

Scientific Panel on Plant Health (PLH)

Minutes of the 79th Plenary meeting

27-28 March 2019, Parma, (Italy)

"Meeting room: EFSA – MO6"

(Agreed on 23 April 2019)

Participants

- Panel Members
 - Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Josep Jaques Miret, Annemarie Fejer Justesen, Sven Christer Magnusson, Panagiotis Milonas, Juan A. Navas-Cortés, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Antonio Vicent, Jonathan Yuen, Marie-Agnès Jacques, Lucia Zappalà & Alan MacLeod (via web).
- Hearing Experts:
 - Steven White and Gianni Gilioli (members of the EFSA PLH Panel Working Group on the update of *X. fastidiosa* pest risk assessment), Chris Malumphy (member of the EFSA PLH Panel Working Group on the Agricultural Insects pest categorisation)
- European Commission DG SANTE:
 - Pasquale Di Rubbo, Maria Belen Marquez-Garcia, Maria Mirazchiyska, Panagiota Mylona, Wolfgang Reinert.
- EFSA:
 - ALPHA Unit: Melanie Camillieri, Michela Chiumenti, Ewelina Czwienckez, Alice Delbianco, Makrina Diakaki, Ciro Gardi, Michela Guzzo, Tomasz Kaluski, Virag Kertesz, Mart Kinkar, Svetla Kozelska, Nikolaus Kriz, Andrea Maiorano, Maria Rosaria Mannino, Elisabeth Meyer-Landrut, Marco Pautasso, Stefano Preti, Maria Chiara Rosace, Giuseppe Stanganelli, Emanuela Tacci, Sara Tramontini, Sybren Vos;
 - AMU Unit: Olaf Mosbach-Schulz
 - COMM Unit: Flavio Fergnani, Maria Tejero and Simon Terry;
- EFSA Art. 36 Tasking Grants: Michela Chiumenti, Luciana Galetto and Cristina Marzachì (CNR, Italy)

1. Welcome and apologies for absence

The Chair welcomed the participants. Apologies were received from Hans-Hermann Thulke and Wopke Van der Werf.

2. Adoption of agenda

The agenda was adopted without changes.

3. Declarations of Interest of Scientific Committee/Scientific Panel/ Members

In accordance with EFSA's Policy on Independence and the Decision of the Executive Director on Competing Interest Management, EFSA screened the Annual Declarations of Interest filled out by the Panel members invited to the present meeting. No Conflicts of Interest related to the issues discussed in this meeting have been identified during the screening process.

Certain interests were declared orally by the members before the beginning of the meeting. For further details on the outcome of the screening of the Oral Declaration(s) of Interest made at the beginning of the meeting, please refer to the Annex.

4. Report on written procedures since 78th Plenary meeting held on 30 & 31 January 2019 Parma Italy

4.1 78th Plenary minutes

The minutes were agreed by written procedure on 21st February 2019 and then published on EFSA website (<https://www.efsa.europa.eu/en/events/event/181121-0>)

5. New Mandates

The new mandate to provide a scientific opinion on the pest risk assessment of *Saperda tridentata* (EFSA-Q-2019-00171) for the EU territory, was briefly presented to the Panel. The Panel was informed of the nomination of Hans Hermann Thulke for this WG.

6. Feedback from Scientific Panel including their Working Groups

6.1 Update from the Working Group on plant bacteria categorisation on the work on non-EU phytoplasma of *Malus*, *Pyrus*, *Cydonia*, *Prunus*, *Rubus*, *Vitis*, *Ribes* and *Fragaria* [M-2017-0055](#)

The Panel was informed about the progress of the WG on the categorisation of non-EU phytoplasma of fruit trees and shrubs, with a presentation on the first three organisms that were categorised: 'Ca. *P. pruni*'-related strain (North American grapevine yellows, NAGYIII), 'Ca. *P. pyri*'-related strain (peach yellow leaf roll, PYLR) and Buckland valley grapevine yellows phytoplasma. The plan for the remaining non-EU phytoplasmas to be categorised was presented.

6.2 Update from the Working Group on Potato viruses categorisation [M-2017-0055](#), including presentation and endorsement of the draft opinion on the list of the non-EU potato viruses and viroids

The WG Chair presented the draft opinion on the list of the non-EU potato viruses and viroids. The draft opinion was endorsed by the Panel so that the list of viruses and viroids could be circulated to the Chief Plant Health Officers of the EU Member States for provision of additional evidence/data. Following this consultation, the WG will consider the comments and data received and update the list where necessary.

6.3 Update from the Working Group on plant viruses categorisation [M-2017-0055](#)

The Panel was informed about the activities of the WG on plant viruses. The WG is now finalising the categorisation of non-EU viruses and viroids of *Prunus* L. This group of non-EU viruses is composed by 29 viruses, seven of them considered with undetermined standing and the remaining twenty-two as non-EU. Pest categorisation will not be pursued for Ilarvirus-S1 and Ilarvirus-S2 because their identity was considered questionable. When this opinion will be completed, the plan is to start working with the pest categorisation of non-EU viruses and viroids of *Fragaria* L., for which the data collection is already ongoing.

6.4 Update on High Risk Plants commodity risk assessment mandate, including a short update on dossiers submitted by National Plant Protection Organisations of Third Countries

The Panel was informed on the recent activities on High Risk Plants. A summary of the recent webinar on "How to prepare a dossier to support demand and import of HRP, plant products and other objects as foreseen in Article 42 of Regulation (EU) 2016/2031"¹ was presented. Ninety-seven

¹ Webinar: How to prepare dossiers to support demands for import of high-risk plants and plant products, Parma, Italy, 12 February 2019.

participants, mainly National Plant Protection Organisations from all the continents, participated to the webinar. Several questions were raised, answered in part during the Q & A session and in part in written form on the dedicated page in EFSA portal.

The panel was also informed on two applications received and actually being subject to the completeness check by the EFSA Application Desk Unit.

6.5 Update from the Working Group on *Pantoea stewartii* USA corn seed derogation (EFSA-Q-2018-00902)

The Panel was updated about the progress of the WG on *P. stewartii* US corn seed derogation, with a summary of the hearing with USDA APHIS about this mandate held on 18 March 2019.

6.6 Update from the Pest Categorisation Working Groups [M-2017-0055](#): Agricultural Insects

An update was provided on the progress of the WG on Agricultural Insects and the opinions currently drafted and future schedule of the group.

6.7 Update from the Pest Categorisation Working Groups [M-2017-0055](#): Forest Insects

An update was provided on the ongoing work of the WG on the categorisations of *Acleris* spp. and *Scolytinae* spp. of coniferous hosts.

7. Scientific outputs submitted for discussion and possible adoption

7.1 Art. 29 Scientific opinion on the "Update of the pest risk assessment of *Xylella fastidiosa* for the EU territory" [\(EFSA-Q-2018-00069\)](#)

EFSA was asked to update the 2015 EFSA risk assessment on *Xylella fastidiosa* for the territory of the EU. In particular EFSA was asked to focus on potential establishment, short and long range spread, the length of the asymptomatic period, the impact of *X. fastidiosa* and an update on risk reduction options. EFSA was asked to take into account the different subspecies and Sequence Types of *X. fastidiosa*. This was attempted throughout the scientific opinion but several issues with data availability meant that this could only be partially achieved. Models for risk of establishment showed most of the EU territory may be potentially suitable for *X. fastidiosa* although Southern Europe is most at risk. Differences in estimated areas of potential establishment were evident among *X. fastidiosa* subspecies, particularly *X. fastidiosa* subsp. *multiplex* which

demonstrated areas of potential establishment further north in Europe. The model of establishment could be used to develop targeted surveys by Member States. The asymptomatic period of *X. fastidiosa* varied significantly for different host and pathogen subspecies combinations, for example from a median of approximately 1 month in some ornamental plants and up to 10 months in olive, for subsp. *pauca*. This variable and long asymptomatic period is a considerable limitation to successful detection and control, particularly where surveillance is based on visual inspection. Modelling suggested that local eradication (e.g. within orchards) is possible, providing sampling intensity is sufficient for early detection and effective control measures are implemented swiftly (e.g. within 30 days). Modelling of long-range spread (e.g. regional scale) demonstrated the important role of long-range dispersal and the need to better understand this. Reducing buffer zone width in both containment and eradication scenarios increased the area infected. Intensive surveillance for early detection, and consequent plant removal, of new outbreaks is crucial for both successful eradication and containment at the regional scale, in addition to effective vector control. The assessment of impacts indicated that almond and *Citrus* spp. were at lower impact on yield compared to olive. Although the lowest impact was estimated for grapevine, and the highest for olive, this was based on several assumptions including that the assessment considered only *Philaenus spumarius* as a vector. If other xylem-feeding insects act as vectors the impact could be different. Since the Scientific Opinion published in 2015, there are still no risk reduction options that can remove the bacterium from the plant in open field conditions. Short range and long range spread modelling showed that an early detection and rapid application of phytosanitary measures, consisting among others of plant removal and vector control, are essential to prevent further spread of the pathogen to new areas. Further data collection will allow a reduction in uncertainty and facilitate more tailored and effective control given the intraspecific diversity of *X. fastidiosa* and wide host range.

The opinion was adopted on 28 March 2019.

7.2 Art. 29 Scientific opinion on effectiveness of *in planta* control measures for *Xylella fastidiosa* ([EFSA-Q-2019-00045](#))

This opinion updates the information included in the previous EFSA Scientific Opinion concerning the *in planta* control measures for *Xylella fastidiosa*, with a systematic review and critical analysis of the potential treatment solutions that have been published against this pest so far. The output of this opinion focuses on the application of chemical or biological treatments on living plants. *In vitro* studies, hot water treatments, use of resistant varieties and vector control are excluded from this review. The use of antibiotics is also not considered due to the risk of antimicrobial

resistance development. The use of weakly virulent or avirulent strains of *X. fastidiosa* is covered by this review, although this organism is an EU quarantine plant pest and its introduction in the EU territory is banned. Experiments were recently conducted to assess the effect of application of zinc, copper, and citric acid biocomplex, of N-acetylcysteine, and of 'diffusible signal factor' (and of its homologs). Their results showed that these control measures were sometimes able to reduce symptoms caused by *X. fastidiosa*. Recent experiments also showed that several species of endophytic microorganisms, some bacteriophages, and inoculation of weakly virulent/avirulent strains of *X. fastidiosa* could offer some protection against the Pierce's disease strains of *X. fastidiosa*. However, based on the reviewed results, the Panel concludes that, although several published experiments show some effects in reducing symptoms development, the tested control measures are not able to completely eliminate *X. fastidiosa* from diseased plants. The Panel confirms as previously stated that there is currently no control measure available to eliminate the bacteria from a diseased plant in open field conditions.

The opinion was adopted on 28 March 2019.

7.3 Art. 29 Scientific opinion on Commodity risk assessment of black pine (*Pinus thunbergii* L.) bonsai from Japan ([EFSA-Q-2017-00715](#))

The European Food Safety Authority (EFSA) Plant Health (PLH) Panel was requested by the European Commission to deliver a scientific opinion on how far the existing requirements for the bonsai pine species subject to derogation in Commission Decision 2002/887/EC would cover all plant health risks from black pine (*Pinus thunbergii* L.) bonsai (the commodity defined in the EU legislation as naturally or artificially dwarfed plants) imported from Japan, taking into account the available scientific information, including the technical information provided by Japan. The relevance of an EU regulated pest for this opinion was based on: (a) evidence of the presence of the pest in Japan; (b) evidence that *P. thunbergii* is a host of the pest and (c) evidence that the pest can be associated with the commodity. Sixteen pests that fulfilled all three criteria were selected for further evaluation. The relevance of other pests present in Japan (not regulated in the EU) for this opinion was based on (i) evidence of the absence of the pest in the EU; (ii) evidence that the pest uses *P. thunbergii* as a host; (iii) evidence that the pest can be associated with the commodity and (iv) evidence that the pest may have an impact in the EU. Three pests fulfilled all four criteria and were selected for further evaluation (*Crisicoccus pini*, *Sirex nitobei*, *Urocerus japonicus*). For the selected 19 pests the risk mitigation measures proposed in the technical dossier were evaluated. Limiting factors on the effectiveness of the measures were documented. For each of the 19

pests, an expert judgement is given on the likelihood of pest freedom taking into consideration the risk mitigation measures acting on the pest, including any uncertainties. For all evaluated pests the median likelihood of the pest freedom is 99.5% or higher and within the 90% uncertainty range it is 99% or higher.

The opinion was adopted on 28 March 2019.

7.4 EFSA technical report on public consultation on the draft PLH Panel guidance on High Risk Plants commodity risk assessment ([EFSA-Q-2018-00117](#)) (for PLH Panel endorsement)

EFSA has carried out a public consultation on the draft Guidance of the EFSA Scientific Panel on Plant Health (PLH Panel) on commodity risk assessment for the evaluation of high risk plants dossiers with the aim of collecting input from the scientific community and all interested parties. Article 42 of the European Regulation (EU) 2016/2031, on the protective measures against pests of plants, introduces the concept of 'high risk plants, plant products and other objects' that are identified on the basis of a preliminary assessment to be followed by a commodity risk assessment. The draft Guidance provided the methodology to be followed when performing a commodity risk assessment for high risk commodities. Following international standards on pest risk analysis this Guidance describes a two-step approach for the assessment of pest risk associated with a specified commodity. In the first step, pests associated with the commodity that may require risk mitigation measures are identified. In the second step, the overall efficacy of proposed risk reduction options for each pest is evaluated. A conclusion on the pest freedom status of the commodity is achieved. The method allows key uncertainties to be identified. Following the endorsement of the draft Guidance by the PLH Panel, the public consultation was launched on 14 December 2018 and closed on 24 January 2019. EFSA received 56 comments on the draft Guidance from four interested parties. This technical report on the outcome of the public consultation on the draft Guidance summarises the comments received during the public consultation and presents the responses of the PLH Panel. The PLH Panel prepared an updated version of the draft Guidance taking into account the comments received. The Guidance was adopted at the PLH Panel plenary meeting on 27 March 2019, (EFSA PLH panel, 2019) and is published in the EFSA Journal.

The Technical Report was endorsed by the PLH Panel on 28 March 2019.

7.5 PLH Panel Guidance on commodity risk assessment for the evaluation of high risk plants dossiers ([EFSA-Q-2018-00117](#))

Article 42 of the European Regulation (EU) 2016/2031, on the protective measures against pests of plants, introduces the concept of 'high risk plants, plant products and other objects' that are identified on the basis of a preliminary assessment to be followed by a commodity risk assessment. Following a request of the European Commission, this Guidance was developed to establish the methodology to be followed when performing a commodity risk assessment for high risk commodities (high risk plants, plant products and other objects). Any commodity risk assessment performed by EFSA will be based on the information provided by the applicant requesting a lifting of import prohibition of a high risk commodity. Following international standards on pest risk analysis this Guidance describes a two-step approach for the assessment of pest risk associated with a specified commodity. In the first step, pests, associated with the commodity, that require risk mitigation measures are identified. In the second step, the overall efficacy of proposed risk reduction options for each pest is evaluated. A conclusion on the pest-freedom status of the commodity is achieved. The method requires key uncertainties to be identified.

The opinion was adopted on 28 March 2019.

7.6 WG on Viruses pest categorisation: Art. 29 Scientific opinion on Pest categorisation of non-EU viruses of *Vitis L.* ([EFSA-Q-2018-00789](#))

Following a request from the EU Commission, the Panel on Plant Health addressed the pest categorisation of the viruses and viroids of *Vitis L.* determined as being either non-EU or of undetermined standing in a previous EFSA opinion. These infectious agents belong to different genera and are heterogeneous in their biology. With the exclusion of grapevine virus 101-14.N.23.9.1/South Africa/2009 for which very limited information exists, the pest categorisation was completed for 30 viruses or viroids having acknowledged identities and available detection methods. All these viruses are efficiently transmitted by vegetative propagation techniques, with plants for planting representing the major pathway for long-distance dispersal and thus considered as the major pathway for potential entry. Depending on the virus, additional pathway(s) can also be seeds, pollen and/or vector(s). Most of the viruses categorised here are known to infect only one or few plant genera, but some of them have a wide host range, thus extending the possible entry pathways. Some viruses have been reported in one or few EU Member States with restricted distribution. Grapevine yellow speckle viroid 2

(GYSVd-2), blueberry leaf mottle virus, grapevine Ajinashika virus (GAV), grapevine Anatolian ringspot virus, grapevine berry inner necrosis virus, grapevine deformation virus, grapevine fabavirus, grapevine red blotch virus, grapevine stunt virus, grapevine Tunisian ringspot virus, grapevine vein-clearing virus, temperate fruit decay-associated virus, peach rosette mosaic virus, tobacco ringspot virus (TRSV), tomato ringspot virus (ToRSV) meet all the criteria evaluated by EFSA to qualify as potential Union quarantine pests (QPs). With the exception of impact for the EU territory, on which the Panel was unable to conclude, blackberry virus S (BIVS), grapevine geminivirus A, grapevine leafroll-associated virus 7 (GLRaV-7), grapevine leafroll-associated virus 13, grapevine satellite virus (GV-Sat), grapevine virus E (GVE), grapevine virus I, grapevine virus J, grapevine virus S, summer grape enamovirus, summer grape latent virus satisfy all the other criteria to be considered as potential Union QPs. Australian grapevine viroid, grapevine cryptic virus 1, grapevine endophyte endornavirus and wild vitis virus 1 do not meet all the criteria evaluated by EFSA to be regarded as potential Union QPs because they are not known to cause an impact on *vitis*. All the viruses categorised in the current opinion do not meet the criteria evaluated by EFSA to qualify as potential RNQPs because they are either not known to be either present or widespread in the EU. For several viruses, especially those recently discovered, the categorisation is associated with high uncertainties mainly because of the absence of data on their biology, distribution and impact.

The opinion was adopted on 28 March 2019.

7.7 WG on Bacteria: Art. 29 Scientific opinion on Pest categorisation of *Clavibacter sepedonicus* ([EFSA-Q-2017-00308](#))

Following a request from the European Commission, the EFSA Panel on Plant Health performed a pest categorisation of *Clavibacter sepedonicus*, a well-defined and distinguishable bacterial plant pathogen of the family Microbacteriaceae. *C. sepedonicus* causes bacterial ring rot of potato and is reported from North America, Asia and Europe. The bacterium is mostly tuber transmitted, but it can also enter host plants through wounds or via contaminated equipment. *C. sepedonicus* is regulated in Council Directive 2000/29/EC (Annex IAI, as *Clavibacter michiganensis* subsp. *sepedonicus*) as a harmful organism whose introduction into the EU is banned. In addition, Council Directive 1993/85/EEC concerns the measures to be taken within EU Member States (MS) against *C. sepedonicus* to (a) detect it and determine its distribution, (b) prevent its occurrence and spread, and (c) control it with the aim of eradication. The pest is present in several EU MS, but in all cases with a restricted distribution and under official control. *C. sepedonicus* could enter the EU

and spread primarily via host plants for planting (i.e. potato tubers). The pest could establish in the EU, as the main host (potato) is commonly grown and climatic conditions are favourable. Direct potato losses following infection by *C. sepedonicus* can be substantial and are due to the destruction of the vascular tissue, wilting of the plant, and rotting of the tubers. Infected hosts can remain asymptomatic. The main knowledge gaps are the geographic distribution of the pest and the host range. The criteria assessed by the Panel for consideration of *C. sepedonicus* as potential quarantine pest are met, whilst, for regulated non-quarantine pests, the criterion on the widespread presence in the EU is not met.

The opinion was adopted on 28 March 2019.

7.8 WG on Forest Insects: Art. 29 Scientific opinion on Pest categorisation of non-EU *Choristoneura*. [EFSA-Q-2018-00044](#)

The Panel on Plant Health performed a pest categorisation of non-EU *Choristoneura* spp. *Choristoneura* is a well-defined insect genus in the family Tortricidae (Insecta: Lepidoptera). Species can be identified using taxonomic keys and molecular methods. The genus includes 51 species and subspecies colonising conifers and non-conifer trees in many areas in the world, among which six species are present in the EU. The non-EU species are listed in Annex IAI of Council Directive 2000/29/EC as *Choristoneura* spp. (non-European). Some *Choristoneura* species are important defoliators in North America, mainly on conifers but also on several broadleaf tree species and on non-forest crops. Females lay eggs in batches on the needles or the leaves, and overwintering occurs at the larval stage in a silken hibernaculum. Most species are univoltine, some are bivoltine and at least one subspecies has a two-year life cycle. Pupation occurs on the twigs of conifers or in folded leaves of broadleaf trees. The adults are strong flyers, and the larvae can disperse by ballooning. The main pathways for entry are plants for planting, cut branches, fruits of host plants (including cones), round wood with bark and bark. Suitable host plants and climate would allow the establishment in the EU of the known, North American harmful species. Non-EU *Choristoneura* spp. satisfy all the criteria to be considered as Union quarantine pests. Measures are in place to prevent the introduction of Non-EU *Choristoneura* spp. through the pathways described above. As non-EU *Choristoneura* spp. are not present in the EU and plants for planting are not the major pathway for spread, non-EU *Choristoneura* spp. do not meet the criteria to be considered as regulated non-quarantine pests.

The opinion was adopted on 28 March 2019.

7.9 WG on Agricultural Insects: Art. 29 Scientific opinion on Pest categorisation of non-EU Margarodidae. [EFSA-Q-2018-00791](#)

The Panel on Plant Health performed a pest categorisation of species in the family Margarodidae (Hemiptera: Coccoidea; Coccoidea). Ninety-seven of 107 species of Margarodidae are not known to occur in the EU. Margarodids are cosmopolitan soil dwelling species. The nymphs suck on the roots of host plants, while the adults have no mouthparts and do not feed. Some species are serious destructive pests of grape vines, sugar cane, oil palms, cotton or turf grass. The import of soil or rooted plants for planting with soil, are potential pathways for entry. Measures are available to inhibit entry. Non-European species in the genus *Margarodes* are regulated on *Vitis* plants for planting by Council Directive 2000/29/EC (Annex IIAI). Non-EU Margarodidae species were categorised into three groups. The first group includes 11 species reported as pests of crop plants that satisfy all of the criteria that are within the remit of EFSA to assess, to be regarded as Union quarantine pests. The second group includes 10 species that are not reported to cause economic damage to plants although they do feed on plants that are grown in the EU; these species do not satisfy all the criteria to be regarded as Union quarantine pests. Uncertainty exists whether species in this group could cause damage if they were introduced into the EU. The third group includes 76 species that appear restricted to climate and soil types that do not occur in the EU, feed on hosts that have limited significance in the EU or are little studied due to their lack of impact. There is no evidence that these species satisfy the criteria to be regarded as Union quarantine pests in the EU. For completeness the ten species of Margarodidae that are known to occur in the EU are named in the opinion.

The opinion was adopted on 28 March 2019.

8 Update from Scientific Committee and its Working Groups

Scientific Committee plenary took place on February 19-21. The panel adopted the draft guidance on chemical mixtures and a draft Terms of Reference on self-task activities on epidemiology, Next SC plenary is going to be on April 24 in Brussels

9 Other scientific topics for information and/or discussion

9.1 Presentation from Prof. G. Martelli, University of Bari (IT): "Viruses and virus diseases of grapevine: an overview"

Professor Giovanni Paolo Martelli, emeritus professor at University of Bari, was invited as hearing expert and member of the WG on plant viruses, to present an overview on the actual state of the art on grapevine virus

research. The presentation listed the huge variety of viruses and viroids that could affect grapevine with their peculiar symptoms, vectors, epidemiology and distribution. The presentation was followed by a short discussion on the possibility to control the vectors of some of these viruses (e.g. nematodes, mealybugs and soft scale insects).

9.2 Update on the organisation of the second European research conference on *Xylella fastidiosa*, Ajaccio (FR) 29-31 October 2019

A detailed presentation of the conference was given to the Panel members.

9.3 Trainings for Panel members; Environmental risk assessment Training 23-24 May 2019

The Panel members were briefly reminded about the environmental risk assessment training EFSA is organising in connection with the May 2019 plenary meeting. This training will take place over two days and includes a module that is tailored to the PLH topics and risk assessment methodologies.

10 Feedback from EFSA including its Working Groups: update from EFSA WGs (pest surveillance mandate: summary of PLH Network meeting on *Xylella Fastidiosa* surveillance|6-8/03/2019; horizon scanning; priority pests)

Feed Back from the 14th meeting on Network on Risk Assessment in Plant Health: Toolkit for surveillance of *Xylella fastidiosa* in the EU Member States|6-8/03/2019

On 6-7-8 of March, EFSA organised a Network meeting inviting the experts in the Member States that are involved in the planning and implementation of the pest surveys. The main objective was to share and exchange with the participants on the toolkit EFSA is preparing for a risk based and statistically sound survey design for *Xylella fastidiosa*. In addition, the participants to the meeting were introduced to the EFSA statistical tool RiBESS+, openly available on internet, for performing the sample size calculations in the context of an annual detection survey. The achievements of the meeting and the positive feedback of the attendants were briefly presented.

Horizon scanning project

The 23rd and 24th EFSA Plant Health Media Newsletters and the 3rd pilot EFSA Plant Health Scientific Newsletter were presented. The focus has been placed on the ongoing pilot phase of the scientific literature monitoring (January- June 2019). During this phase, EFSA (ALPHA, AMU, SCER Units), ANSES, a partner in the tasking grant on Horizon Scanning, and JRC are strengthening their collaboration in order to implement and updated scientific sources in the MEDISYS platform and to verify their results by searching the literature databases. During this pilot phase, feedback will be gathered from EC and MS representative in the PAFF committee on plant health to ensure that the structure and topics covered by the scientific newsletter meet the needs of the risk managers. The citrus yellow vein clearing virus (CYVCV), a new risk to citrus crops, was highlighted in the presentation and the availability of EFSA to undertake further actions was expressed to the EC.

Priority Pests

A brief overview was given to the Panel members about the state of the arts of the EFSA mandate on EU priority pests. EFSA is requested to assist the JRC in providing an indication of the potential impact and capacity of establishment of 28 pests in the Union territory at the level of NUTS2 regions. The aim of the project is support DG SANTE in the preparation of a list of Union quarantine pests which qualify also as priority pests according to Article 6(1) of the new Plant Health Law. The two-year project is set to finish in June 2019.

11 Feedback from the European Commission

Commission designates 5 reference laboratories – click [here](#) for further information.

12 AOB

Next Plenary in May is going to be only one day to accommodate the ERA training, while in June the first day starts in the afternoon in order to not overlap with SC Plenary

PLH PLENARIES 2019

Months	day & time	day & time	location
May	22 from 8:30 to 18:30	ONE DAY ONLY	PARMA EFSA-M07
June	26 (from 14 to 18)	27 (from 8:30 to 18)	PARMA EFSA-M06
September	25 (from 8:30 to 18)	26 (from 8:30 to 13)	PARMA EFSA -M07
November	20 - (from 8:30 to 18)	21 - (from 8:30 to 13)	PARMA EFSA -M07