

Xylella fastidiosa in olives trees in Brazil: survey, host susceptibility, and artificial inoculation testes

Helvécio D. Coletta-Filho

Centro de Citricultura / Inst. Agronômico
Sao Paulo State / Brazil

Nágela Safady – MsC stud.
Lavinia Farias – UG stud.
Emile Armange – UG stud
Kelly Campos – MsC tech.

Insertion in XF-ACTORS project

WP 2- Biology and genetics of relevant *X. fastidiosa* strains

Work package number	2		Lead beneficiary P4 INRA – Marie-Agnes Jacques						
Work package title			Biology and genetics of relevant <i>X. fastidiosa</i> strains						
Participant number	P1	P3	P4	P5	P9	P10	P11	P12	P13
Short name of participant	CNR	UNIBA	INRA	CSIC	ILVO	UC	IAC	NTU	UCR
Person/months per participant	15	8	43	8	40	18	17	24	24
Start month	1			End month: 42					

Task 2.1 Host range and pathogenicity of *Xf* strains relevant for EU (P1, P4, P5, P9, P11)

Task 2.2 Population genetics of *Xf* strains relevant for EU (P1, P5, P10, P11, P12, P13)

The Brazilian olive oil industry

✓ Young trees (<15 y old)

✓ Low experience with crop

✓ Cultivated at high altitudes

>700 m at sea level

↓ Temp. for flowering

↑ Humidity

✓ Unknown Disorders

Biotic and Abiotic

Fungi diseases

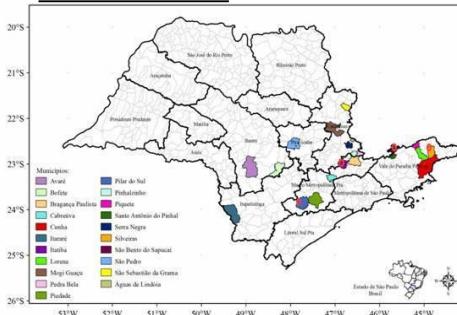
NEW OR UNUSUAL DISEASE REPORTS

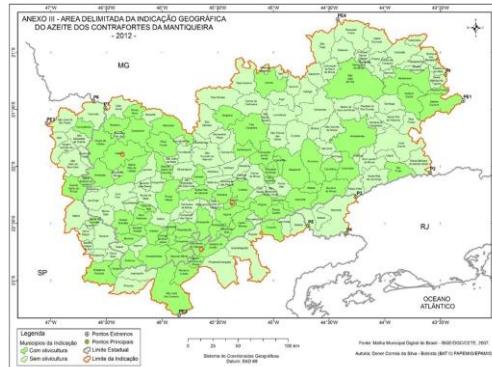
First report of olive leaf scorch in Brazil, associated with *Xylella fastidiosa* subsp. *pauca*

HELVÉCIO DELLA COLETTA-FILHO¹, CAROLINA SARDINHA FRANCISCO¹, João ROBERTO SPOTTI LOPES², ADELSON FRANCISCO DE OLIVEIRA and LUTZ FERNANDO DE OLIVEIRA DA SILVA³

¹ IAC / Centro de Citricultura Sylvio Moreira, Cordeirópolis, São Paulo, Brazil

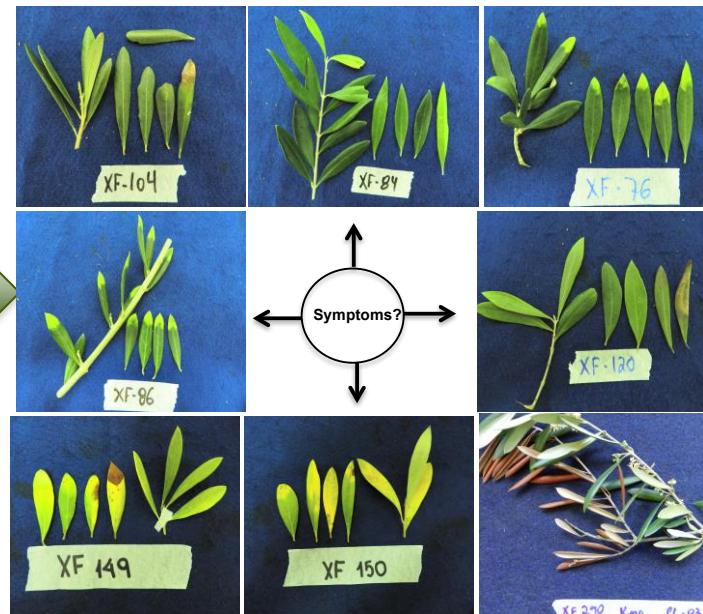
² ESALQ / USP, Dep. Entomologia e Acarologia, Piracicaba, São Paulo, Brazil

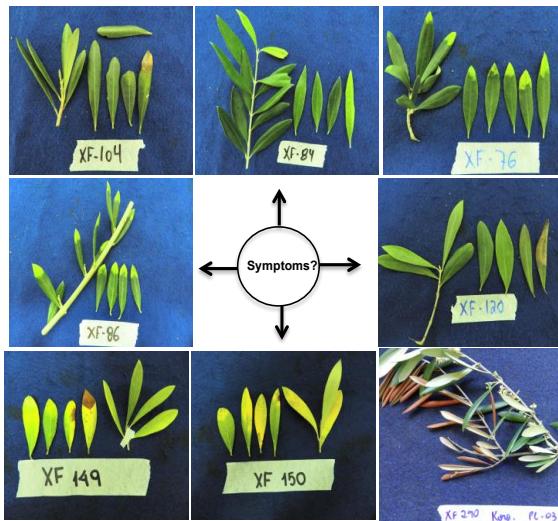

³ EPAMIG, Maria da Fé, Minas Gerais, Brazil


Survey: Spatial distribution of XF and OQD

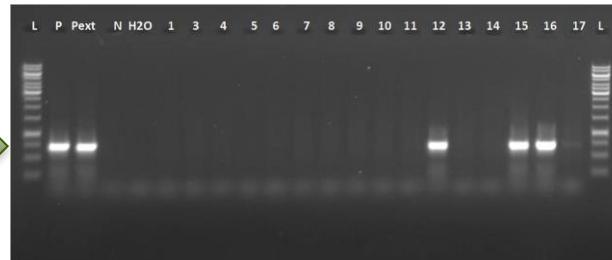
Olive orchards areas

Sao Paulo St


Minas Gerais St


Samples collected

Register by photos


Survey: Spatial distribution of XF and OQD

DNA extraction

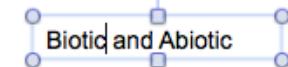
PCR – RST31/RST33 primers

Isolation on BCYE medium

✓ Survey

✓ What specific symptoms are associated?

✓ Low experience with crop


✓ Cultivated at high altitudes

>700 m at sea level

↓ Temp. for flowering

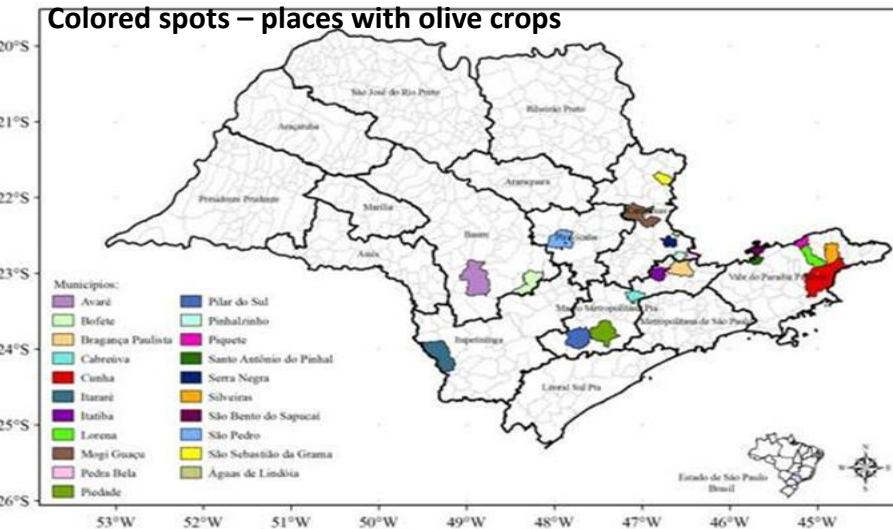
↑ Humidity

✓ Unknown Disorders

Survey: Spatial distribution of XF and OQD

✓ What specific symptoms are associated?

82% PCR +



No Xf positive

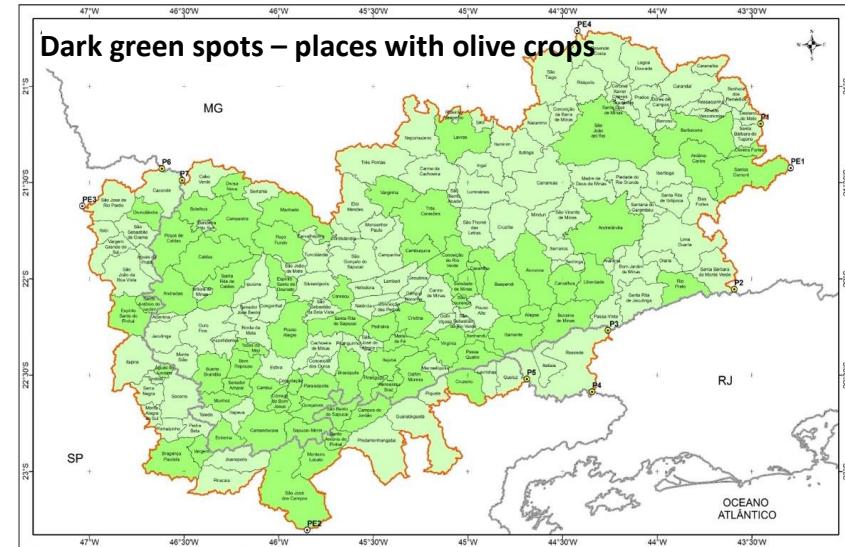
Survey: Spatial distribution of XF and OQD

Origin (Altitude)	Sampling Date	Total	Positive
<i>Sao Paulo State</i>			
Area 1 (1512m)	Apr-16	05 (05)	
	Apr-17	07 (02)	
	Aug-17	10 (05)	
			54%
Area 2 (700m)	Nov-15	08 (03)	
	Dec-15	08 (06)	
	Sep-15	09 (03)	
			48%
Area 3 (883m)	May-17	10 (02)	
	Sep-17	08 (01)	
			17%
Area 4 (750m)	Apr-17	19 (03)	
			16%
Area 5 (615m)	Dec-15	05 (05)	
			100%

Olive orchards areas

≈400 hectares – São Paulo State

- XF and disease plants were found in all sampled orchards
- Not all plants with regular scorched leaves were PCR positive for XF


Survey: Spatial distribution of XF and OQD

Origin (Altitude)	Sampling Date	Total	Positive
-------------------	---------------	-------	----------

Minas Gerais State

Area 1 (1320m)	Nov-15	11 (01)	
	Jan-17	74 (64)	
	Feb-17	19 (11)	
	Apr-17	10 (07)	
	Apr-17	12 (05)	
	Apr-17	06 (00)	
74%			
Area 2 (1170m)	Sep-16	04 (04)	
	Oct-17	08 (02)	
	50%		
Area 3 (1166m)	Apr-17	02 (00)	
	Aug-17	04 (00)	
	Oct-17	11 (05)	
	29%		
Area 4 (1440m)	Oct-17	12 (02)	
	12%		

Olive orchards areas

≈600 hectares – MG State

- XF and disease plants were found in all sampled orchards
- Not all plants with regular scorched leaves were PCR positive for XF

Host susceptibility: different olives varieties

Survey of *Xf* in Germoplasm collection naturally infected by *Xf*

- ✓ 43 off 50 (86%) olive varieties were PCR positive (Pos) for *Xf*.
- ✓ The majority of PCR-Pos plants were asymptomatic (no leaves scorching), yet.
- ✓ *Xf* was isolate from 21 off 43 PCR-Pos plants.

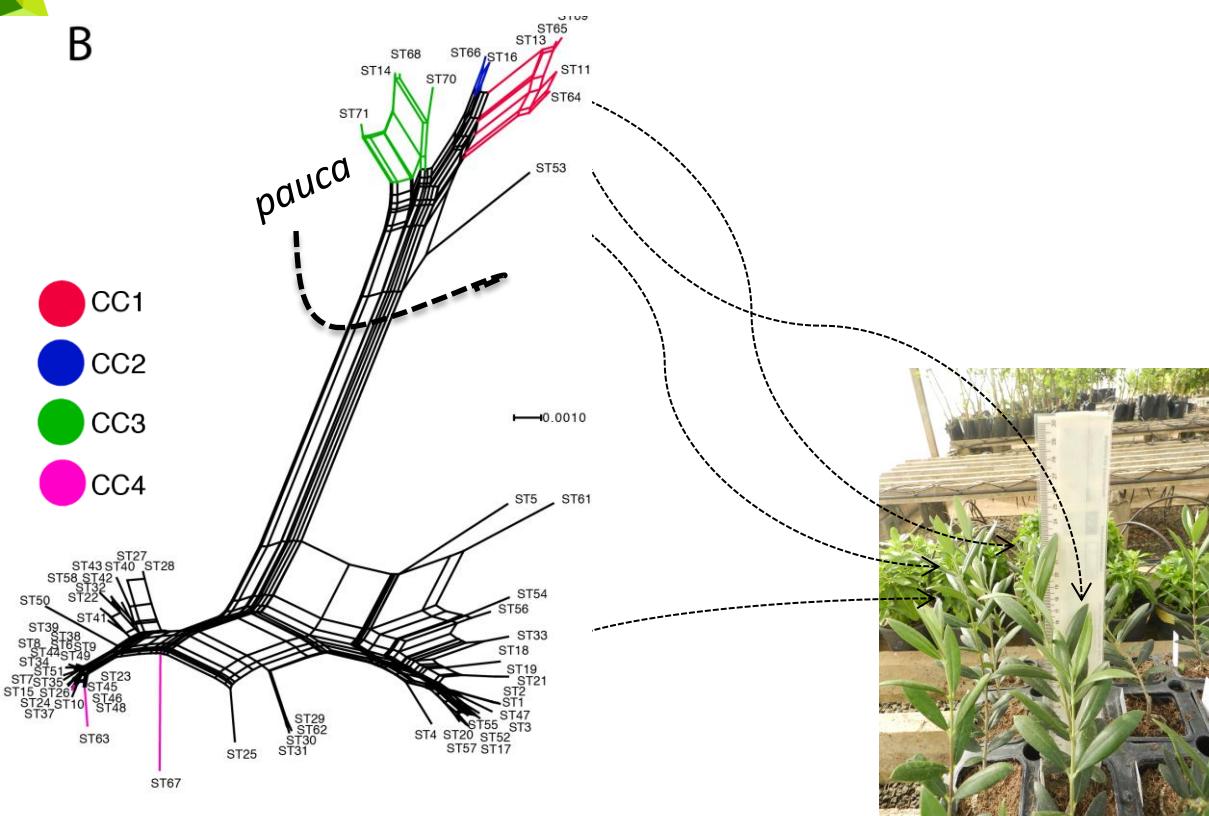
Germoplasm collection

Genotype	PCR	Culturing	Genotype	PCR	Culturing
Arbequina	Pos	Pos	JB-1	Pos	Pos
Alto D'ouro	Pos	Pos	JB-1 A2	Pos	---
Alto D'ouro A2	Pos	---	Koronake	Pos	Pos
Arbequina	Pos	Pos	Leccino	Pos	---
Arbosana	Pos	---	Lechin de Sevilha	Pos	Pos
Ascolano 315	Pos	Pos	Manzanilla 215	Pos	Pos
Cerignola	Pos	---	Manzanilla 234	Pos	---
Clone 0025	Pos	---	Manzanilla Denite	Pos	---
Clone 0080	Pos	---	Manzanilla Reina	Pos	---
Clone 113	Pos	---	Manzanilla Reina A'	Pos	---
Coratina	Pos	Pos	Maria da Fé	Pos	Pos
Cormicabra	Pos	Pos	Mission	Pos	Pos
Frantoio	Pos	---	Mission 293	Pos	---
Galega	Pos	---	Mistura	Pos	---
Galega A2	Pos	Pos	Moraiolo	Pos	---
Galega A3	Pos	---	Penafiel SP	Pos	Pos
Grappolo 541	Pos	Pos	Picual	Pos	---
Grappolo 550	Pos	---	Ropades 393	Pos	Pos
Grappolo 561	Pos	---	Ropades 398	Pos	---
Grappolo 575	Pos	---	Saialima Gloub	Pos	---
Grousse Alberkan 395	Pos	---	Santa Catalina	Pos	---
Salome 448	Neg	---	Tafahi 391	Pos	---
Negroa	Neg	---	Empeltre	Neg	---
Zalmate 0012	Neg	---	Gordal de Sevilha	Neg	---
Grappolo 553	Neg	---	Barnea	Neg	---

Host susceptibility: different olives varieties

Next steps

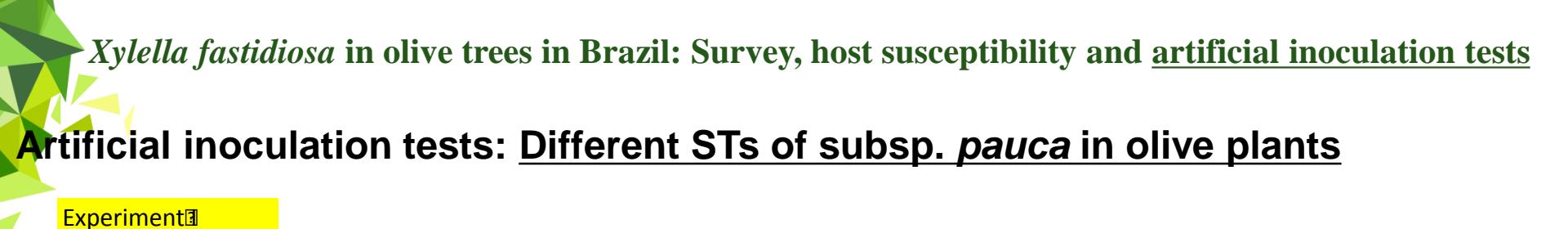
✓ PCR-Neg plants have been checked for *Xf*


✓ PCR-Pos but asymptomatic plants have been checked for specific leaves scorching associated symptoms.

Germoplasm collection

Genotype	PCR	Culturing	Genotype	PCR	Culturing
Arbequina	Pos	Pos	JB-1	Pos	Pos
Alto D'ouro	Pos	Pos	JB-1 A2	Pos	---
Alto D'ouro A2	Pos	---	Koronake	Pos	Pos
Arbequina	Pos	Pos	Leccino	Pos	---
Arbosana	Pos	---	Lechin de Sevilha	Pos	Pos
Ascolano 315	Pos	Pos	Manzanilla 215	Pos	Pos
Cerignola	Pos	---	Manzanilla 234	Pos	---
Clone 0025	Pos	---	Manzanilla Denite	Pos	---
Clone 0080	Pos	---	Manzanilla Reina	Pos	---
Clone 113	Pos	---	Manzanilla Reina A	Pos	---
Coratina	Pos	Pos	Maria da Fé	Pos	Pos
Cormicabra	Pos	Pos	Mission	Pos	Pos
Frantoio	Pos	---	Mission 293	Pos	---
Galega	Pos	---	Mistura	Pos	---
Galega A2	Pos	Pos	Moraiolo	Pos	---
Galega A3	Pos	---	Penafiel SP	Pos	Pos
Grappolo 541	Pos	Pos	Picual	Pos	---
Grappolo 550	Pos	---	Ropades 393	Pos	Pos
Grappolo 561	Pos	---	Ropades 398	Pos	---
Grappolo 575	Pos	---	Saialima Gloub	Pos	---
Grousse Alberkan 395	Pos	---	Santa Catalina	Pos	---
Salome 448	Neg	---	Tafahi 391	Pos	---
Negroa	Neg	---	Empeltre	Neg	---
Zalmate 0012	Neg	---	Gordal de Sevilha	Neg	---
Grappolo 553	Neg	---	Barnea	Neg	---

Artificial inoculation tests: Different STs of subsp. *pauca* in olive plants


B

Needle inoculation

3x weekly \cong 10 μ L / time

Total 30 μ L of 10^7 UFC/ml

Artificial inoculation tests: Different STs of subsp. *pauca* in olive plants

Experiment

Strain/ST	Host/Origin	60 DAI	120 DAI	360 DAI
MF01/ST16 CC2	PCR <i>Olea europaea</i>	3/5	2/5	2/5
	Symptoms	0/5	0/5	0/5
9a5c/ST11 CC1	PCR <i>Citrus sinensis</i>	0/5	0/5	0/5
	Symptoms	0/5	0/5	0/5
PR8X/ST71 CC3	PCR <i>Prunus domestica</i>	0/5	1/5	1/5
	Symptoms	0/5	0/5	0/5

CC2: (ST16) - Infection but no symptoms under greenhouse, so far!

CC3: (ST71) ?

Artificial inoculation tests: Different STs of subsp. pauca in olive plants

Experiment

Strain ST	Host ^{Origin}	60 DAI	120 DAI	360 DAI
MF01 ^{ST16} CC2	PCR <i>Olea europaea</i>	2/3	2/3	2/3
	Symptoms	0/3	0/3	0/3
COF1.9 ^{ST16} CC2	PCR <i>Coffea arabica</i>	3/3	2/3	2/3
	Symptoms	0/3	0/3	0/3
COF9 ^{ST66} CC2	PCR <i>Coffea arabica</i>	2/3	1/3	2/3
	Symptoms	0/3	0/3	0/3

CC2 (STs16 and 66) - Infection but no symptoms under greenhouse, yet!

Artificial inoculation tests: Different STs of subsp. *pauca* in olive plants

Under development experiments

- ✓ Greenhouse with control of temperature
 - Minimize the temperature range
- ✓ Using hosts with different size (age)

Using different strains in the same plant.

- each strain has been inoculated in specific branch

Artificial inoculation tests: tobacco response to *X.f.* subsp *pauca* strains

Artificial inoculation tests: tobacco response to *X.f.* subsp *pauca* strains

More details in Poster session.....

Characterization of *Nicotiana tabacum* as an
alternative host for *Xylella fastidiosa* subsp. *pauca*

Pereira W.E.L¹., Fischer E.R¹., Souza-Neto R.R¹., Saldarelli P²., Saponari M²., Coletta-Filho,
H.D. ¹, De Souza, A.A. ¹

Conclusion:

- ✓ *Xf* is spread over the majority of olive orchards in Southeast Brazil (Sao Paulo and Minas Gerais States).

In tropical clime like Brazil, olive leaves scorching symptoms must be more detailed to be used as a key of *Xf* infection .

Xf PCR-positive samples ranged from: 16 to 100% (SP state)
12 to 74% (MG state) .

- ✓ Samples collect in summer time (Dez – Fev) seem to be more infected

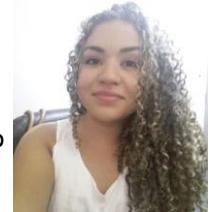
Conclusion:

- ✓ All commercial olive varieties were found infected by *Xf* in field with high inoculum pressure.
- ✓ Successful artificial inoculations were obtained only with strains (ST) from CC2 of *X. fastidiosa* subsp. *pauca*, so far.

Conclusion:

- ✓ *Xf* strains (ST) shown variable virulence (ST13 > ST16 > ST53) using tobacco as model plant.
- ✓ The small dark spot lesions on leaves, like described in literature, was observed only for 9a5c (ST13) tobacco-inoculated plants
- ✓ The tobacco variety “RP1” (local selection) was more sensitive to inoculation with all *Xf* strains and shown more clear phenotype compared to “Havana”.

Thanks for your attention


Acknowledgments:

Und grad stud
Emile

Und grad stud
Lavinia

MsC Stud
Nágela

MsC - Tech
Kelly

