

Parma, 7 July 2009

HK/KP/AR/ST

EFSA/ANS/P_M8/MIN-1/4140124

**MINUTES OF THE 8th PLENARY MEETING
OF THE SCIENTIFIC PANEL ON
FOOD ADDITIVES AND NUTRIENT SOURCES
ADDED TO FOOD (ANS)**

Held in Brussels on 2-5 June 2009

Adopted on 7 July 2009 at the 9th Plenary meeting

AGENDA:

1.	<i>Welcome; apologies for absence</i>	4
2.	<i>Adoption of the agenda</i>	5
3.	<i>Declarations of interest</i>	5
4.	<i>Matters arising from the 7th plenary meeting held on 13-15 May 2009</i>	5
5.	<i>General information</i>	5
5.1.	<i>EFSA</i>	5

5.2. <i>Commission</i>	5
5.3. <i>Chair</i>	6
6. <i>Report from the working groups</i>	6
7. <i>Food Additives</i>	6
7.1. <i>Polyglycitol syrup</i>	6
7.2. <i>Natamycin</i>	6
7.3. <i>Modified acacia gum</i>	6
7.4. <i>Resorcinol</i>	7
8. <i>Nutrient Sources</i>	7
8.1. <i>Chromium nitrate</i>	7
8.2. <i>Chromium (III) lactate trihydrate</i>	7
8.3. <i>Orotates</i>	8
8.4. <i>Silicon sources</i>	8
8.5. <i>Potassium molybdate</i>	9
8.6. <i>Picolinates</i>	9
8.7. <i>Manganese sources</i>	10
8.8. <i>Tocopherols and tocotrienols</i>	10
8.9. <i>Sodium hyaluronate</i>	11
8.10. <i>Magnesium taurinate</i>	11
8.11. <i>Calcium enriched yeast</i>	11
8.12. <i>Vitamin B₆ enriched yeast</i>	12
8.13. <i>Thiamine-enriched yeast</i>	12
8.14. <i>Vitamin K-enriched yeast</i>	13
8.15. <i>Vitamin E-enriched yeast</i>	13
8.16. <i>Niacin-enriched yeast</i>	13
8.17. <i>Pantothenic acid-enriched yeast</i>	14
8.18. <i>Vitamin B₁₂-enriched yeast</i>	14
8.19. <i>Manganese-enriched yeast</i>	15

8.20. Zinc-enriched yeast	15
8.21. Copper-enriched yeast.....	15
8.22. Iron-enriched yeast.....	16
8.23. Magnesium-enriched yeast.....	16
8.24. Vitamin C-enriched yeast.....	16
8.25. Biotin-enriched yeast.....	17
8.26. Riboflavin-enriched yeast.....	17
9. Any other business.....	18
<i>Next meetings.....</i>	18

**MINUTES OF THE 8th PLENARY MEETING
OF THE SCIENTIFIC PANEL ON
FOOD ADDITIVES AND NUTRIENT SOURCES
ADDED TO FOOD (ANS)**

Held in Brussels on 2-5 June 2009

PARTICIPANTS

Panel Members:

Fernando Aguilar (1st, 2nd and 3rd day), Ruth Charrondiere, Birgit Dusemund, Pierre Galtier, John Gilbert (3rd and 4th day), David Gott, Rainer Guertler, Georges Kass, Claude Lambré, John Christian Larsen (Chair), Jean-Charles Leblanc, Alicja Mortensen, Dominique Parent-Massin (1st, 2nd and 3rd day), Iona Pratt (Vice-Chair) (1st, 2nd and 3rd day), Ivonne Rietjens (Vice-Chair) (1st, 2nd and 3rd day), Ivan Stankovic, Paul Tobback, Tatjana Verguieva, Ruud Woutersen (1st, 2nd and 3rd day).

Apologies

Apologies for absence were noted from Sandro Grilli and Jürgen König.

EFSA

Hugues Kenigswald, Kim Petersen, Ana-Maria Rincon and Stavroula Tasiopoulou (scientific staff) – Maud Pâques (administrative staff).

European Commission

Yvette Azzopardi (1st and 2nd day), Marina Marini, Agnieszka Kordasiewicz.

1. WELCOME; APOLOGIES FOR ABSENCE

The chair welcomed the participants. Apologies for absence were noted.

2. ADOPTION OF THE AGENDA

The agenda was adopted without changes.

3. DECLARATIONS OF INTEREST

In accordance with EFSA's Policy on Declarations of Interests, the EFSA secretariat screened the Specific Declarations of Interests (SDoIs) completed by the scientific experts invited to this meeting and the additional interests declared at the beginning of the meeting. For further details on the outcome of this screening please refer to Annex I of these minutes.

4. MATTERS ARISING FROM THE 7th PLENARY MEETING HELD ON 13-15 MAY 2009

The participants were asked to confirm their agreement with the minutes of the 7th ANS Plenary meeting. The Secretariat has received some comments which were inserted in the minutes. The draft minutes were discussed and adopted. They can be seen on:

http://www.efsa.europa.eu/cs/BlobServer/Event_Meeting/ans_minutes_7thPlenary_meeting_13_14_May_09.pdf?ssbinary=true

5. GENERAL INFORMATION

5.1. EFSA

The Panel was informed on the following issues:

- the Chair of the Panel and the Secretariat have had a meeting with the European Commission on the 2nd of June before the start of the plenary meeting of the Panel to clarify some aspects of the recent opinion on L-selenomethionine,

- the Chair, the Vice-Chairs of the Panel and the Head of the ANS Unit will have a meeting on the 3rd of June with the European Commission on the re-evaluation programme for the food additives.

5.2. Commission

With regard to food additives, it was mentioned that a meeting with Member States will take place in

June for the initial discussion of the re-evaluation program for food additives.

5.3. Chair

I. Pratt represented the Chair during the latest meeting of the Scientific Committee. The Scientific Committee discussed the Benchmark dose approach and concluded that all EFSA Panels should be encouraged to use the Benchmark dose approach in risk assessments since the Benchmark dose approach appears to be more scientifically valid and reliable than the NOAEL / LOAEL approach.

6. REPORT FROM THE WORKING GROUPS

No meetings of the Working Groups A and B have taken place since the last Plenary meeting in May 2009.

7. FOOD ADDITIVES

7.1. Polyglycitol syrup

(Question N° EFSA-Q-2007-072)

Due to lack of time this item was not discussed.

7.2. Natamycin

(Question N° EFSA-Q-2006-009)

Due to lack of time this item was not discussed.

7.3. Modified acacia gum

(Question N° EFSA-Q-2008-002)

Due to lack of time this item was not discussed.

7.4. Resorcinol

(*Question N° EFSA-Q-2006-123*)

Due to lack of time, this item was only briefly discussed and will be forwarded to a forthcoming Plenary meeting of the Panel.

8. NUTRIENT SOURCES

8.1. Chromium nitrate

(*Question N° EFSA-Q-2005-216*)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that the use of chromium(III) nitrate as a source of chromium(III) in food supplements would not be of safety concern provided that the level for supplementation of 250 µg chromium/day recommended by the WHO is not exceeded. This amount would result in an exposure to nitrate of approximately 0.9 mg nitrate, corresponding to 0.6% of the ADI for a 60 kg adult, which is not of safety concern.

In addition, the Panel noted that recent reviews and evaluations of chromium(III) point at conflicting outcomes of genotoxicity assays and report diverging views and conclusions on the consequences of this genotoxicity issue for the ultimate safety assessment of chromium(III). The Panel noted that additional relevant in vivo studies have shown that exposure to chromium(III) chloride and chromium(III) nitrate induced DNA deletions in mice and yeast respectively and that it was recently reported that occupational exposure to chromium(III) can lead to DNA damage to human peripheral lymphocyte as evidenced by the Comet assay. The Panel is aware that given this situation the safety of chromium(III) might need to be re-evaluated in light of these recent reviews and evaluations.

8.2. Chromium (III) lactate trihydrate

(*Question N° EFSA-Q-2006-307*)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that the use of chromium(III) lactate as a source of chromium(III) in food

supplements would not be of safety concern at the proposed use level. This amount would result in an exposure of approximately 1.23 mg lactate, which is not of safety concern.

The Panel also noted that recent reviews and evaluations of chromium(III) point at conflicting outcomes of genotoxicity assays and report diverging views and conclusions on the consequences of this genotoxicity issue for the ultimate safety assessment of chromium(III). The Panel is aware that given this situation, the safety of chromium(III) might need to be re-evaluated in light of the recent reviews and evaluations.

8.3. Orotates

(Questions N°EFSA-Q-2005-135, EFSA-Q-2005-139, EFSA-Q-2005-163, EFSA-Q-2005-148, EFSA-Q-2006-232, EFSA-Q-2006-233, EFSA-Q-2006-234, EFSA-Q-2006-235, EFSA-Q-2006-236, EFSA-Q-2006-237, EFSA-Q-2006-238, EFSA-Q-2006-239, EFSA-Q-2006-240, EFSA-Q-2006-241, EFSA-Q-2006-242, EFSA-Q-2006-243, EFSA-Q-2006-244, EFSA-Q-2006-245, EFSA-Q-2006-246, EFSA-Q-2006-247, EFSA-Q-2006-248, EFSA-Q-2006-251)

The draft document was discussed. The proposed changes to the text were noted and the document will be revised and forwarded to a forthcoming Plenary meeting.

8.4. Silicon sources

(Questions N°EFSA-Q-2005-140, EFSA-Q-2006-220, EFSA-Q-2005-098, EFSA-Q-2005-099)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted the low solubility of calcium silicate in hydrochloric acid and that it is practically insoluble in water but in the absence of specific data, the Panel cannot conclude on the bioavailability of either calcium or silicon from the source.

No data have been submitted on the bioavailability of silicon from either silicon dioxide or from silicic acid gel. However, several studies have shown that silicon present in a similar form was readily available from foods and in many cases showed absorption similar to that of silicon from fluids. Further, given the conversion of silicon dioxide/silicic acid to orthosilicic acid upon hydration and the bioavailability of silicon from orthosilicic acid, the Panel considers that silicon from silicon dioxide/ silicic acid gel is bioavailable.

The Panel concluded that, given the safe upper level for silicon of 700 mg silicon/day established by the EVM for supplemental use and of 2500 mg calcium/day for adults established by the SCF, the exposure to calcium and to silicon resulting from the use of calcium silicate as a source of

respectively silicon and calcium in food supplements at the proposed use levels is of no concern provided that it complies with the specifications for its use as a food additive.

The Panel also concluded that the use of silicon dioxide up to 1500 mg SiO₂/day (equal to 700 mg of silicon/day) and of silicic acid gel to supply up to 200 mg silicon/day added to food supplements is of no safety concern.

8.5. Potassium molybdate

(Question N° EFSA-Q-2005-157)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that the use of potassium molybdate as a source of molybdenum, added for nutritional purposes in food supplements at the levels proposed by the petitioner is of no safety concern, provided that the UL for molybdenum established by the SCF is not exceeded. The Panel notes that since the SCF adopted its opinion on molybdenum, new toxicological data have been made available on *in vitro* and *in vivo* genotoxicity of molybdenum that might need further investigation.

8.6. Picolimates

(Questions N° EFSA-Q-2005-077, EFSA-Q-2006-231, EFSA-Q-2005-094, EFSA-Q-2005-110)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that chromium from chromium picolinate is equally or slightly better bioavailable than chromium from other chromium compounds and that zinc from zinc picolinate and from zinc picolinate dihydrate is bioavailable.

Based on the available, albeit limited toxicological database, the Panel concluded that the use of zinc picolinate as a source of zinc, when added for nutritional purposes in food supplements, is not of safety concern, as long as the UL for zinc is not exceeded. The Panel also concluded that the use of chromium (III) picolinate, as a source of chromium, is of no safety concern provided the use does not lead to supplemental intake of chromium higher than 250 µg/day.

The Panel also noted that recent reviews and evaluations of chromium(III) point at conflicting outcomes of genotoxicity assays and report diverging views and conclusions on the consequences of this genotoxicity issue for the ultimate safety assessment of chromium(III). The Panel is aware that given this situation the safety of chromium(III) might need to be re-evaluated in light of these recent

reviews and evaluations.

8.7. Manganese sources

(Questions N° EFSA-Q-2008-024, EFSA-Q-2005-037, EFSA-Q-2005-144, EFSA-Q-2005-160, EFSA-Q-2006-226, EFSA-Q-2006-302, EFSA-Q-2006-322)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that the use of manganese aspartate, manganese L-ascorbate, manganese pidolate, manganese bisglycinate and manganese glycinate as sources of manganese in food supplements are not of safety concern provided that the guidance levels for manganese supplementation set by EVM are not exceeded.

The Panel also concurred with the SCF considerations that exposure to manganese should remain low and levels should not exceed those found in the diet, taking into consideration that due to manganese being ubiquitous, the evidence of manganese deficiency in humans is poor, that manganese is an essential element found naturally in foods, and that the margin of exposure between manganese levels showing oral neurotoxic effects and the estimated levels of manganese intake from the diet remain low.

The Panel noted that the petitioner has not provided any data on the toxicity of manganese ethanolamine phosphate nor on the bioavailability of manganese from manganese ethanolamine phosphate.

Therefore, the Panel concluded that due to the lack of an appropriate dossier supporting the use of manganese ethanolamine phosphate in food supplements, the safety of manganese ethanolamine phosphate and the bioavailability of manganese from manganese ethanolamine phosphate cannot be assessed.

8.8. Tocopherols and tocotrienols

(Questions N°EFSA-Q-2006-262, EFSA-Q-2006-263, EFSA-Q-2006-264, EFSA-Q-2006-266, EFSA-Q-2006-267, EFSA-Q-2006-268, EFSA-Q-2006-269, EFSA-Q-2006-270)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that due to the lack of adequate dossiers supporting the use of beta-, gamma- and delta-tocopherol, alpha-, beta-, gamma- , delta-, and desmethyl-tocotrienol in food supplements,

the safety and bioavailability of beta-, gamma- and delta-tocopherol, alpha-, beta-, delta-, gamma- and desmethyl-tocotrienol cannot be assessed.

The Panel also noted that if the tocopherol and tocotrienol preparations of the present dossiers match the specifications of the tocopherol and tocotrienol sources evaluated in the opinion adopted in February 2008 by the AFC Panel, the conclusions of the AFC opinion would apply.

8.9. Sodium hyaluronate

(Question N° EFSA-Q-2006-190)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that due to the lack of an adequate dossier supporting the use of sodium hyaluronate in food supplements, the safety of sodium hyaluronate and the bioavailability of sodium from this substance cannot be assessed.

8.10. Magnesium taurinate

(Question N° EFSA-Q-2008-769)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel concluded that if the magnesium taurate referred to in the present statement complies with the specifications defined for the magnesium taurate sources of a previous opinion adopted by the ANS Panel on iron(II) taurate, magnesium taurate and magnesium acetyl taurate as sources of iron or magnesium added for nutritional purposes in food supplements (2009), the conclusions of that previous opinion would apply.

8.11. Calcium enriched yeast

(Questions N° EFSA-Q-2005-096, EFSA-Q-2005-200)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel concluded that calcium could be expected to be bioavailable from one of the calcium-enriched yeast under consideration. The Panel concluded that the bioavailability of the other calcium-enriched yeast

cannot be assessed due to the lack of an appropriate dossier.

The Panel also concluded that due to the lack of appropriate dossiers supporting the use of calcium-enriched yeast in food supplements, the safety of the calcium-enriched yeasts under consideration cannot be assessed.

8.12. Vitamin B₆ enriched yeast

(Question N° EFSA-Q-2005-196)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel noted that it was not possible to assess the bioavailability of vitamin B₆ from vitamin B₆-enriched yeast since neither data nor suitable supporting references were provided. The Panel further noted that neither safety data nor suitable supporting references were provided to support the assumption of safety of vitamin B₆-enriched yeast.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of vitamin B₆-enriched yeast in food supplements, the bioavailability of vitamin B₆ from vitamin B₆-enriched yeast and the safety of vitamin B₆-enriched yeast cannot be assessed.

8.13. Thiamine-enriched yeast

(Question N° EFSA-Q-2005-207)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel noted that it was not possible to assess the bioavailability of thiamine from thiamine-enriched yeast since neither data nor suitable supporting references were provided. The Panel further noted that neither safety data nor suitable supporting references were provided to support the assumption of safety of thiamine-enriched yeast.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of thiamine-enriched yeast in food supplements, the bioavailability of thiamine from thiamine-enriched yeast and the safety of thiamine-enriched yeast cannot be assessed.

8.14. Vitamin K-enriched yeast

(Question N° EFSA-Q-2005-208)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel noted that it was not possible to assess the bioavailability of vitamin K from vitamin K-enriched yeast since neither data nor suitable supporting references were provided. The Panel further noted that neither safety data nor suitable supporting references were provided to support the assumption of safety of vitamin K-enriched yeast.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of vitamin K-enriched yeast in food supplements, the bioavailability of vitamin K from vitamin K-enriched yeast and the safety of vitamin K-enriched yeast cannot be assessed.

8.15. Vitamin E-enriched yeast

(Question N° EFSA-Q-2005-209)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel noted that it was not possible to assess the bioavailability of vitamin E from vitamin E-enriched yeast since neither data nor suitable supporting references were provided. The Panel further noted that neither safety data nor suitable supporting references were provided to support the assumption of safety of vitamin E-enriched yeast.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of vitamin E-enriched yeast in food supplements, the bioavailability of vitamin E from vitamin E-enriched yeast and the safety of vitamin E-enriched yeast cannot be assessed.

8.16. Niacin-enriched yeast

(Question N° EFSA-Q-2005-211)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel

noted that it was not possible to assess the bioavailability of niacin from niacin-enriched yeast since neither data nor suitable supporting references were provided. The Panel further noted that neither safety data nor suitable supporting references were provided to support the assumption of safety of niacin-enriched yeast.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of niacin-enriched yeast in food supplements, the bioavailability of niacin from niacin-enriched yeast and the safety of niacin-enriched yeast cannot be assessed.

8.17. Pantothenic acid-enriched yeast

(Question N° EFSA-Q-2005-211)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel further noted that neither data nor suitable references were provided to support the assumption of safety of pantothenic acid-enriched yeast and the bioavailability of pantothenic acid from this source.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of pantothenic acid-enriched yeast in food supplements, the bioavailability of pantothenic acid from pantothenic acid-enriched yeast and the safety of pantothenic acid-enriched yeast cannot be assessed.

8.18. Vitamin B₁₂-enriched yeast

(Question N° EFSA-Q-2005-195)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel further noted that neither data nor suitable references were provided to support the assumption of safety of vitamin B₁₂-enriched yeast and the bioavailability of vitamin B₁₂ from this source.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of vitamin B₁₂-enriched yeast in food supplements, the bioavailability of vitamin B₁₂ from vitamin B₁₂-enriched yeast and the safety of vitamin B₁₂-enriched yeast cannot be assessed.

8.19. Manganese-enriched yeast

(Questions N° EFSA-Q-2005-121, EFSA-Q-2005-18)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel concluded that overall the bioavailability of manganese from manganese-enriched yeast is at least similar to that from other sources (i.e. manganese sulphate and manganese amino acid chelate).

The Panel also concluded that due to the lack of appropriate dossiers supporting the use of manganese-enriched yeast in food supplements, the safety of the manganese-enriched yeasts under consideration cannot be assessed.

8.20. Zinc-enriched yeast

(Questions N°EFSA-Q-2005-089, EFSA-Q-2005-191, EFSA-Q-2006-218)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel concluded that overall the bioavailability of zinc from zinc-enriched yeasts is at least similar to that from other zinc sources (i.e. zinc sulphate, zinc oxide, zinc orotate, zinc gluconate, zinc amino acid chelate).

The Panel also concluded that due to the lack of appropriate dossiers supporting the use of zinc-enriched yeast in foods for particular nutritional uses and foods (including food supplements) for the general population, the safety of the zinc-enriched yeasts under consideration cannot be assessed.

8.21. Copper-enriched yeast

(Questions N°EFSA-Q-2005-118, EFSA-Q-2005-188)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel concluded that overall the bioavailability of copper from copper-enriched yeast is at least similar to that from other copper sources (i.e. copper sulphate, copper gluconate).

The Panel also concluded that due to the lack of appropriate dossiers supporting the use of copper-enriched yeast in food supplements, the safety of the copper-enriched yeasts under consideration cannot be assessed.

8.22. Iron-enriched yeast

(Questions N° EFSA-Q-2005-095, EFSA-Q-2005-206, EFSA-Q-2006-214)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel concluded that iron could be expected to be bioavailable from one of the iron-enriched yeasts under consideration. The Panel concluded that the bioavailability of the other two iron-enriched yeasts cannot be assessed due to the lack of appropriate dossiers.

The Panel also concluded that due to the lack of appropriate dossiers supporting the use of iron-enriched yeasts in foods for particular nutritional uses and foods (including food supplements) intended for the general population, the safety of iron-enriched yeasts under consideration cannot be assessed.

8.23. Magnesium-enriched yeast

(Questions N° EFSA-Q-2005-092, EFSA-Q-2005-204)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel concluded that magnesium could be expected to be bioavailable from one of the magnesium-enriched yeast under consideration. The Panel concluded that the bioavailability of the other magnesium-enriched yeast cannot be assessed due to the lack of an appropriate dossier.

The Panel also concluded that due to the lack of appropriate dossiers supporting the use of magnesium-enriched yeasts in food supplements, the safety of magnesium-enriched yeasts under consideration cannot be assessed.

8.24. Vitamin C-enriched yeast

(Question N° EFSA-Q-2005-194)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel further noted that neither data nor suitable references were provided to support the assumption of safety of vitamin C-enriched yeast and the bioavailability of vitamin C from this source.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of vitamin C-enriched yeast in food supplements, the bioavailability of vitamin C from vitamin C-enriched yeast and the safety of vitamin C-enriched yeast cannot be assessed.

8.25. Biotin-enriched yeast

(Question N° EFSA-Q-2005-1990)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel further noted that neither data nor suitable references were provided to support the assumption of safety of biotin-enriched yeast and the bioavailability of biotin from this source.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of biotin-enriched yeast in food supplements, the bioavailability of biotin from biotin-enriched yeast and the safety of biotin-enriched yeast cannot be assessed.

8.26. Riboflavin-enriched yeast

(Question N° EFSA-Q-2005-210)

The draft document was discussed. The proposed changes to the text were noted and the document was adopted.

The Panel noted that the petitioner has insufficiently chemically characterised the product. The Panel further noted that neither data nor suitable references were provided to support the assumption of safety of riboflavin-enriched yeast and the bioavailability of riboflavin from this source.

The Panel concluded that due to the lack of an appropriate dossier supporting the use of riboflavin-enriched yeast in food supplements, the bioavailability of riboflavin from riboflavin-enriched yeast and the safety of riboflavin-enriched yeast cannot be assessed.

9. ANY OTHER BUSINESS

The Panel and the working groups were thanked on behalf of the Executive Director of EFSA and the Secretariat itself for the completion of the nutrient sources for food supplements evaluation programme within the agreed deadline and for all the efforts made to achieve this objective.

The representative of the European Commission also expressed thanks to the Panel for this achievement.

NEXT MEETINGS

The next ANS Panel Plenary meetings will take place on the following dates:

7 – 9 July 2009

22 – 24 September 2009

24 – 26 November 2009

Annex I

INTERESTS AND ACTIONS RESULTING FROM THE SCREENING OF SPECIFIC DECLARATION OF INTERESTS

J.C. Larsen has declared an interest because his employer (DTU) has been preparing for EFSA a pre-evaluation document on the orotates under a procurement contract. This was not considered as a conflict of interests and he was invited to participate in the corresponding discussion.

I. Stankovic declared an interest related to the evaluation by JECFA of modified acacia gum. This was not considered as a conflict of interests and he was invited to participate in the corresponding discussion.

INTERESTS AND ACTIONS RESULTING FROM DECLARATIONS DONE AT THE MEETINGS

J.C. Larsen declared interests related to his participation to the evaluation by JECFA of natamycin and modified acacia gum. This was not considered as a conflict of interests and he was invited to participate in the corresponding discussions.

J.-C. Leblanc declared interests related to his participation to the evaluation by JECFA of natamycin and modified acacia gum. This was not considered as a conflict of interests and he was invited to participate in the corresponding discussions.