

The use of bioinformatic analysis in support of HGT from plants to microorganisms

Meeting with applicants

Parma, 26 November 2015

WHY WE NEED TO CONSIDER HGT IN GM PLANT RA

- Directive 2001/18/EC
 - As general obligation for the Member States and European Commission (EC), the Directive 2001/18/EC requests the assessment of gene transfer. This should be conducted in line with the principles for the ERA laid down in Annex II
- Implementing Regulation 503/2013
 - The implementing regulation requests to assess the probability of horizontal gene transfer (HGT) from the product to human, animals and micro-organisms

WHY WE NEED TO CONSIDER HGT IN GM PLANT RA

HGT is one of the areas of concern for the ERA

- HGT from GM plants to microorganisms
 - HGT refers to the transfer of a DNA sequence from a GM plant to a microorganism and its stable integration into the recipient genome

DONOR
(GM plant)

RECIPIENT
(Microorganism)

HOW THE POTENTIAL FOR HGT IS ASSESSED

EFSA Guidance 2010 (ERA) implements the 6 steps approach for ERA

Plant to micro-organisms gene transfer

Step 1: Problem formulation

- problem formulation should focus on (among other)
 - “*detailed molecular characterisation of the DNA sequences inserted in the plant*”
 - “*presence of inserted plant DNA sequences showing similarities with DNA sequences from relevant microbial recipients*”

HOW THE POTENTIAL FOR HGT IS ASSESSED

How can the similarity between the GM event and the microbial genomes be evaluated?


```
graph TD; A[Narrative description] --> B[Bioinformatic analysis]
```

- Narrative description**
 - qualitative
 - useful
 - no longer in line with available tools and with the current knowledge
 - not reproducible
 - error prone
- Bioinformatic analysis**
 - quali-quantitative
 - accurate
 - reproducible
 - easily updatable
 - clear thresholds for the sufficient similarity to support homologous recombination (HR) can be posed on the basis of experimental data

Bioinformatic analysis is the most efficient way to evaluate the extent of similarity between GM event sequences and microbial genomes

AIM AND CONTENT OF THE NOTE TO THE GD

Aim and content of the explanatory note

- to expand on the scientific rationale for using the bioinformatic analyses to support the assessment of the potential for HGT
- to provide more detailed recommendations on how to perform such analyses
 - description of the query sequences
 - algorithms and parameters
 - sequence databases
 - length and sequence identity

CONTENT OF THE NOTE TO THE GUIDANCE

- the key role of HR in HGT from plant to microorganisms
- efficient homologous recombination depends on nucleotide sequence identity (% identity + length)
 - a lower HGT rate is expected in case of sequence divergences
- a lower HGT rate is expected in case of longer non-homologous insert.
 - a 10^{-1} reduction was observed in case of increase from 1 to 2kb of the non-homologous insert.
 - no recombination was detected in case of a 6kb non-homologous insert, flanked by 1kb homologous sequences

CONTENT OF THE NOTE TO THE GUIDANCE

- Bioinformatic analyses are considered necessary to:
 - estimate the possibility of HGT facilitated by double HR events
 - perform a proper problem formulation, including hazard identification
 - identify any hazard that may be associated with the GM sequences by informing on similarity with microbial sequences encoding known functions

CONTENT OF THE NOTE TO THE GUIDANCE

- Recommendations to perform the bioinformatic analyses
 - **query**: full insert (flanking regions not to be included)
 - 'filler DNA' can be interspersed in the vicinity of the full/main insert (e.g. in case of particle bombardment or PEG-mediated transformation). These stretches should be part of the analysis
 - **algorithm**: local alignment (e.g. BLAST or FASTA)
 - **parameters**: default settings should be used, except for the low complexity filter that should be 'off'. Any deviation from these recommendations should be indicated and justified
 - **sequence databases**:
 - bacteria and Archaea
 - sequence patents and sequence vectors
 - **threshold values for reporting**:
 - All sequences with at least **95% identity** over a **length of 200 bp**