

My view on Good Quality Data

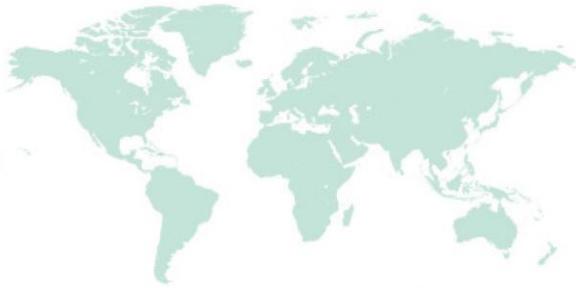
José Julio Ortega

SETAC Europe
Immediate-Past President
Executive Committee Member

Spanish National Research Council (Irnase-CSIC)
Senior Researcher

jjortega@irnase.csic.es

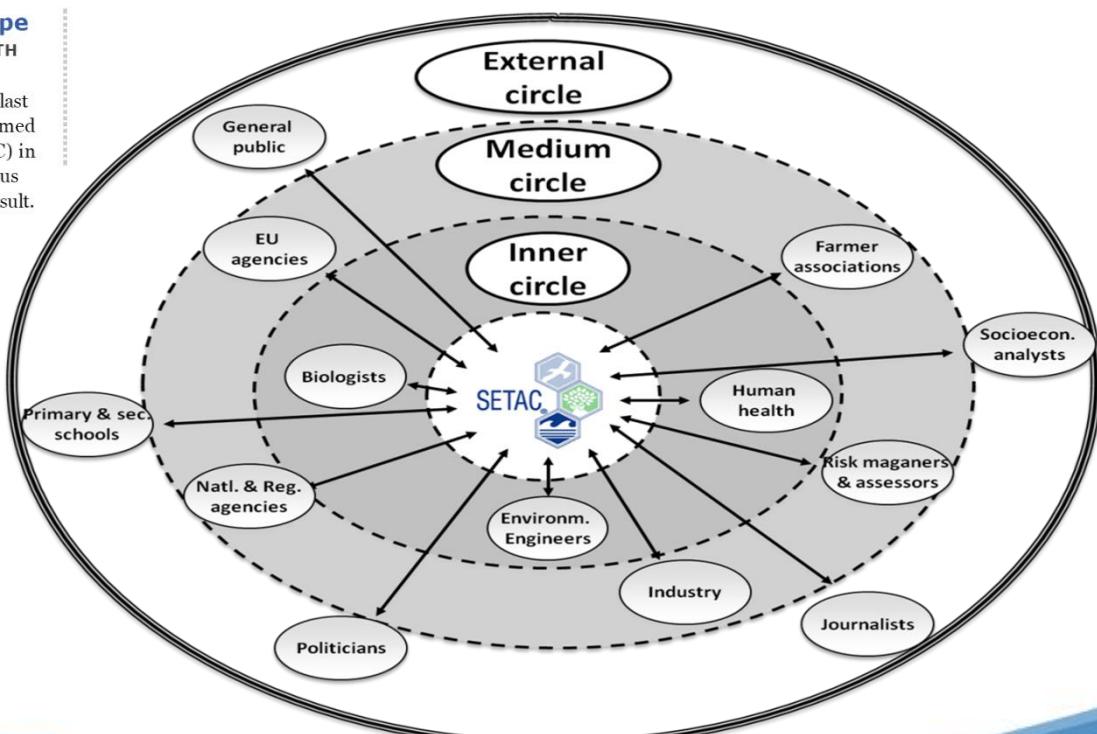
promotes.....


- the advancement and application of **scientific research** related to contaminants and other stressors in the environment

- the use of science in environmental **policy and decision-making**

- **education** in the environmental sciences

17 March 2016
Volume 17 Issue 2



[GLOBE ARCHIVE](#) – [CONTACT US](#) – [CONTRIBUTE TO GLOBE](#)

Revisiting Communication Strategies at SETAC Europe

José-Julio Ortega-Calvo, IRNAS-CSIC, and Thomas-Benjamin Seiler, RWTH Aachen University

SETAC Europe started a process for strengthening communication strategies last September during the long-range planning (LRP) meeting with the newly formed **SETAC Europe Advisory Group on Science and Risk Communication (SCIRIC)** in Antwerp, Belgium. Following this dialogue, the participants achieved consensus on several major initiatives and developed actions for implementation as a result.

ACS Publications
Most Trusted. Most Cited. Most Read.

www.acs.org

Ortega-Calvo et al.
ES&T, 2015, 49, 10255-10264

ENVIRONMENTAL Science & Technology

Feature

pubs.acs.org/est

From Bioavailability Science to Regulation of Organic Chemicals

Jose-J. Ortega-Calvo,^{*,†} Joop Harmsen,[‡] John R. Parsons,[§] Kirk T. Semple,^{||} Michael D. Aitken,[¶] Charmaine Aja,[#] Charles Eadsforth,[▽] Malyka Galay-Burgos,[○] Ravi Naidu,[◆] Robin Oliver,[¶] Willie J. G. M. Peijnenburg,^{∞★} Jörg Römbke,[⊗] Georg Streck,[■] and Bram Versonnen[#]

^{*}Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Apartado 1052, E-41080-Seville, Spain

[†]Alterra-Wageningen UR, P.O. Box 47, 6700 AA Wageningen, The Netherlands

[§]Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, P.O. Box 94240, 1092 GE Amsterdam, The Netherlands

^{||}Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, United Kingdom

[¶]Department of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, 27599-7431 North Carolina, United States

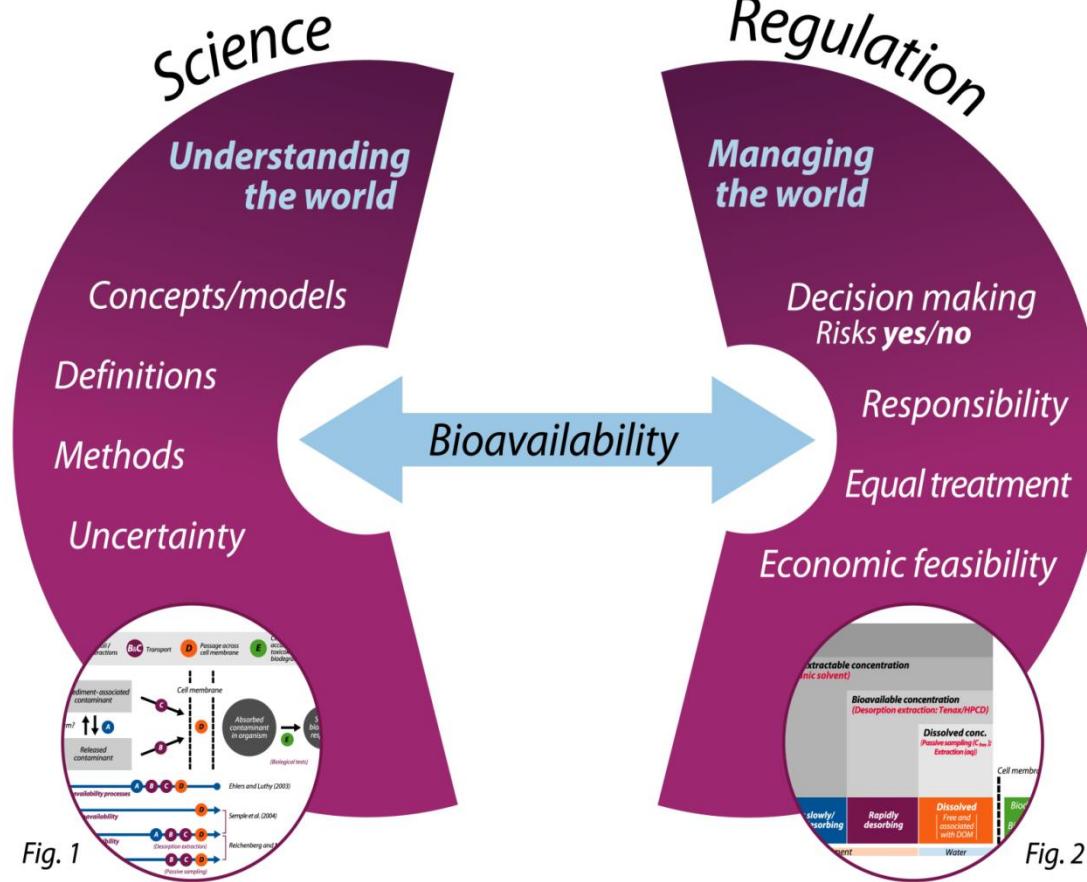
[#]European Chemicals Agency (ECHA), Annankatu 18, 00120 Helsinki, Finland

[∞]Shell Health, Brabazon House, Threapwood Road, Concord Business Park, M22 9PS Manchester, United Kingdom

[○]European Centre for Ecotoxicology and Toxicology of Chemicals (ECETOC), 2 Avenue E. van Nieuwenhuysse (Bte 8), B-1160 Brussels, Belgium

[◆]University of Newcastle and CRC CARE, University Drive, NSW 2308 Callaghan, Australia

[★]Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, United Kingdom


[∞]National Institute of Public Health and the Environment (RIVM), Center for Safety of Substances and Products, 3720 BA Bilthoven, The Netherlands

[★]Institute of Environmental Sciences (CML), Leiden University, 2300 RA Leiden, The Netherlands

[⊗]ECT Oekotoxikologie GmbH, Böttgerstr. 2-14, D-65439 Flörsheim, Germany

[■]European Commission, DG for Internal Market, Industry, Entrepreneurship and SMEs, REACH Unit, B-1049 Bruxelles, Belgium

Bringing different worlds together

Open Call Collection OC-2016-2

Proposal Reference OC-2016-2-21324

Title: From Bioavailability Science to Regulation of Organic Chemicals

Acronym: Bio-AV

Summary

The bioavailability of organic chemicals (persistent organic pollutants or POPs, pesticides, biocides, pharmaceuticals and others) in soil and sediment is an important area of scientific research. However, this area remains only partially recognized by regulators and industries working in the environmental sector. Based on the positive experiences from the previous implementation with metals, regulators have recently started to consider bioavailability within retrospective risk assessment (rRA) and remediation frameworks for organic chemicals. In this regard, realistic decision-making in terms of hazard definition and priority considerations that result in optimised cost allocation while ensuring protection of the environment and public health can be achieved. However, the implementation of bioavailability for rRA remains difficult because scientific developments on bioavailability do not always translate into practical approaches for regulators.

The human, material and economic resources needed to perform bioavailability research already exist within Europe. In this COST Action, different disciplines will be integrated to create a 'virtual Institute', where the strategic aspects of bioavailability science and regulation are covered. The Action is divided into four interactive working groups focusing on (i) implementation, (ii) methodologies, (iii) environmental risks from regulatory decisions, and (iv) remediation. Regular meetings, workshops, training schools, short-term scientific missions and a robust dissemination plan will enable a platform for research synergies and communication with relevant stakeholders. The goal is to provide an integrated approach to enable the implementation of existing bioavailability concepts and methods into environmental risk assessment and regulation, including parameters and modelling for their innovative application and standardization.

Key Expertise needed for evaluation

Earth and related Environmental sciences
Environment chemistry

Keywords

Bioavailability
Regulation
Chemicals
Risk
Communication

COST is supported by
The EU Framework Programme
Horizon 2020

COST Association
Avenue Louise 140 | 1050 Brussels, Belgium
t: +32 (0)2 533 3800 | f: +32 (0)2 533 3890
office@cost.eu | www.cost.eu

COST - Network Bioavailability

- **Retrospective RA & Regulation**
- **52 proponents, 17 countries**
- **Tripartite (ACAD, IND, REG),
EFSA & ECHA EoIs**
- **Networking (Working Groups,
Workshops, Courses), 4 years**
- **Decision June 2017**
- **B Plan: Interest Group SETAC,
ECETOC**

Data Quality & RA: Data should be “adequate”

Adequacy = reliability + relevance

Reliability = inherent quality of a study

Relevance = data and tests are appropriate for a particular hazard or risk characterization

Courtesy of Marlene Ågerstrand, ACES, Stockholm University

CRED-project

Criteria for Reporting and Evaluating ecotoxicity Data

1. Developed the CRED-evaluation method with Dutch RIVM, Swiss Centre for Applied Ecotoxicology and Swiss Eawag
2. 75 risk assessors evaluated ecotoxicity studies using
 - Klimisch et al. (1997)
 - CRED-evaluation method
3. Comparison of results and refinement of the CRED-evaluation method
4. Developed the CRED-reporting recommendations for authors of peer-reviewed studies

Courtesy of Marlene Ågerstrand, ACES, Stockholm University

Klimisch

- Recommended for ecotoxicity and toxicity studies in Europe and USA
- Few reliability criteria
- No relevance criteria
- No additional guidance
- Standard tests are favoured
- Developed by BASF

CRED

- For aquatic ecotoxicity studies
- Developed from OECD tests and other evaluation methods
- Reliability and relevance criteria
- Additional guidance
- Does not favour standard studies
- Developed by researchers and risk assessors

Courtesy of Marlene Ågerstrand, ACES, Stockholm University

US Environmental Protection Agency

- These guidance documents provide frameworks for considering data quality objectives prior to data collection, such as:
 - Identify problems and decisions
 - Identify inputs to the decision
 - Define the boundary of the study area
 - Develop decision rules
 - Specify tolerance limits
 - Establishing background data

Courtesy of Jane Staveley, Exponent, USA

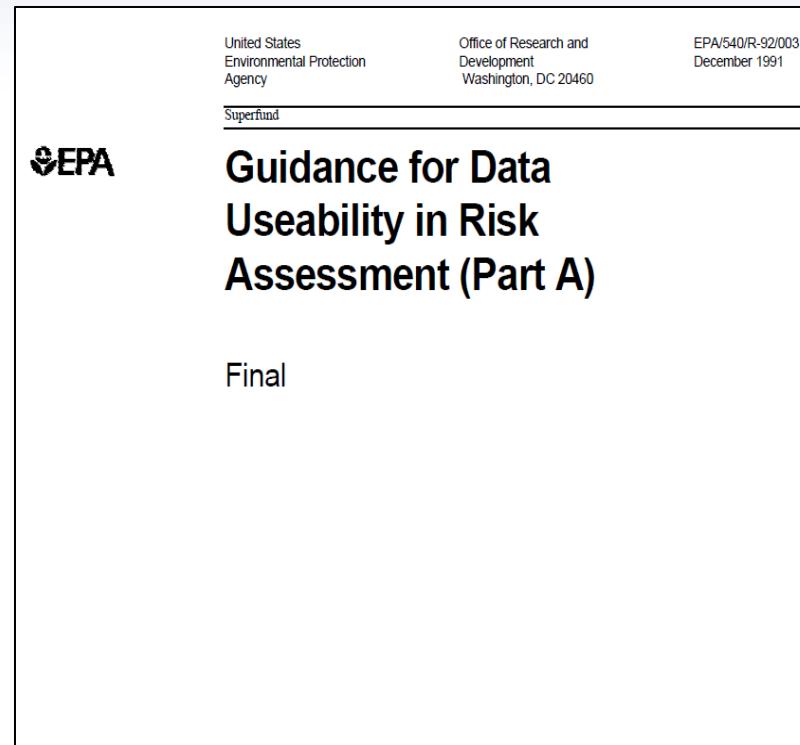
GUIDANCE FOR THE DATA QUALITY OBJECTIVES PROCESS

EPA QA/G-4

United States Environmental Protection Agency
Quality Assurance Management Staff
Washington, DC 20460

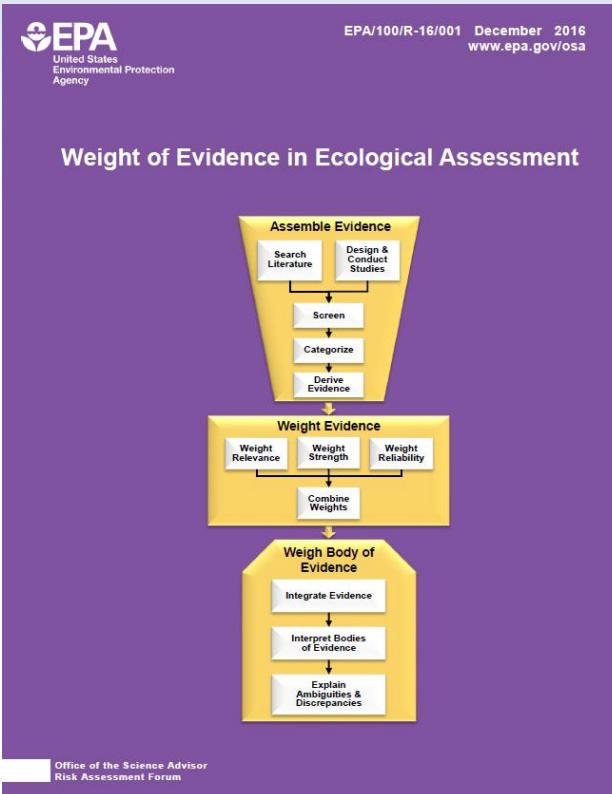
FINAL
SEPTEMBER 1994

EPA 540-R-01-003
OSWER 9285.7-41
September 2002


EPA

Guidance for Comparing Background and Chemical Concentrations in Soil for CERCLA Sites

US Environmental Protection Agency



- Once data are collected, this guidance discusses elements of data quality for use of data in risk assessment
- For example:
 - Data sources
 - Detection limits
 - Data validation
 - Use of background data

Courtesy of Jane Staveley, Exponent, USA

Weight of Evidence Considerations

- At the end of the risk assessment, the data are then evaluated again to compare the weight of evidence (WOE) to evaluate multiple lines of evidence, especially if conflicting results are seen. This guidance speaks of issues in terms of:
 - **Relevance** – how close is the study to the problem at hand?
 - **Strength** – does the study show a strong positive or negative relationship?
 - **Reliability** – are sample size and statistical analysis acceptable?

Courtesy of Jane Staveley, Exponent, USA

Actions for increased regulatory awareness and impact

1. Identify applicable legislation and guidance documents
2. Identify relevant regulatory procedures and their outcomes
3. Identify relevant assessments from non-regulatory stakeholders
4. Evaluate chemical assessments
5. Report studies in a way that enables regulatory use
6. Place academic studies in a regulatory context
7. Submit studies and comment on current assessments and processes
8. Create a dialogue with stakeholders
9. Write for policy makers
10. Train the next generation

Courtesy of Marlene Ågerstrand, ACES, Stockholm University

CONCLUSIONS

- Tripartite communication is important – a role for SETAC
- Reliability and relevance are not the same thing
- The way forward: regulatory exposure of academic researchers

SETAC resources on data quality & RA

- Papers at SETAC Journals (ET&C and IEAM). Examples:
 - Moermond C, Kase R, Korkaric M, Ågerstrand M. 2015. "CRED - Criteria for Reporting and evaluating ecotoxicity Data." *Environmental Toxicology and Chemistry* 35: 1297-1309.
 - Moermond CTA, Beasley A, Breton R, Junghans M, Laskowski R, Solomon K, Zahner H. 2017. Assessing the reliability of ecotoxicological studies: An overview of current needs and approaches. *Integrated Environmental Assessment and Management*. DOI: 10.1002/ ieam.1870. 3.
 - Ruden C, Adams J, Ågerstrand M, Brock T, Poulsen V, Schlekat C, Wheeler J, Henry T. 2017. Assessing the relevance of ecotoxicological studies for regulatory decision-making. *Integrated Environmental Assessment and Management*. DOI: 10.1002/ieam.1846.
- SETAC Workshops & Meetings:
 - Workshop "**Closing the Gap Between Academic Research and Regulatory Risk Assessment of Chemicals**", SETAC Glasgow Annual Meeting. 2013. <http://glasgow.setac.eu/>
 - SETAC Pellston Workshop "**Improving the Usability of Ecotoxicology in Regulatory Decision-Making**". 2015. <https://www.setac.org/?page=SETACWorkshopSum>
- SETAC Europe Certified Risk Assessors
 - Course "**Evaluation of ecotoxicity and degradation studies for use in environmental risk assessment of chemicals**". SETAC Brussels Annual Meeting. 2016. <https://certification.setac.org/courses/course-list/>
- SETAC Interest Groups
 - Global Ecological risk assessment IG. <https://www.setac.org/group/IGEcoRisk>

Acknowledgements

Chairs of SETAC Pellston Workshop “Improving the Usability of Ecotoxicology in Regulatory Decision-Making”

Marlene Ågerstrand (Stockholm University, SE), Jane Staveley (Exponent, USA)

Members at SETAC Europe Council

Anne Alix (Dow Agrochemicals, UK- SE President), Michelle Bloor (University of Portsmouth, UK), Jörg Römbke (ECT Oekotoxikologie GmbH, DE), Patrick Kabouw (BASF, DE), Annegaike Leopold (Calidris environment bv, NED), Karel De Schamphelaere (Ghent University, BE), Bart Bosveld (SETAC Europe Executive Director), Roel Evens (SETAC Europe Scientific Project Manager)

Members at SETAC World Council

Kurt Maier (SETAC President), Charles Menzie (SETAC Global Executive Director), David Philips (Fera Science Ltd., UK)

Environmental Toxicology and Chemistry Journal

Allen Burton (Chief Editor)

**SETAC is looking forward
to interact with other
stakeholders here in EFSA!**

**Thank you for your
attention**

