

1 DRAFT SCIENTIFIC OPINION

2 **Guidance on the scientific requirements for health claims related to** 3 **antioxidants, oxidative damage and cardiovascular health¹**

4 **EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA)^{2,3}**

5 European Food Safety Authority (EFSA), Parma, Italy

6 **SUMMARY**

7 The European Food Safety Authority (EFSA) asked the Panel on Dietetic Products, Nutrition and
8 Allergies (NDA) to draft guidance on scientific requirements for health claims related to antioxidants,
9 oxidative damage and cardiovascular health. This draft guidance has been drawn from scientific
10 opinions of the NDA Panel on such health claims. Thus, this guidance document represents the views
11 of the NDA Panel based on the experience gained to date with the evaluation of health claims in these
12 areas. It is not intended that the document will include an exhaustive list of beneficial effects and
13 studies/outcome measures which are acceptable. Rather, it presents examples drawn from evaluations
14 already carried out to illustrate the approach of the Panel, as well as some examples which are
15 currently under consideration within ongoing evaluations. This draft guidance document was
16 endorsed by the NDA Panel on 25 March 2011, and is released for public consultation from
17 26 April 2011 to 31 August 2011.

18 **KEY WORDS**

19 Health claims, scientific requirements, antioxidants, oxidative damage, cardiovascular health.

20

¹ On request from EFSA, Question No EFSA-Q-2010-01182, endorsed for public consultation on 25 March 2011.

² Panel members: Carlo Agostoni, Jean-Louis Bresson, Susan Fairweather-Tait, Albert Flynn, Ines Golly, Hannu Korhonen, Pagona Lagiou, Martinus Løvik, Rosangela Marchelli, Ambroise Martin, Bevan Moseley, Monika Neuhauser-Berthold, Hildegard Przyrembel, Seppo Salminen, Yolanda Sanz, Sean (J.J.) Strain, Stephan Strobel, Inge Tetens, Daniel Tomé, Hendrik van Loveren and Hans Verhagen. Correspondence: nda@efsa.europa.eu

³ Acknowledgement: The Panel wishes to thank for the preparatory work on this scientific opinion the members of the Working Group on Claims: Carlo Agostoni, Jean-Louis Bresson, Susan Fairweather-Tait, Albert Flynn, Ines Golly, Marina Heinonen, Hannu Korhonen, Martinus Løvik, Ambroise Martin, Hildegard Przyrembel, Seppo Salminen, Yolanda Sanz, Sean (J.J.) Strain, Inge Tetens, Hendrik van Loveren and Hans Verhagen. The members of the Claims Sub-Working Group on Cardiovascular Health/Oxidative Stress: Antti Aro, Marianne Geleijnse, Marina Heinonen, Ambroise Martin, Wilhelm Stahl and Henk van den Berg.

Suggested citation: EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA); Draft guidance on the scientific requirements for health claims related to antioxidants, oxidative damage and cardiovascular health released for public consultation. EFSA Journal 20xx;x(x):xxxx. [12 pp.]. doi:10.2903/j.efsa.20NN.NNNN. Available online: www.efsa.europa.eu/efsjournal

21 TABLE OF CONTENTS

22	Summary	1
23	Table of contents	2
24	Background as provided by EFSA	3
25	Terms of reference as provided by EFSA	3
26	Assessment	4
27	1. Introduction	4
28	2. General considerations	5
29	2.1. Beneficial physiological effects	5
30	2.2. Studies/outcome measures appropriate for substantiation of claims	5
31	3. Antioxidant properties, antioxidant status, antioxidant defence	6
32	3.1. Claims on antioxidant properties of foods	6
33	3.2. Claims on antioxidant status and antioxidant defence	6
34	3.3. Claims on the protection of cells from premature ageing	7
35	4. Oxidative damage, including photo-oxidative (UV-induced) damage	7
36	4.1. Claims on the protection of body cells and molecules (i.e. DNA, proteins and lipids) from 37 oxidative damage, including photo-oxidative (UV-induced) damage	7
38	4.1.1. Oxidative damage to proteins	7
39	4.1.2. Oxidative damage to lipids	8
40	4.1.3. Oxidative damage to DNA	8
41	5. Cardiovascular health	9
42	5.1. Claims related to changes in the blood lipid profile	9
43	5.1.1. Claims related to blood LDL-cholesterol concentrations	9
44	5.1.2. Claims related to blood HDL-cholesterol concentrations	9
45	5.1.3. Claims related to blood concentrations of triglycerides	10
46	5.2. Claims on the reduction of blood pressure	10
47	5.3. Claims on endothelial function	10
48	5.4. Claims on reduced platelet aggregation	10
49	5.5. Claims on homocysteine	11
50	5.6. Claims on cardiovascular health	11
51	5.7. Disease risk reduction claims	11
52	Conclusions	11
53	Glossary and Abbreviations	12
54		
55		

56 **BACKGROUND AS PROVIDED BY EFSA**

57 Regulation (EC) No 1924/2006⁴ harmonises the provisions that relate to nutrition and health claims,
58 and establishes rules governing the Community authorisation of health claims made on foods.
59 According to the Regulation, health claims should only be authorised for use in the Community after a
60 scientific assessment of the highest possible standard has been carried out by EFSA.

61 EFSA and its NDA Panel have been engaging in consultation with stakeholders, and have published
62 guidance on scientific substantiation of health claims, since 2007⁵. Most recently, a briefing document
63 on scientific evaluation of health claims was published for consultation in April 2010, followed by a
64 technical meeting with experts from the food industry, Member States and the European Commission
65 in Parma, in June 2010⁶.

66 Based on experiences gained with the evaluation of health claims and to further assist applicants in
67 preparing and submitting their applications for the authorisation of health claims, the NDA Panel is
68 asked to develop guidance documents on the scientific requirements for the substantiation of health
69 claims in selected areas, in addition to the guidance for the scientific substantiation of health claims
70 related to gut and immune function (EFSA-Q-2010-01139).

71 **TERMS OF REFERENCE AS PROVIDED BY EFSA**

72 The NDA Panel is requested by EFSA to develop guidance documents on the scientific requirements
73 for health claims in the following areas:

- 74 • Post-prandial blood glucose responses/blood glucose control
- 75 • Weight management, energy intake and satiety
- 76 • Protection against oxidative damage
- 77 • Cardiovascular health
- 78 • Bone, joints, and oral health
- 79 • Neurological and psychological functions
- 80 • Physical performance

81 Specific issues to be addressed in these guidance documents include:

- 82 • which claimed effects are considered to be beneficial physiological effects?
- 83 • which studies/outcome measures are appropriate for the substantiation of function claims and
84 disease risk reduction claims?

85 Each guidance document should be subject to public consultation, and may be followed up as
86 appropriate by scientific meetings with experts in the field.

87 Before the adoption of each guidance document by the NDA Panel the draft guidance shall be revised,
88 taking into account the comments received during the public consultation. A report on the outcome of
89 the public consultation for each guidance document shall be published. All guidance documents
90 should be finalised by July 2012.

91

⁴ Regulation (EC) No 1924/2006 of the European Parliament and of the Council of 20 December 2006 on nutrition and health claims made on foods. OJ L 404, 30.12.2006, p. 9–25.

⁵ <http://www.efsa.europa.eu/en/nda/ndaclaims.htm>

⁶ <http://www.efsa.europa.eu/en/ndameetings/docs/nda100601-ax01.pdf>

92 **ASSESSMENT**

93 **1. Introduction**

94 To assist applicants in preparing and submitting their applications for the authorisation of health
95 claims, EFSA and in particular its Scientific Panel on Dietetic Products, Nutrition and Allergies
96 (NDA) has ongoing consultations with stakeholders, and has published guidance on the scientific
97 substantiation of health claims since 2007⁷. In April 2010, a draft briefing document on the scientific
98 evaluation of health claims was published for consultation and was followed by a technical meeting
99 with experts from the food industry, Member States and the European Commission in Parma in June
100 2010. The draft briefing document has been transformed into a Panel output, taking into account the
101 questions/comments received. This document constitutes the general guidance for stakeholders on the
102 evaluation of Article 13.1, 13.5 and 14 health claims, and outlines the approach of the NDA Panel to
103 the evaluation of health claims in general. In response to requests from industry, EFSA is engaged in
104 further consultation with stakeholders, and is developing additional guidance on specific types of
105 claims.

106 The objective of the present public consultation is to discuss with scientific experts in the field the
107 scientific requirements for the substantiation of health claims related to antioxidants, oxidative
108 damage and cardiovascular health. This consultation document will be revised to take into account the
109 comments received in order to provide additional guidance to applicants for the substantiation of
110 health claims in these areas.

111 The consultation document focuses on two key issues regarding the substantiation of health claims
112 related to antioxidants, oxidative damage and cardiovascular health:

113

- claimed effects which are considered to be beneficial physiological effects.
- studies/outcome measures which are considered to be appropriate for the substantiation of
115 health claims.

116 Issues which are related to substantiation and are common to health claims in general (e.g.
117 characterisation of the food/constituent) are addressed in the general guidance for stakeholders on the
118 evaluation of Article 13.1, 13.5 and 14 health claims⁸.

119 This document has been drawn from scientific opinions of the NDA Panel on health claims related to
120 antioxidants, oxidative damage and cardiovascular health. Thus, it represents the views of the NDA
121 Panel based on the experience gained to date with the evaluation of health claims in these areas. The
122 document should be read in conjunction with the general guidance for stakeholders on the evaluation
123 of Article 13.1, 13.5 and 14 health claims.

124 It is not intended that the document should include an exhaustive list of beneficial effects and
125 studies/outcome measures which are acceptable. Rather, it presents examples drawn from evaluations
126 already carried out to illustrate the approach of the Panel, as well as some examples which are
127 currently under consideration within ongoing evaluations.

⁷ <http://www.efsa.europa.eu/en/ndaclaims/ndaguidelines.htm>

⁸ EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA), 2011. General guidance for stakeholders on the evaluation of Article 13.1, 13.5 and 14 health claims. EFSA Journal, 9(4):2135, 24 pp.

128 **2. General considerations**

129 **2.1. Beneficial physiological effects**

130 According to Regulation (EC) No 1924/2006, the use of health claims shall only be permitted if the
131 food/constituent, for which the claim is made, has been shown to have a beneficial physiological
132 effect. In assessing each claim, the NDA Panel makes a scientific judgement on whether the claimed
133 effect is considered to be a beneficial physiological effect in the context of the specific claim, as
134 described in the information provided and taking into account the population group for whom the
135 claim is intended. For function claims, a beneficial effect may relate to maintenance or improvement
136 of a function.

137 For reduction of disease risk claims, ‘beneficial’ refers to whether the claimed effect relates to the
138 reduction (or beneficial alteration) of a risk factor for the development of a human disease (not
139 reduction of the risk of disease). A risk factor is a factor associated with the risk of a disease that may
140 serve as a predictor of development of that disease. Whether or not the alteration of a factor is
141 considered to be beneficial in the context of a reduction of disease risk claim depends on the extent to
142 which it is established that:

- 143 • The factor is an independent predictor of disease risk (such a predictor may be established
144 from intervention and/or observational studies);
- 145 • The relationship of the factor to the development of the disease is biologically plausible.

146 Except for well established risk factors (e.g. LDL-cholesterol concentrations, blood pressure), the
147 extent to which the reduction of a factor is beneficial in the context of a reduction of disease risk
148 claim needs to be considered on a case-by-case basis.

149 The NDA Panel considers that the population group for which health claims are intended is the
150 general (healthy) population or specific subgroups thereof, for example, elderly people, physically
151 active subjects, or pregnant women. In its evaluation, the NDA Panel considers that where a health
152 claim relates to a function/effect which may be associated with a disease, subjects with the disease are
153 not the target population for the claim, for example, patients with myocardial infarction. Applications
154 for claims which specify target groups other than the general (healthy) population are the subject of
155 ongoing discussions with the Commission and Member States with regard to their admissibility.

156 The NDA Panel also considers whether the claimed effect is sufficiently defined to establish that the
157 studies identified for substantiation of the claim were performed with (an) appropriate outcome
158 measure(s) of that claimed effect. Reference to general, non-specific benefits of the nutrient or food
159 for overall good health or health-related well-being may only be made if accompanied by a specific
160 health claim.

161 **2.2. Studies/outcome measures appropriate for substantiation of claims**

162 As human studies are central for substantiation of health claims, this document focuses in particular
163 on such studies. In considering whether the studies provided are pertinent (i.e. studies from which
164 conclusions can be drawn for the scientific substantiation of the claim), the NDA Panel addresses a
165 number of questions, including:

- 166 • Whether the studies have been carried out with the food/constituent for which the claim is
167 made. This requirement means that there should be sufficient definition of the
168 food/constituent for which the claim is made, and of the food/constituent which has been
169 investigated in the studies which have been provided for substantiation of the claim. The

170 evaluation also considers how the conditions under which the human studies were performed
171 relate to the conditions of use (e.g. quantity and pattern of consumption of the
172 food/constituent) proposed for the claim.

173 • Whether the design and quality of the studies allow conclusions to be drawn for the scientific
174 substantiation of the claim. The evaluation takes into account the hierarchy of evidence as
175 described in the scientific and technical guidance of the NDA Panel⁹, for example,
176 intervention studies generally provide stronger evidence than observational studies.
177 Intervention studies should be appropriately conducted so as to minimise bias. In
178 observational studies adequate control for factors other than the food/constituent known to
179 have an impact on the claimed effect is important. Each health claim is assessed separately
180 and there is no pre-established formula as to how many or what type of studies are needed to
181 substantiate a claim. In this regard, the reproducibility of the effect of the food/constituent as
182 indicated by consistency between studies is an important consideration.

183 • Whether the studies have been carried out in a study group representative of the population
184 group for which the claim is intended. Can the results obtained in the studied population be
185 extrapolated to the target population? For studies in groups (e.g. subjects with a disease) other
186 than the target group for a claim (e.g. the general population), the NDA Panel considers on a
187 case-by-case basis, the extent to which it is established that extrapolation from the study
188 group to the target group is biologically plausible.

189 • Whether the studies used (an) appropriate outcome measure(s) of the claimed effect. For this,
190 the NDA Panel considers what is generally accepted in the relevant research fields, and
191 consults experts from various disciplines, as appropriate.

192 **3. Antioxidant properties, antioxidant status, antioxidant defence**

193 **3.1. Claims on antioxidant properties of foods**

194 Claims on the antioxidant content/properties/activity of foods have been proposed. The references
195 provided for the scientific substantiation of these claims include *in vitro* studies on the capacity of
196 foods/constituents to scavenge free radicals. Claims made on the antioxidant capacity/content or
197 properties of foods/constituents based on their capability of scavenging free radicals *in vitro* refer to a
198 property of the foods/constituents measured in model systems, and it is not established that this
199 capability exerts a beneficial physiological effect in humans as required by Regulation (EC) No
200 1924/2006.

201 **3.2. Claims on antioxidant status and antioxidant defence**

202 Claims referring to antioxidant status and antioxidant defence have been proposed. The references
203 provided for the scientific substantiation of these claims include *in vivo* human studies which assess
204 changes in the overall antioxidant capacity of plasma using methods such as the total reactive
205 antioxidant potential (TRAP), the trolox-equivalent antioxidant capacity (TEAC), the ferric reducing
206 antioxidant potential (FRAP), the oxygen radical absorbance capacity (ORAC) or the ferrous
207 oxidation-xylenol orange (FOX) assays. It is not established that changes in the overall antioxidant
208 capacity of plasma exert a beneficial physiological effect in humans as required by Regulation (EC)
209 No 1924/2006.

⁹ EFSA (European Food Safety Authority), 2007. Opinion of the Panel on Dietetic Products, Nutrition and Allergies (NDA) on a request from the Commission related to scientific and technical guidance for the preparation and presentation of the application for authorisation of a health claim. The EFSA Journal, 530, 1-44.

210 For claims related to the “antioxidant defence system”, references assessing the effects of
211 foods/constituents on enzymes and endogenous compounds (e.g. glutathione) belonging to the body’s
212 antioxidant network have been provided. Induction of antioxidant enzymes such as superoxide
213 dismutase (SOD), catalase, glutathione peroxidase (GSH-Px) and haemoxigenase or limiting the
214 decrease in glutathione, indicates a biological response to oxidative stress of any origin, including
215 diet, and as such is not specific, and can also reflect a pro-oxidant effect of a dietary component.
216 Therefore, induction of antioxidant enzymes cannot be used as evidence for claims related to the
217 “antioxidant defence system”, with the exception of essential vitamins and minerals with an
218 established role in the human antioxidant network.

219 **3.3. Claims on the protection of cells from premature ageing**

220 Claims referring to the “protection of cells from premature ageing” or to “healthy aging” have been
221 proposed in relation to antioxidant properties of foods/constituents. The references provided for the
222 scientific substantiation of these claims include a variety of *in vitro* and *in vivo* animal and human
223 studies assessing the effects of foods/constituents on a variety of outcomes, including the antioxidant
224 capacity of foods, changes in antioxidant status, oxidative damage to proteins, lipids and DNA,
225 non-oxidative DNA damage, neoplastic degeneration of cells, etc. For these claims, no definition has
226 been provided of “premature aging” or of “healthy aging” in relation to the antioxidant properties of
227 foods, and therefore the claimed effect is general and non-specific, and does not comply with the
228 criteria laid down in Regulation (EC) No 1924/2006.

229 **4. Oxidative damage, including photo-oxidative (UV-induced) damage**

230 **4.1. Claims on the protection of body cells and molecules (i.e. DNA, proteins and lipids)
231 from oxidative damage, including photo-oxidative (UV-induced) damage**

232 The protection of body cells and molecules such as DNA, proteins and lipids from oxidative damage,
233 including photo-oxidative (UV-induced) damage, may be a beneficial physiological effect, assuming
234 that any significant oxidative modification of the target molecule is potentially harmful. In this
235 specific context, an appropriate method of assessment should be able to determine accurately and
236 specifically the oxidative modification of the target molecule *in vivo*. The scientific substantiation of
237 health claims on the protection of molecules from oxidative damage requires at least one appropriate
238 marker of oxidative modification of the target molecule assessed in human studies, preferably in
239 combination with other marker(s) as defined in sections 4.1.1 to 4.1.3. However, other markers of
240 oxidative damage to molecules cannot be used alone for substantiation as they have some limitations,
241 either because they represent a result of two processes (oxidative damage and repair), because they
242 suffer from technological limitations (interferences with other unrelated processes or substances), or
243 both. A marker cannot be accepted for substantiation when these limitations are considered to be
244 severe. Different markers of oxidative stress to molecules should preferably be determined in the
245 same study, but their determination in similar studies could be acceptable on a case-by-case basis.

246 The antioxidant properties of foods (measured *in vitro*), and changes in the overall antioxidant
247 capacity of plasma (measured *in vivo* as, for example, TRAP, TEAC, FRAP, ORAC or FOX), do not
248 predict an effect of the food/constituent in the protection of body cells and molecules such as DNA,
249 proteins and lipids from oxidative damage *in vivo*, and therefore are not suitable outcome measures
250 for the scientific substantiation of the claimed effect.

251 **4.1.1. Oxidative damage to proteins**

252 Direct measurements of oxidative damage to proteins *in vivo* (e.g. measurement of specific products
253 of amino acid oxidation in proteins after hydrolysis) could be obtained by means of HPLC-MS and

254 other methods, as long as separation of such molecules in plasma from other substances is
255 successfully achieved. Measures of protein oxidation by-products (e.g. protein carbonyls) by using
256 conventional assays (e.g. colorimetric procedure which involves dinitrophenylhydrazine (DNPH)
257 derivatisation of carbonyl groups) or ELISA methods (either directly or after DNPH derivatisation)
258 are usually susceptible to interferences by molecules other than proteins, and could only be used in
259 combination with at least one direct marker of oxidative damage to proteins *in vivo* if assessed
260 directly in blood or tissue (e.g. skin).

261 **4.1.2. Oxidative damage to lipids**

262 Direct measurements of oxidative damage to lipids (i.e. lipid peroxidation) could be obtained *in vivo*
263 by measuring changes in $F_{2\alpha}$ -isoprostanes in 24-h urine samples (i.e. better matrix than plasma for this
264 measurement) using gas-chromatography (GC) techniques with various detection modes. The
265 preferred method is analysis in combination with mass spectrometry (MS). $F_{2\alpha}$ -isoprostanes can also
266 be measured using immunoassays. However, lack of specificity owing to possible cross reactions with
267 other prostanooids needs to be taken into account.

268 Measurements of oxidative damage to lipids (i.e. lipid peroxidation) could also be obtained *in vivo* by
269 measuring oxidised LDL particles in blood using immunological methods (i.e. antibodies) with
270 appropriate specificity. Phosphatidylcholine hydroperoxides (PCOOH) measured in blood or tissue by
271 high-performance liquid chromatography (HPLC) is also an acceptable marker of lipid peroxidation.

272 Other methods proposed are not reliable *in vivo* markers of lipid peroxidation (e.g. thiobarbituric acid
273 reactive substances (TBARS), malondialdehyde (MDA), HDL-associated paraoxonases, conjugated
274 dienes, breath hydrocarbons, auto-antibodies against LDL particles and *ex vivo* LDL resistance to
275 oxidation). However, some of these could be used as evidence (i.e. in addition to measurements of
276 $F_{2\alpha}$ -isoprostanes and *in vivo* LDL oxidation) if appropriate techniques are used for analysis (e.g.
277 concentrations of MDA in blood or tissue assessed by HPLC).

278 **4.1.3. Oxidative damage to DNA**

279 Direct measurements of oxidative damage to DNA could be obtained *in vivo* by using modifications of
280 the comet assay, which allow the detection of oxidised DNA bases. Quantitative comparison is
281 possible but provides no absolute values, and the result depends on the validity of the control. This
282 assay directly reflects DNA oxidative damage within cells when assessed, for example, in circulating
283 lymphocytes.

284 Measures of DNA damage using the traditional comet assay (single-cell microgel electrophoresis,
285 SCGE) detect DNA strand breaks by the appearance of tailing, and are not specific for oxidative
286 damage. Other variants of the comet assay determine resistance against oxidative modification using
287 *ex vivo* pro-oxidant challenges. Neither of these measurements is appropriate to assess *in vivo*
288 oxidative damage to DNA.

289 Analyses of 8-hydroxy-2-deoxy-guanosin (8-OHdG) in blood (e.g. lymphocytes), tissue (e.g. skin) and
290 urine have been used to assess oxidative damage to DNA. Free 8-OHdG results from oxidative
291 damage and excision-repair; it may also result from oxidation of free bases or nucleotides, from
292 oxidation of other nucleic acids, and from artefacts during sample work up. Urinary 8-OHdG does not
293 directly reflect DNA oxidation within cells, but could be used in combination with direct
294 measurements of oxidative damage to DNA if appropriate techniques are used for analysis
295 (e.g. HPLC).

296 **5. Cardiovascular health**

297 **5.1. Claims related to changes in the blood lipid profile**

298 The scientific substantiation of health claims related to changes in the blood lipid profile requires
299 identification of the particular markers which should be considered for the evaluation
300 (e.g. LDL-cholesterol, HDL-cholesterol and triglycerides).

301 **5.1.1. Claims related to blood LDL-cholesterol concentrations**

302 Maintenance of normal LDL-cholesterol concentrations is a beneficial physiological effect. The
303 scientific evidence for the substantiation of health claims on the maintenance of normal blood
304 cholesterol concentrations can be obtained from human intervention studies showing a sustained
305 (e.g. two months) reduction of fasting LDL-cholesterol concentrations in humans following the
306 consumption of the food/constituent as compared to an appropriate food/constituent which is neutral
307 with respect to the claimed effect, or to no treatment.

308 Claims for a beneficial effect of the absence (or reduced content) of a food constituent in a food or
309 category of food on LDL-cholesterol concentrations have been proposed. Substantiation may be based
310 on evidence for an independent role of the food constituent in increasing LDL-cholesterol
311 concentrations. For example, for claims on a reduced content of saturated fatty acids (SFAs) in
312 relation to blood LDL-cholesterol concentrations, SFAs have been shown to increase blood
313 LDL-cholesterol concentrations when compared to carbohydrates which have a neutral effect on
314 LDL-cholesterol concentrations, and therefore SFAs have an independent role in increasing
315 LDL-cholesterol concentrations.

316 Claims for a beneficial effect of a food constituent when used in replacement of a food constituent
317 with an independent role in increasing LDL-cholesterol concentrations have also been proposed.
318 Substantiation may be based on evidence for an independent role of the replaced food constituent in
319 increasing LDL-cholesterol concentrations, together with evidence for the lack of an effect or a
320 reduced effect of the food constituent which is used for replacement (e.g. claims for unsaturated fats
321 and reduced LDL-cholesterol concentrations when replacing saturated fats).

322 With respect to the study population, results from studies conducted in hypercholesterolaemic
323 subjects treated with lifestyle measures only (e.g. diet) could be used for the scientific substantiation
324 of these claims. However, the rationale for extrapolation of results obtained in hypercholesterolaemic
325 subjects under pharmacological treatment with cholesterol-lowering medications (e.g. statins) to the
326 target population for the claim should be provided and considered on a case-by-case basis
327 (e.g. evidence for a lack of interaction between the food and the medications used on the claimed
328 effect).

329 **5.1.2. Claims related to blood HDL-cholesterol concentrations**

330 Maintenance of normal HDL-cholesterol concentrations may be a beneficial physiological effect as
331 long as LDL-cholesterol concentrations are not increased.

332 The scientific evidence for the substantiation of health claims on the maintenance of normal
333 HDL-cholesterol concentrations can be obtained from human intervention studies showing a sustained
334 (e.g. two months) increase of fasting HDL-cholesterol concentrations (without a concomitant increase
335 in LDL-cholesterol concentrations) in humans following the consumption of the food/constituent as
336 compared to an appropriate control food/constituent with respect to the claimed effect or to no
337 treatment.

338 **5.1.3. Claims related to blood concentrations of triglycerides**

339 Maintenance of normal blood concentrations of triglycerides may be a beneficial physiological effect.

340 The scientific evidence for the substantiation of health claims on the maintenance of normal blood
341 concentrations of triglycerides can be obtained from human intervention studies showing a sustained
342 (e.g. two months) decrease in fasting triglyceride concentrations following the consumption of the
343 food/constituent as compared to a control food/constituent which is neutral with respect to the
344 claimed effect, or to no treatment.

345 With respect to the study population, results from studies conducted in hypertriglyceridaemic subjects
346 treated with lifestyle measures only (e.g. diet) could be used for the scientific substantiation of these
347 claims. However, the rationale for extrapolation of results obtained in hypertriglyceridaemic subjects
348 under treatment with “triglyceride-lowering” medications (e.g. fibrates) to the target population for
349 the claim should be provided and will be considered on a case-by-case basis (e.g. evidence for a lack
350 of interaction between the food and the medications used on the claimed effect).

351 **5.2. Claims on the reduction of blood pressure**

352 Maintenance of normal blood pressure is a beneficial physiological effect. The scientific evidence for
353 the substantiation of health claims on the maintenance of normal blood pressure can be obtained from
354 human intervention studies showing a sustained (e.g. two months) reduction of systolic (with no
355 increase in diastolic) blood pressure following the consumption of the food/constituent as compared
356 to a control food/constituent which is neutral with respect to the claimed effect, or to no treatment.
357 Blood pressure should be measured using well-accepted protocols and devices.

358 With respect to the study population, results from studies conducted in hypertensive subjects treated
359 with lifestyle measures only (e.g. diet) could be used for the scientific substantiation of these claims.
360 However, the rationale for extrapolation of results obtained in hypertensive subjects under treatment
361 with blood pressure-lowering medications (e.g. ACE-inhibitors, beta-blockers, calcium channel
362 blockers and diuretics) to the target population for the claim should be provided and will be
363 considered on a case-by-case basis (e.g. evidence for a lack of interaction between the food and the
364 medications used on the claimed effect).

365 **5.3. Claims on endothelial function**

366 Endothelial function *per se* is not sufficiently defined for a scientific evaluation, because
367 endothelium-derived active factors play a role in the maintenance of several functions of the vascular
368 system. These include vasomotion, smooth muscle proliferation, thrombosis, inflammation,
369 coagulation, fibrinolysis and oxidation, which can be assessed by indirect methods. Some of the
370 claims referred to the improvement of specific endothelial functions (e.g. endothelium-dependent
371 vasodilation) which can be assessed *in vivo* using well established methods. An improvement of
372 specific endothelial functions (e.g. endothelium-dependent vasodilation) after sustained exposure to
373 the food/constituent (e.g. one month) may be considered as a beneficial physiological effect.

374 **5.4. Claims on reduced platelet aggregation**

375 Platelet hyperactivity and hypercoagulability states are more commonly observed in subjects with
376 cardiovascular (CV) risk factors. Healthy subjects at very low risk of CV disease normally have non-
377 activated circulating platelets, and thus, decreasing platelet aggregation in subjects with constitutive
378 platelet activation after sustained exposure to the food/constituent (e.g. one month) would be a
379 beneficial physiological effect.

380 **5.5. Claims on homocysteine**

381 Contribution to normal homocysteine metabolism is a beneficial physiological effect. Evidence for the
382 scientific substantiation of this claim may come from the well established role of a food in
383 contributing to the remethylation of homocysteine to methionine (e.g. some vitamins) or from human
384 studies showing an effect of the food/constituent on blood homocysteine concentrations after
385 sustained exposure to the food/constituent (e.g. two months).

386 **5.6. Claims on cardiovascular health**

387 Claims referring to cardiovascular health are too general for a scientific evaluation, and therefore
388 need to be accompanied by a specific claim. Evidence from human studies on specific cardiovascular
389 outcomes (e.g. coronary events) could be used for substantiation of a health claim on the normal
390 function of the heart.

391 **5.7. Disease risk reduction claims**

392 It is well established that elevated blood LDL-cholesterol concentrations are independently associated
393 with an increased risk for coronary heart disease (CHD), and that reducing blood LDL-cholesterol
394 concentrations (by dietary modification and drugs) would generally reduce the risk of development of
395 CHD. It is also well established that elevated (systolic) blood pressure is independently associated
396 with an increased risk for CHD and stroke, and that reducing (systolic) blood pressure (by dietary
397 modification and drugs) would generally reduce the risk of development of CHD and stroke.
398 Reduction in blood LDL-cholesterol concentrations, therefore, may be considered beneficial in the
399 context of a reduction of disease risk claim for CHD, and reduction in (systolic) blood pressure may
400 be considered beneficial in the context of a reduction of disease risk claim for CHD and stroke.

401 For other proposed risk factors, the evidence may not be as strong. There is some evidence, for
402 example, that low blood HDL-cholesterol concentrations, elevated blood concentrations of
403 triglycerides, or elevated blood homocysteine concentrations are associated with an increased risk of
404 CHD. Reduction of blood concentrations of triglycerides, blood homocysteine concentrations, or an
405 increase in blood HDL-cholesterol concentrations, have been associated with a decreased incidence of
406 CHD following certain dietary interventions in some human intervention studies. However, changes
407 in any of these factors (by dietary modification or drugs) have not generally been shown to reduce the
408 risk of CHD. Therefore, human studies on the risk of CHD are required for the substantiation of these
409 claims to validate the association between these variables and the risk of disease in the context of a
410 particular nutritional intervention.

411 **CONCLUSIONS**

412 The draft guidance document focused on two key issues regarding the substantiation of health claims
413 related to antioxidants, oxidative damage and cardiovascular health:

414

- claimed effects which are considered to be beneficial physiological effects.
- studies/outcome measures which are considered to be appropriate for the substantiation of
416 health claims.

417 The document has been drawn from scientific opinions of the NDA Panel on health claims related to
418 antioxidants, oxidative damage and cardiovascular health. Thus, it represents the views of the NDA
419 Panel based on the experience gained to date with the evaluation of health claims in these areas.

420 **GLOSSARY AND ABBREVIATIONS**

421	8-OHdG	8-hydroxy-2-deoxy-Guanosin
422	ACE	Angiotensin converting enzyme
423	CHD	Coronary heart disease
424	CV	Cardiovascular
425	DNA	Deoxyribonucleic acid
426	DNPH	Dinitrophenylhydrazine
427	ELISA	Enzyme-linked immunosorbent assay
428	FOX	Ferrous oxidation-xylenol orange
429	FRAP	Ferric reducing antioxidant potential
430	GC	Gas-chromatography
431	GSH-Px	Glutathione peroxidase
432	HDL	High-density lipoprotein
433	HPLC	High-performance liquid chromatography
434	LDL	Low-density lipoprotein
435	MDA	Malondialdehyde
436	MS	Mass spectrometry
437	ORAC	Oxygen radical absorbance capacity
438	PCOOH	Phosphatidylcholine hydroperoxides
439	SCGE	Single-cell microgel electrophoresis
440	SFA	Saturated fatty acid
441	SOD	Superoxide dismutase
442	TBARS	Thiobarbituric acid reactive substances
443	TEAC	Trolox-equivalent antioxidant capacity
444	TRAP	Total reactive antioxidant potential
445	UV	Ultraviolet