg/kg bw/day)	Percentage of reference dose	Margin of Exposure	Percentage	Lower Bound (p2.5)	Upper Bound (p97.5)	Number of people per million exceeding individual days
5	1.00 %	1E+04	2.33 %	0.2748	5.321	976,750
50	10.00 %	1000	83.05 %	74.97	91.22	169,460
250	50.00 %	200	99.24 %	98.38	99.79	7,620
500	100.00 %	100	99.96 %	99.86	100	440
1000	200.00 %	50	100.00 %	99.99	100	0
2500	500.00 %	20	100.00 %	100	100	0

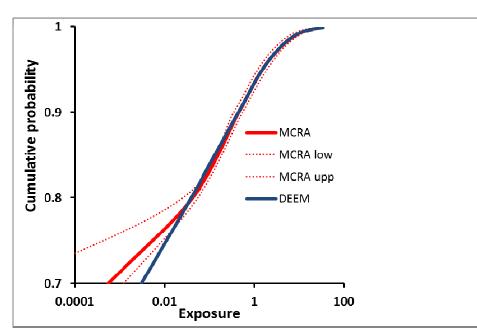
Validation

DEEM-FCID is standard of US-EPA

DEEM-FCID

Ver. 3.16, 03-08-d
Food translations based on EPA/USDA FCID recipe set as of February 2012

Dietary Exposure Evaluation Model


Based on NHANES 2-day food consumption data for 2003-2008

- Validation result:Good agreementMCRA and DEEM
- DEEM less precise at low exposures due to binning
- Not a problem because upper tail is relevant

Documentation and help

- In-line documentation of software, using strict protocols for naming classes, methods and properties
- User manual, data format manual, reference manual
- Help function

ACROPOLIS EXERSICE

- Use of the IT tool and data to calculate cumulative exposure to pesticides
 - Triazole pesticides
- Practicality of performing a cumulative dietary exposure assessment according to the requirements of the EFSA guidance on probabilistic modelling
- Training and user groups

Experience 1 ACROPOLIS partners

- Acute and chronic cumulative exposure modelling is possible
- Application of the optimistic model is feasible
- Performance of the pessimistic model run is very laborious:
 - 1. Determination authorised uses
 - Supplementation or replacement of RACs with insufficient data
 - Borrowing data from other countries
 - MRLs or field trial data

Experience 2 ACROPOLIS partners

- Inclusion of MRLs of animal commodities resulted in
 - Unrealistic conclusions regarding the contribution of animal commodities to the dietary exposure.
- Which number of person-days exceeding the ARfD/ADI is associated with an unacceptable health risk is an open issue
 - should be decided by risk managers
 - > ACROPOLIS IT tool is open for all stakeholders
 - there is not any decision taken by the tool, it just follows the EFSA guidance

Experience 3 user group regulators

- More experience is needed with the EFSA guidance and the model with other (larger) CAGs
 - Proof of principle, plan to upscale performance
- Need for 'realistic' scenario that combines the optimistic and pessimistic model run
 - still be argued to be conservative (precautionary principle) but not over-conservative

Experience 4 user group food authorities

- Pessimistic scenario: replacement LoR
 - Look at historical use
 - If not detected in the past nd (or < LoR) = 0</p>
 - If detected in certain percentage uses insert 1/2/ LoD or fraction of LoD (or LoR)
- SSD data easy to use
- Animal products
 are measured and
 can be made available

Experience 5 user group industry (a)

- Scenario 1: existing situation > run with monitoring data
- Scenario 2: 100% of use on food A is replaced by new agricultural use
 - Measure 1 or more chemicals in FT of new agricultural use
 - Implication is that monitoring data for food A are no longer relevant
 - → Run with FT data instead of monitoring data for food A Exposure can be higher, equal or lower

e.g. high conc. Tebuconazole may still be lower than RPF*low conc. Flusilazole when RPF=40

Experience 5 user group industry (b)

- Scenario 3: p% of use on food A is replaced → run where in p% of Monte Carlo draws FT data are sampled, and in (100-p)% the monitoring data
- Scenario 4: the new agricultural use is additional to all existing uses
- Scenario 5: the new agricultural use with compound C is additional to all existing uses without compound C, and replaces existing uses with compound C

(replacement scenarios not in EFSA guidance)

Second stakeholders conference

- Training was well-received by nearly all stakeholders (NGO did not attend training, although they were invited)
- Pesticide industry was able to connect focal commodity to monitoring and consumption data
- More transparent use of data through the use of the ACROPOLIS IT tool
- Easy-to-use software
- One uniform tool for discussing the level op protection, but no direction or decision has been taken (objective tool)

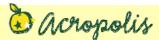
DG SANCO and ACROPOLIS

The European Commission sets the level of protection

- all member states are trained
- European investment should be used
- involvement of stakeholders responsible for pesticide risk assessment
- linking innovation with practical needs of DG SANCO

Current and future organization

- New concept requires time to digest
- ACROPOLIS follow-up initiative
- Agreement to share data and to use it
- DG SANCO and EFSA cooperation
 - Form 'proof of principle' to a full production server
 - Still a lot of issues to be solved
- Open debate also with NGOs



Thanks to all the people involved

