

ADOPTED: dd mmmm 2017

doi:10.2903/j.efsa.2017.NNNN

1 Dietary Reference Values for riboflavin

2 EFSA Panel on Dietetic Products, Nutrition and Allergies (NDA),
3 Dominique Turck, Jean-Louis Bresson, Barbara Burlingame, Tara Dean, Susan Fairweather-
4 Tait, Marina Heinonen, Karen-Ildico Hirsch-Ernst, Inge Mangelsdorf, Harry J McArdle,
5 Androniki Naska, Grażyna Nowicka, Kristina Pentieva, Yolanda Sanz, Alfonso Siani, Anders
6 Sjödin, Martin Stern, Daniel Tomé, Henk Van Loveren, Marco Vinceti, Peter Willatts, Christel
7 Lamberg-Allardt, Hildegard Przyrembel, Inge Tetens, Céline Dumas, Lucia Fabiani, Annette
8 Cecilia Forss, Sofia Ioannidou and Monika Neuhäuser-Berthold

9 Abstract

10 Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition and
11 Allergies (NDA) derives Dietary Reference Values (DRVs) for riboflavin. The Panel considers that the inflection
12 point in the urinary riboflavin excretion curve in relation to riboflavin intake represents body saturation and can
13 be used as a biomarker of adequate riboflavin status. The Panel also considers that erythrocyte glutathione
14 reductase activation coefficient is a useful biomarker, but has limitations. For adults, the Panel considers that
15 Average Requirements (ARs) and Population Reference Intakes (PRIs) can be determined from the weighted
16 mean of riboflavin intake associated with the inflection point in the urinary riboflavin excretion curve reported in
17 four intervention studies. PRIs are derived for adults and children assuming a coefficient of variation of 10%, in
18 the absence of information on the variability in the requirement and to account for the potential effect of physical
19 activity and the methylenetetrahydrofolate reductase 677TT genotype. For adults, the AR and PRI are set at 1.3
20 and 1.6 mg/day. For infants aged 7–11 months, an Adequate Intake of 0.4 mg/day is set by upward extrapolation
21 from the riboflavin intake of exclusively breastfed infants aged 0–6 months. For children, ARs are derived by
22 downward extrapolation from the adult AR, applying allometric scaling and growth factors and considering
23 differences in reference body weight. For children of both sexes aged 1–17 years, ARs range between 0.5 and
24 1.4 mg/day, and PRIs between 0.6 and 1.6 mg/day. For pregnant or lactating women, additional requirements are
25 considered, to account for fetal uptake and riboflavin accretion in the placenta during pregnancy or the losses
26 through breast milk, and PRIs of 1.9 and 2.0 mg/day, respectively, are derived.

27 © 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on behalf of
28 European Food Safety Authority.

29 **Keywords:** riboflavin, biomarker, urinary excretion, glutathione reductase, average requirement,
30 population reference intake, dietary reference value

31 **Requestor:** European Commission

33 **Question number:** EFSA-Q-2011-01222

34 **Correspondence:** nda@efsa.europa.eu

36

38 **Panel members:** Jean-Louis Bresson, Barbara Burlingame, Tara Dean, Susan Fairweather-Tait,
39 Marina Heinonen, Karen-Ildico Hirsch-Ernst, Inge Mangelsdorf, Harry McArdle, Androniki Naska,
40 Monika Neuhäuser-Berthold, Grażyna Nowicka, Kristina Pentieva, Yolanda Sanz, Alfonso Siani, Anders
41 Sjödin, Martin Stern, Daniel Tomé, Dominique Turck, Henk Van Loveren, Marco Vinceti and Peter
42 Willatts.

43 **Acknowledgements:** The Panel wishes to thank EFSA staff: Krizia Ferrini and Olga Vidal Pariente for
44 the support provided to this scientific opinion.

45 **Suggested citation:** EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies),
46 Turck D, Bresson JL, Burlingame B, Dean T, Fairweather-Tait S, Heinonen M, Hirsch-Ernst KI,
47 Mangelsdorf I, McArdle HJ, Naska A, Nowicka G, Pentieva K, Sanz Y, Siani A, Sjödin A, Stern M, Tomé
48 D, Van Loveren H, Vinceti M, Willatts P, Lamberg-Allardt C, Przyrembel H, Tetens I, Dumas C, Fabiani
49 L, Forss AC, Ioannidou S and Neuhäuser-Berthold M, 2017. Scientific opinion on Dietary Reference
50 Values for riboflavin. EFSA Journal 2017;xx(x):xxxx, 75 pp. doi:10.2903/j.efsa.2017.xxxx

51 **ISSN:** 1831-4732

52 © 2017 European Food Safety Authority. *EFSA Journal* published by John Wiley and Sons Ltd on
53 behalf of European Food Safety Authority.

54 This is an open access article under the terms of the [Creative Commons Attribution-NoDerivs](#) License,
55 which permits use and distribution in any medium, provided the original work is properly cited and no
56 modifications or adaptations are made.

59 **SUMMARY**

60 Following a request from the European Commission, the EFSA Panel on Dietetic Products, Nutrition
61 and Allergies (NDA) was asked to deliver a scientific opinion on Dietary Reference Values for the
62 European population, including vitamin B2. The Panel considers in this Scientific Opinion that
63 vitamin B2 is riboflavin.

64 Riboflavin or 7,8-dimethyl-10-ribityl-isoalloxazine, is a water-soluble compound naturally present in
65 food of plant and animal origin as free riboflavin and, mainly, as the biologically active derivatives
66 flavin mononucleotide (FMN) and flavin adenine dinucleotide (FAD).

67 Riboflavin is the integral part of the coenzymes FAD and FMN that act as the cofactors of a variety of
68 flavoprotein enzymes such as glutathione reductase or pyridoxamine phosphate oxidase (PPO). FAD
69 and FMN act as proton carriers in redox reactions involved in energy metabolism, metabolic pathways
70 and formation of some vitamins and coenzymes. In particular, riboflavin is involved in the metabolism
71 of niacin and vitamin B6 and FAD is also required by the methylenetetrahydrofolate reductase
72 (MTHFR) in the folate cycle and thereby is involved in homocysteine metabolism. Signs of riboflavin
73 deficiency are unspecific and include sore throat, hyperaemia and edema of the pharyngeal and oral
74 mucous membranes, cheilosis, glossitis (magenta tongue), and normochromic normocytic anaemia
75 characterised by erythroid hypoplasia and reticulocytopenia. No Tolerable Upper Intake Level has
76 been set for riboflavin.

77 Dietary riboflavin associated with food protein is hydrolysed to free riboflavin and its absorption
78 mainly takes place in the proximal small intestine through carrier-mediated, saturable transport
79 process. The Panel considers an absorption efficiency of dietary riboflavin of 95%. Free riboflavin
80 transported into enterocytes is subjected to phosphorylation to form FMN, subsequently converted to
81 FAD. From the small intestine, riboflavin enters the plasma, where FAD is reported to be the major
82 form. The uptake of riboflavin into the cells of organs such as the liver is facilitated and may require
83 specific carriers. Absorbed riboflavin appears partly in the plasma, and partly is sequestered by the
84 liver on the first pass through the portal vein from the gut. There is a positive transfer of riboflavin
85 from the pregnant woman to the fetus. Most of the riboflavin in tissues including erythrocytes exists
86 predominantly as FAD and FMN, covalently bound to enzymes. Unbound FAD and FMN are rapidly
87 hydrolysed to free riboflavin that diffuses from cells and is excreted. When riboflavin is absorbed in
88 excess, it is catabolised to numerous metabolites and little is stored in the body tissues. Urine is the
89 main route for elimination of riboflavin.

90 The Panel reviewed possible biomarkers of riboflavin status and intake, i.e. urinary excretion of
91 riboflavin, erythrocyte glutathione reductase activation coefficient (EGRAC), plasma and erythrocyte
92 riboflavin, FAD and FMN, as well as PPO activity and activation coefficient. The Panel considers that
93 the inflection point in the mean urinary riboflavin excretion curve in relation to riboflavin intake
94 reflects body saturation and can be used to indicate adequate riboflavin status. The Panel also
95 considers that EGRAC is a useful biomarker of riboflavin status and that EGRAC of 1.3 or less
96 indicates adequate riboflavin status in all population groups. However, the Panel considers that the
97 data on the relationship between riboflavin intake and EGRAC cannot be used alone to set DRVs for
98 riboflavin, but can be used in support of data on the inflection in the urinary excretion curve in view of
99 setting DRVs for riboflavin.

100 The Panel also notes that riboflavin status is modified by physical activity as urinary excretion of
101 riboflavin is (generally) decreased and EGRAC increased when physical activity is increased,
102 suggesting higher utilisation of riboflavin with increased energy expenditure. However, there is a lack
103 of experimental data showing a clear quantitative relationship between riboflavin status biomarkers
104 (urinary excretion of riboflavin and EGRAC) and energy expenditure (or physical activity). In
105 addition, the Panel considers that relationship between riboflavin intake and biomarkers of riboflavin
106 status is also influenced by MTHFR 677C>T polymorphism, as homozygosity for the T allele can
107 increase the individual requirement for riboflavin, although the extent of this increase cannot be

108 defined. After having reviewed the existing evidence, the Panel concludes that available data on intake
109 of riboflavin and health outcomes cannot be used to derive DRVs for riboflavin.

110 The Panel notes that new scientific data have become available for adults since the publication of the
111 SCF report in 1993, and considers that updated average requirements (ARs) and population reference
112 intake (PRIs) can be set for adults, children, pregnant and lactating women.

113 For adults, the Panel considers that an AR of 1.3 mg/day (after rounding) can be determined from the
114 weighted mean of riboflavin intake associated with the inflection point in the mean urinary riboflavin
115 excretion curve in relation to riboflavin intake as reported in four intervention studies in different non-
116 EU countries. The Panel considers that the potential effect of physical activity and of MTHFR 677TT
117 genotype on riboflavin requirement is covered by the data presented from the studies considered, thus
118 is accounted for in the assumed CV applied to set the PRI for riboflavin. A CV of 10% was used to
119 calculate PRIs from the ARs for adults, i.e. 1.6 mg/day after rounding, and the same CV was used for
120 all other population groups. The Panel considers that there is no indication of different riboflavin
121 requirement according to sex or between younger and older adults, and sets the same DRV for men
122 and women (without correction per difference in body weight) of all ages.

123 For all infants aged 7–11 months, in the absence of sufficient data to set an AR, the Panel sets an AI of
124 0.4 mg/day based on the estimated intake of riboflavin of exclusively breastfed infants from birth to
125 six months, and upward extrapolation by allometric scaling (on the assumption that riboflavin
126 requirement is related to metabolically active body mass), taking into account the difference in
127 reference body weight.

128 For children aged 1–17 years, the Panel sets ARs by downward extrapolation from the AR of adults,
129 by allometric scaling (on the assumption that riboflavin requirement is related to metabolically active
130 body mass), applying growth factors and taking into account the differences in reference body weight.
131 The Panel considers unnecessary to set sex-specific ARs and PRIs for boys and girls of all ages. The
132 Panel sets ARs ranging from 0.5 (children aged 1–3 years) to 1.4 mg/day (children aged 15–17 years)
133 and PRIs ranging from 0.6 (children aged 1–3 years) to 1.6 mg/day (children aged 15–17 years).

134 For pregnant women, the Panel considers that data are insufficient to estimate the additional needs for
135 dietary riboflavin during pregnancy based on fetal uptake and riboflavin accretion in the placenta
136 during pregnancy. The Panel sets an AR of 1.5 mg/day, calculated by allometric scaling from the AR
137 for non-pregnant women, considering the mean gestational increase in body weight of 12 kg, and also
138 sets a PRI of 1.9 mg/day.

139 For lactating women, an additional riboflavin requirement of 0.31 mg/day is calculated considering the
140 secretion of riboflavin into milk during lactation (0.291 mg/day), the mean milk transfer during the
141 first six months of lactation in exclusively breastfeeding women (0.8 L/day), and an absorption
142 efficiency of 95%. An AR of 1.7 mg/day is calculated by the Panel, considering the additional
143 requirement above the AR of non-lactating women, and a PRI of 2 mg/day is set for lactating women.

144 Based on data from 13 surveys in nine countries of the European Union, average riboflavin intake
145 ranged across countries from 0.6 to 1.2 mg/day in infants, from 0.9 to 1.4 mg/day in children aged 1 to
146 < 3 years, from 1 to 1.8 mg/day in children aged 3 to < 10 years, and from 1.2 to 2.2 mg/day in
147 children aged 10 to < 18 years. Average riboflavin intake ranged between 1.4 and 2.2 mg/day in
148 adults.

149
150

151 TABLE OF CONTENTS

152	Abstract	1
153	Summary	3
154	Background as provided by the European Commission.....	7
155	Terms of reference as provided by the European Commission.....	7
156	Assessment.....	9
157	1. Introduction	9
158	2. Definition/category	9
159	2.1. Chemistry.....	9
160	2.2. Function of the nutrient.....	10
161	2.2.1. Biochemical functions	10
162	2.2.2. Health consequences of deficiency and excess	10
163	2.2.2.1. Deficiency	10
164	2.2.2.2. Excess	11
165	2.3. Physiology and metabolism	11
166	2.3.1. Intestinal absorption	11
167	2.3.2. Transport.....	12
168	2.3.3. Distribution to tissues	12
169	2.3.4. Storage.....	13
170	2.3.5. Metabolism	13
171	2.3.6. Elimination	13
172	2.3.6.1. Faeces.....	13
173	2.3.6.2. Urine	13
174	2.3.6.3. Breast milk	14
175	2.3.6.4. Conclusion on elimination	15
176	2.3.7. Interaction with other nutrients.....	15
177	2.4. Biomarkers.....	15
178	2.4.1. Inflection of the urinary excretion of riboflavin	15
179	2.4.2. Erythrocyte glutathione reductase activation coefficient (EGRAC)	17
180	2.4.3. Plasma and erythrocyte riboflavin, FAD, FMN	20
181	2.4.3.1 Plasma riboflavin, FAD and FMN concentration.....	20
182	2.3.4.2. Erythrocyte riboflavin, FAD, FMN concentration	20
183	2.4.4. Pyridoxamine phosphate oxidase (PPO) activity and activation coefficient	22
184	2.4.5. Conclusion on biomarkers	23
185	2.5. Effect of energy intake or expenditure or exercise	23
186	2.6. Effects of genotype	25
187	3. Dietary sources and intake data	27
188	3.1. Dietary sources.....	27
189	3.2. Dietary intake	27
190	4. Overview of dietary reference values and recommendations	28
191	4.1. Adults.....	28
192	4.2. Infants and children.....	30
193	4.3. Pregnancy and lactation	31
194	5. Criteria (endpoints) on which to base dietary reference values	33
195	5.1. Clinical signs of deficiency	33
196	5.2. Indicators of riboflavin requirements.....	33
197	5.2.1. Adults	33
198	5.2.1.1. Inflection of the urinary excretion of riboflavin	33
199	5.2.1.2. Erythrocyte glutathione reductase activation coefficient (EGRAC).....	34
200	5.2.1.3. Conclusions on riboflavin requirements in adults.....	34
201	5.2.2. Infants and children	35
202	5.2.3. Pregnant and lactating women.....	35
203	5.2.3.1. Pregnant women	35
204	5.2.3.2. Lactating women	36

205	5.3. Riboflavin intake and health consequences	36
206	5.3.1. Riboflavin intake and the risk of cancer	37
207	5.3.2. Riboflavin intake and other health outcomes	38
208	5.3.3. Conclusions on riboflavin intake and health consequences.....	38
209	6. Data on which to base dietary reference values.....	38
210	6.1. Adults.....	38
211	6.2. Infants aged 7–11 months	39
212	6.3. Children	39
213	6.4. Pregnancy.....	40
214	6.5. Lactation	41
215	Conclusions	41
216	Recommendation for research.....	42
217	References	42
218	Appendices	58
219	Appendix A. Concentrations of total flavin, or free or total riboflavin in breast milk of 220 healthy mothers	58
221	Appendix B. Dietary surveys in the EFSA Comprehensive European Food Consumption 222 Database included in EFSA's nutrient intake calculation for riboflavin.....	66
223	Appendix C. Riboflavin intakes in males in different surveys, estimated by EFSA according 224 to age class and country.....	67
225	Appendix D. Riboflavin intakes in females in different surveys, estimated by EFSA according 226 to age class and country.....	69
227	Appendix E. Minimum and maximum percentage contribution of different food groups 228 (FoodEx2 level 1) to riboflavin intake estimates in males	71
229	Appendix F. Minimum and maximum percentage contribution of different food groups 230 (FoodEx2 level 1) to riboflavin intake estimates in females	72
231	Abbreviations	73
232		

233 **BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION**

234 The scientific advice on nutrient intakes is important as the basis of Community action in the field of
 235 nutrition, for example such advice has in the past been used as the basis of nutrition labelling. The
 236 Scientific Committee for Food (SCF) report on nutrient and energy intakes for the European
 237 Community dates from 1993. There is a need to review and if necessary to update these earlier
 238 recommendations to ensure that the Community action in the area of nutrition is underpinned by the
 239 latest scientific advice.

240 In 1993, the SCF adopted an opinion on the nutrient and energy intakes for the European Community¹.
 241 The report provided Reference Intakes for energy, certain macronutrients and micronutrients, but it did
 242 not include certain substances of physiological importance, for example dietary fibre.

243 Since then new scientific data have become available for some of the nutrients, and scientific advisory
 244 bodies in many European Union Member States and in the United States have reported on
 245 recommended dietary intakes. For a number of nutrients these newly established (national)
 246 recommendations differ from the reference intakes in the SCF (1993) report. Although there is
 247 considerable consensus between these newly derived (national) recommendations, differing opinions
 248 remain on some of the recommendations. Therefore, there is a need to review the existing EU
 249 Reference Intakes in the light of new scientific evidence, and taking into account the more recently
 250 reported national recommendations. There is also a need to include dietary components that were not
 251 covered in the SCF opinion of 1993, such as dietary fibre, and to consider whether it might be
 252 appropriate to establish reference intakes for other (essential) substances with a physiological effect.

253 In this context the EFSA is requested to consider the existing Population Reference Intakes for energy,
 254 micro- and macronutrients and certain other dietary components, to review and complete the SCF
 255 recommendations, in the light of new evidence, and in addition advise on a Population Reference
 256 Intake for dietary fibre.

257 For communication of nutrition and healthy eating messages to the public it is generally more
 258 appropriate to express recommendations for the intake of individual nutrients or substances in food-
 259 based terms. In this context the EFSA is asked to provide assistance on the translation of nutrient
 260 based recommendations for a healthy diet into food based recommendations intended for the
 261 population as a whole.

262 **TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION**

263 In accordance with Article 29 (1)(a) and Article 31 of Regulation (EC) No. 178/2002, the Commission
 264 requests EFSA to review the existing advice of the Scientific Committee for Food on population
 265 reference intakes for energy, nutrients and other substances with a nutritional or physiological effect in
 266 the context of a balanced diet which, when part of an overall healthy lifestyle, contribute to good
 267 health through optimal nutrition.

268 In the first instance the EFSA is asked to provide advice on energy, macronutrients and dietary fibre.
 269 Specifically advice is requested on the following dietary components:

270 • Carbohydrates, including sugars;

271 • Fats, including saturated fatty acids, polyunsaturated fatty acids and monounsaturated fatty
 272 acids, *trans* fatty acids;

273 • Protein;

¹ Scientific Committee for Food, Nutrient and energy intakes for the European Community, Reports of the Scientific Committee for Food 31st series, Office for Official Publication of the European Communities, Luxembourg, 1993.

² Energy intake was about 1,900 kcal/day for non-pregnant, about 2,300–2,400 kcal/day for pregnant and lactating women,

274 • Dietary fibre.

275 Following on from the first part of the task, the EFSA is asked to advise on population reference
276 intakes of micronutrients in the diet and, if considered appropriate, other essential substances with a
277 nutritional or physiological effect in the context of a balanced diet which, when part of an overall
278 healthy lifestyle, contribute to good health through optimal nutrition.

279 Finally, the EFSA is asked to provide guidance on the translation of nutrient based dietary advice into
280 guidance, intended for the European population as a whole, on the contribution of different foods or
281 categories of foods to an overall diet that would help to maintain good health through optimal nutrition
282 (food-based dietary guidelines).

283

284

DRAFT

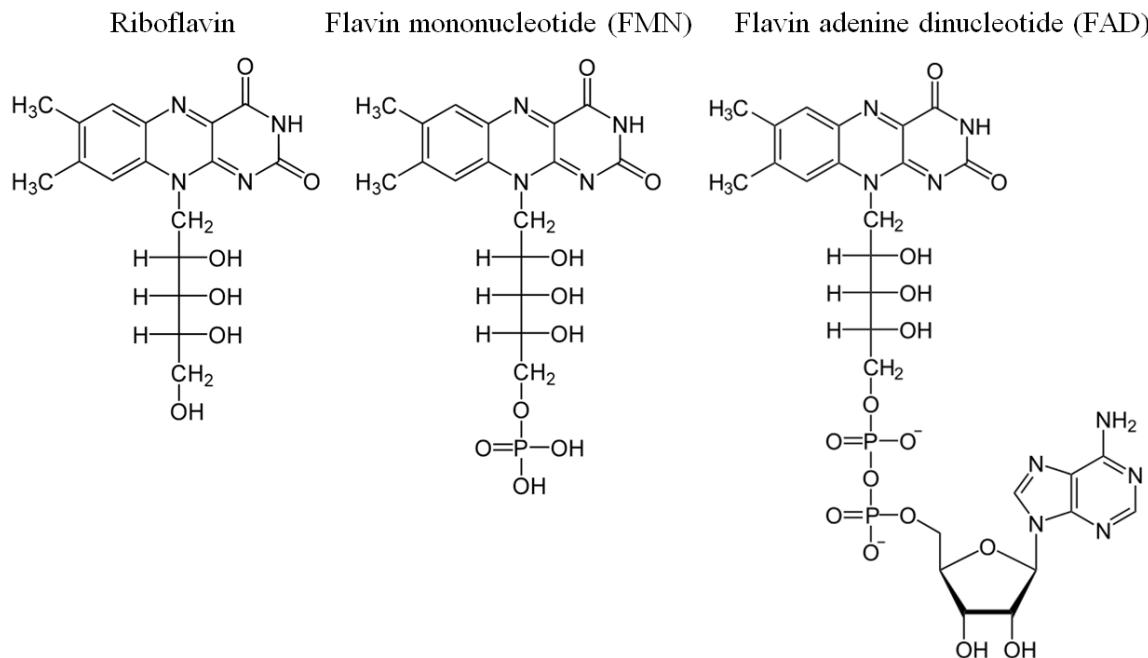
285 **ASSESSMENT**286 **1. Introduction**

287 In 1993, the Scientific Committee on Food (SCF) adopted an opinion on the nutrient and energy
288 intakes for the European Community (SCF, 1993). For riboflavin, the SCF set Average Requirements
289 (ARs) and Population Reference Intakes (PRIIs) for men and women. PRIIs were also set for infants
290 and children as well as for pregnant or lactating women.

291 The purpose of this Opinion is to review Dietary Reference Values (DRVs) for vitamin B2. In this
292 Opinion, the Panel considers that vitamin B2 is the name of the compound riboflavin.

293 **2. Definition/category**294 **2.1. Chemistry**

295 Flavins (from Latin flavin, 'yellow') is the name of a group of water-soluble yellow pigments to which
296 riboflavin, flavin mononucleotide (FMN), and flavin adenine dinucleotide (FAD) belong.


297 Riboflavin, or 7,8-dimethyl-10-ribityl-isoalloxazine, is the tricyclic ring isoalloxazine bound to a
298 ribityl side chain (IUPAC name: 7,8-Dimethyl-10-[(2S,3S,4R)-2,3,4,5-
299 tetrahydroxypentyl]benzo[g]pteridine-2,4-dione) (Figure 1).

300 Riboflavin is water-soluble. In the diet, it is naturally present as free riboflavin and, mainly, as the
301 biologically active derivatives FMN and FAD (Figure 1) (Powers, 2003; Said and Ross, 2012). FMN
302 is also called riboflavin-5'-phosphate (Merrill et al., 1981).

303 All three compounds are present in foods of plant or animal origin (Section 3.1.). Riboflavin-binding
304 proteins have been found in egg white and yolk (Zanette et al., 1984; White and Merrill, 1988), as well
305 as in cow milk (Kanno et al., 1991). Although relatively heat-stable, riboflavin is readily degraded by
306 light in solutions (Section 2.2.2.1.). Riboflavin (E101(i)) and riboflavin 5'-phosphate sodium
307 (E101(ii)) are also used as food colours (EFSA ANS Panel, 2013).

308 In this Opinion, the Panel used the terms 'total riboflavin' to refer explicitly to the sum of the three
309 components (riboflavin, FMN and FAD) and 'free riboflavin' whenever it is necessary to make a
310 distinction from FMN or FAD.

311

312

313 **Figure 1:** Chemical structures of riboflavin, FMN and FAD
 314 Molecular masses: riboflavin: 376.4 g/mol; FMN: 456.3 g/mol, FAD: 785.6 g/mol

315 **2.2. Function of the nutrient**

316 **2.2.1. Biochemical functions**

317 Riboflavin is the integral part of the coenzymes FAD and FMN that act as the cofactors of
 318 flavoprotein enzymes involved in a variety of reactions. FAD and FMN act as proton carriers in redox
 319 reactions involved in energy metabolism (Section 2.5.), metabolic pathways and the formation of some
 320 vitamins and coenzymes (McCormick, 2000; SCF, 2000; Said and Ross, 2012). In particular,
 321 riboflavin is involved in the metabolism of niacin and vitamin B6 (McCormick, 1989, 2000; EFSA
 322 NDA Panel, 2014a, 2016). FAD is also required as a cofactor for the methylenetetrahydrofolate
 323 reductase (MTHFR; EC 1.7.99.5) that is a key enzyme in the folate cycle (EFSA NDA Panel, 2015b)
 324 and it is required for the formation of 5-methyltetrahydrofolate which, in turn, is involved in the
 325 remethylation of homocysteine to methionine (McKinley et al., 2001).

326 The enzyme glutathione reductase (EC 1.8.1.7) is using FAD as a cofactor to catalyse the reduction of
 327 the oxidised form glutathione disulfide (GSSG) to the sulfhydryl form glutathione (GSH), a critical
 328 step in maintaining the reducing environment of the cell. In people with glucose-6-phosphate
 329 dehydrogenase (G6PD) deficiency, the most common enzyme disorder caused by an enzyme defect,
 330 with an estimated frequency of 0.4% of all births in the European Union (EU) (WHO Working Group,
 331 1989; Cappellini and Fiorelli, 2008), glutathione reductase has an increased avidity for FAD, leading
 332 to high *in-vitro* activity. Another enzyme, pyridoxamine phosphate oxidase (PPO, EC 1.4.3.5.) is
 333 FMN-dependent, is involved in the conversion of pyridoxine and pyridoxamine to the coenzyme
 334 pyridoxal phosphate and is present in various tissues including erythrocytes (Mushtaq et al., 2009).
 335 The activity of glutathione reductase in erythrocyte (EGR) and that of PPO are discussed in Sections
 336 2.4.2 and 2.4.4.

337 **2.2.2. Health consequences of deficiency and excess**

338 **2.2.2.1. Deficiency**

339

340 Riboflavin deficiency (ariboflavinosis) is most often accompanied by other nutrient deficiencies, and
341 was reported in populations from both developed and developing countries (Venkataswamy, 1967;
342 Komindr and Nichoalds, 1980; Nichoalds, 1981). Clinical signs of riboflavin deficiency reported in
343 humans (IOM, 1998) are unspecific and include e.g. sore throat, hyperaemia and edema of the
344 pharyngeal and oral mucous membranes, cheilosis, glossitis (magenta tongue), seborrhoeic dermatitis,
345 skin lesions including angular stomatitis (as reported in (Horwitt et al., 1950)) and normochromic
346 normocytic anaemia characterised by erythroid hypoplasia and reticulocytopenia (Lane and Alfrey,
347 1965). The correction of riboflavin deficiency improved haematologic status in Gambian adults
348 (Fairweather-Tait et al., 1992); the relationship between riboflavin status and haematologic status is
349 further described in Sections 2.3.7 and 2.4.2.

350 Due to the photosensitivity of riboflavin, phototherapy used to treat hyperbilirubinemia in newborns
351 was also associated with low riboflavin status as apparent by increases of erythrocyte glutathione
352 reductase activation coefficient (EGRAC) values with the duration of phototherapy (see Section 2.4.2.
353 on EGRAC) (Gromisch et al., 1977; Tan et al., 1978; Hovi et al., 1979; Parsons and Dias, 1991). The
354 maximum absorption spectrum of riboflavin is at a wavelength similar to that at which the degradation
355 of bilirubin occurs (Gromisch et al., 1977).

356 A woman with riboflavin deficiency (indicated by an EGRAC of 2.81), although no clinical symptoms
357 of deficiency were reported, gave birth to a child with malformations of the urinary tract and with the
358 clinical and biochemical signs of multiple acyl-coenzyme A (CoA) dehydrogenase deficiency
359 (MADD) due to a heterozygous deletion of the solute carrier *SLC52A1* gene in the mother that codes
360 for the human riboflavin transporter 1 (hRFT1) (Chiong et al., 2007; Ho et al., 2011).

361 2.2.2.2. Excess

362 A Tolerable Upper Intake Level (UL) for riboflavin could not be derived by the SCF because there
363 was not sufficient clinical evidence for adverse effects of high riboflavin intakes (SCF, 2000). No
364 adverse effects from 'high' riboflavin intakes from food or supplements have been reported (Rivlin,
365 2010). The Panel notes that revising the UL for riboflavin is not within the scope of the present
366 Opinion.

367 2.3. Physiology and metabolism

368 2.3.1. Intestinal absorption

369 Dietary FMN and FAD associated with food protein are hydrolysed to free riboflavin (Merrill et al.,
370 1981; Nichoalds, 1981). Acidification in the stomach releases the non-covalently bound coenzymes
371 FAD and FMN, which are also hydrolysed to free riboflavin by non-specific phosphatases of the brush
372 border and baso-lateral membranes of enterocytes in the upper small intestine (Merrill et al., 1981;
373 Said and Ross, 2012).

374 Absorption of free riboflavin mainly takes place in the proximal small intestine through a carrier-
375 mediated, saturable transport process (Jusko and Levy, 1967; Rivier, 1973; Meinen et al., 1977;
376 Merrill et al., 1981; Daniel et al., 1983; Said and Ma, 1994; IOM, 1998; Said and Ross, 2012). A
377 carrier-mediated absorption of riboflavin is also present in the colon (Sorrell et al., 1971; Yuasa et al.,
378 2000; Said and Ross, 2012). A small amount of riboflavin circulates via the enterohepatic system
379 (Said and Ross, 2012).

380 The absorbed quantity of oral doses of riboflavin (assessed by the urinary recovery of riboflavin)
381 linearly increases according to intake up to about 25–30 mg riboflavin (Levy and Jusko, 1966; Jusko
382 and Levy, 1967) (also reported in reviews (Jusko WJ and Levy G., 1975; Merrill et al., 1981)). This
383 was confirmed by the pharmacokinetics study by Zempleni et al. (1996) using oral riboflavin doses,
384 which calculated the maximum amount of riboflavin that can be absorbed as about 27 mg. IOM (1998)
385 based its discussion on bioavailability of riboflavin on Zempleni et al. (1996), which showed that

386 absorption from the gut lumen was 95% complete within 4.4h. In a study in twenty healthy women
387 using ^{13}C -labelled riboflavin in semi-skimmed milk or ^{15}N -labelled free riboflavin and FMN in
388 spinach soup and urinary monitoring, there was no significant difference in true absorption between
389 the spinach meal and the milk meal (Dainty et al., 2007).

390 Prevalence of riboflavin deficiency is high in chronic alcoholics (Said and Ross, 2012), and the
391 proposed mechanism investigated in animals and *in vitro* is that ethanol consumption inhibits the
392 release of riboflavin from dietary FMN and FAD and its absorption (Pinto et al., 1987). A significant
393 negative association between dietary phytate forms and apparent absorption of dietary riboflavin
394 (-0.86, $p < 0.05$) was observed in ileostomy patients (Agte et al., 2005).

395 **The Panel notes** that the absorbed quantity of riboflavin linearly increases up to an intake of 25–
396 30 mg, and that absorption efficiency of dietary riboflavin is 95%.

397 2.3.2. Transport

398 Free riboflavin transported into enterocytes is subjected to adenosine triphosphate (ATP)-dependent
399 phosphorylation by the cytosolic flavokinase (EC 2.7.1.26) to form FMN subsequently converted to
400 FAD by the FAD-dependent FAD synthetase (EC 2.7.7.2).

401 Free riboflavin, FMN and FAD are transported in plasma bound to albumin and to immunoglobulins
402 (Ig) (IgA, IgG and IgM), as shown in healthy subjects (Innis et al., 1985) and in patients (Innis et al.,
403 1986). Hustad et al. (2002) (Section 2.4.3.1.) reported FAD as the major form in plasma in healthy
404 individuals compared to free riboflavin or FMN (median concentrations were 74, 10.5 and 6.6 nmol/L,
405 respectively).

406 FAD concentration in erythrocyte was reported to be higher than that of FMN (medians of 469 and 44
407 nmol/L respectively, with only traces of free riboflavin) (Hustad et al., 2002).

408 Pregnancy increases the blood concentration of a carrier protein available for riboflavin and identified
409 in umbilical cord serum and sera of pregnant women (Visweswariah and Adiga, 1987; Natraj et al.,
410 1988), that is essential to normal fetal development (Foraker et al., 2003). In *an vitro* perfusion system
411 (Dancis et al., 1985), radioactive riboflavin analysed via high performance liquid chromatography
412 (HPLC) was transferred across placentas of term mothers without being converted to FMN or FAD,
413 with a transfer rate towards the fetus that suggested a transport mediated by a carrier system, as later
414 confirmed by Dancis et al. (1986). The transfer of riboflavin to the fetus is efficient (Dancis et al.,
415 1988). Calculation of the difference in plasma concentration between the umbilical vein and the
416 umbilical artery multiplied by umbilical plasma flow in term infants, showed that fetal free riboflavin
417 uptake was 0.1 mg/kg per day (Zempleni et al., 1995). Riboflavin content of the placenta has been
418 investigated (Baker et al., 1981; Zempleni et al., 1995). Content of FAD+FMN measured by HPLC in
419 the placenta of full-term infants was higher than that of free riboflavin (Zempleni et al., 1995), as
420 already suggested in a study of placentas of 54 mothers of full term infants showing high riboflavin
421 status (Section 2.4.1.) in relation with its high FAD content (Ramsay et al., 1983).

422 **The Panel notes** that riboflavin is transported in the plasma (bound to albumin and immunoglobulins),
423 or mainly in erythrocytes, and that there is a positive transfer of riboflavin from the pregnant woman
424 to the fetus.

425 2.3.3. Distribution to tissues

426 At physiological concentrations, the uptake of riboflavin into the cells of organs is facilitated and may
427 require specific carriers (Bowman et al., 1989; McCormick, 1989; IOM, 1998). Carrier-mediated
428 processes have been identified for riboflavin transport in the liver and in human retinal pigment
429 epithelium (Said and Ross, 2012). Dainty et al. (2007) (Section 2.3.1.) suggested that the absorbed

430 riboflavin partly appears in the plasma, and partly is sequestered by the liver on the first pass through
431 the portal vein from the gut.

432 **2.3.4. Storage**

433 Most of the riboflavin in tissues, including erythrocytes (Section 2.3.2.), exists predominantly as FAD
434 and as FMN, covalently bound to enzymes (Singer and Kenney, 1974; Hustad et al., 2002). Unbound
435 FAD and FMN are hydrolysed to free riboflavin that diffuses from cells and is excreted, thus the
436 intracellular phosphorylation of riboflavin to FMN and FAD is a form of metabolic trapping important
437 for riboflavin homeostasis (Gastaldi et al., 2000; Powers, 2003). In men on a restricted riboflavin
438 intake (0.5 mg/day for 9 months) compared to controls, the riboflavin content of erythrocytes became
439 significantly lower in the restricted group within 45 days of the restriction and slowly decreased
440 further during the ensuing months (Bessey et al., 1956). When riboflavin is absorbed in excess, little is
441 stored in the body tissues and the excess is excreted, mainly in the urine (Sauberlich, 1999)
442 (Section 2.3.6.2).

443 **2.3.5. Metabolism**

444 Riboflavin is converted to its coenzymes derivatives FAD and FMN in the cellular cytoplasm of most
445 tissues, e.g. in the small intestine, liver, heart, and kidney (Darby W.J., 1981; Brown M.L., 1990;
446 IOM, 1998). The first step of this metabolism is the ATP-dependent phosphorylation of riboflavin to
447 FMN, catalysed by the enzyme flavokinase under hormonal control. In a second step, FMN is
448 complexed with specific apoenzymes to form different flavoproteins, or is mainly converted to FAD
449 by the FAD synthetase. The conversion to FAD is controlled by the FAD content of the tissues and an
450 excess of FAD inhibits this conversion as shown in rats (Yamada et al., 1990). Riboflavin is
451 metabolised only in small amounts (Sauberlich et al., 1974; Roughead and McCormick, 1991). When
452 riboflavin is in excess in tissues, it is catabolised to numerous metabolites such as
453 7-hydroxymethylriboflavin and lumiflavin (Powers, 2003).

454 **2.3.6. Elimination**

455 **2.3.6.1. Faeces**

456 No significant faecal excretion of riboflavin has been reported.

457 **2.3.6.2. Urine**

458 Intakes of riboflavin in excess of tissue capacities are excreted in the urine (Section 2.3.4.). Riboflavin
459 generally accounts for about 60–70% of all urinary flavins (McCormick, 1989; Sauberlich, 1999; Said
460 and Ross, 2012), while riboflavin metabolites, including 7a-hydroxyriboflavin, 8a-sulfonylriboflavin,
461 lumiflavin, 8a-hydroxyriboflavin, and 10-hydroxyethylflavin, could amount to 28–39% of total urinary
462 flavins (Chastain and McCormick, 1987). Some urinary metabolites also reflect bacterial catabolism of
463 riboflavin in the gastrointestinal tract (Chastain and McCormick, 1987; Powers, 2003)

464 Well-nourished subjects aged 3–62 years were given one capsule containing 1.7 mg riboflavin in
465 addition to the dietary intake (mean total riboflavin intake was 2.13 mg/day, range 0.26–5.17 mg/day),
466 and urinary excretion of riboflavin and its metabolites was investigated (Roughead and McCormick,
467 1991). The correlation between intake of riboflavin and the urinary excretion of all riboflavin
468 metabolites was weak but positive (correlation coefficients of 0.04–0.25). There was a strong positive
469 correlation ($r > 0.7$) between the urinary excretion of riboflavin expressed as a function of creatinine
470 and that of almost all urinary metabolites of riboflavin.

471 Urinary excretion over 24 hours (expressed as total riboflavin excreted or in relation to urinary
472 creatinine) can be measured directly by fluorometric methods (Chastain and McCormick, 1987;
473 Roughead and McCormick, 1991; Gibson, 2005). A more sensitive and specific HPLC method
474 includes a fixed-wave-length spectrofluorometer and allows the separation of urinary riboflavin from
475 other molecules such as riboflavin-5-phosphate, non-riboflavin fluorescing molecules and photo-

476 degraded riboflavin, thus results for riboflavin excretion via the HPLC method with fluorometry tend
477 to be lower than those with the fluorometric method alone (Smith, 1980; Gibson, 2005).

478 Urinary riboflavin has been shown to increase under conditions causing negative nitrogen balance and
479 with the administration of antibiotics (IOM, 1998; Gibson, 2005).

480 2.3.6.3. Breast milk

481 Riboflavin is secreted into breast milk in concentrations that are sensitive to maternal riboflavin intake
482 and can be increased, although slightly, by riboflavin supplementation (Deodhar et al., 1964; Nail et
483 al., 1980; Bates C. J. et al., 1982).

484 The main flavins in breast milk are riboflavin and FAD, but FMN and some riboflavin metabolites
485 (10-hydroxyethylflavin, 10-formylmethylflavin, 7 α -hydroxyriboflavin, 8 α -hydroriboflavin) are also
486 present (Roughead and McCormick (1990)).

487 The Panel used a comprehensive search of the literature published from 1990 onwards as preparatory
488 work to the present opinion in order to identify data on which DRVs for riboflavin may potentially be
489 based (Buijsse et al., 2014), including data on breast milk concentration of 'total flavin' or total or
490 free riboflavin (Ortega et al., 1999; Sakurai et al., 2005; Kodentsova and Vrzhesinskaya, 2006). The
491 Panel also considered additional individual studies reviewed by SCF (2003) or by Bates and Prentice
492 (1994) and Picciano (1995) on 'total flavin' or total or free riboflavin concentration in breast milk
493 (Nail et al., 1980; Thomas et al., 1980; Ford et al., 1983; Dostálová et al., 1988; Roughead and
494 McCormick, 1990).

495 Appendix A reports the mean concentration of 'total flavin' or total/free riboflavin in human milk
496 from healthy lactating women in eight studies. One of them was conducted in Japan but was kept for
497 completeness (Sakurai et al., 2005).

498 In seven studies conducted in Europe (Ford et al., 1983; Dostálová et al., 1988; Ortega et al., 1999) or
499 in USA and Russia (Nail et al., 1980; Thomas et al., 1980; Roughead and McCormick, 1990;
500 Kodentsova and Vrzhesinskaya, 2006), only two European studies (Ford et al., 1983; Dostálová et al.,
501 1988) clearly stated that infants were full term, and five studies in the EU or in the USA measured
502 content in mature milk (Nail et al., 1980; Thomas et al., 1980; Ford et al., 1983; Dostálová et al., 1988;
503 Ortega et al., 1999). Riboflavin was measured by different methods (fluorometric, spectrophotometric
504 methods, or microbiological methods). In the seven studies in Western countries, the mean
505 concentration of total flavin or total or free riboflavin in milk of mothers (across all stages of lactation)
506 ranged between 180 and 799 μ g/L. Specifically in unsupplemented mothers, this range was 216–485
507 μ g/L.

508 Among the studies considered, maternal riboflavin status was reported in plasma (EGRAC, see
509 Section 2.4.2.) (Ortega et al., 1999), or in urine (Nail et al., 1980; Thomas et al., 1980) by different
510 analytical methods. Mean maternal riboflavin intake was reported in four studies (Nail et al., 1980;
511 Thomas et al., 1980; Roughead and McCormick, 1990; Ortega et al., 1999), but in one study it was not
512 clear if the intake was from the diet, or supplements or both (Roughead and McCormick, 1990).
513 Focussing on three studies carried out with unsupplemented mothers in Spain (Ortega et al., 1999),
514 and in the USA (Nail et al., 1980; Thomas et al., 1980), for which the maternal riboflavin intake and
515 status were reported, the mean riboflavin concentration in mature milk ranged between 243 and 485
516 μ g/L (mid-point: 364 μ g/L).

517 Considering a mean milk transfer of 0.8 L/day during the first six months of lactation in exclusively
518 breastfeeding women (Butte and King, 2002; FAO/WHO/UNU, 2004; EFSA NDA Panel, 2009), and
519 a concentration of riboflavin in mature human milk of 364 μ g/L, the secretion of riboflavin into milk
520 during lactation is estimated to be 291 μ g/day, i.e. about 290 μ g/day.

521 2.3.6.4. Conclusion on elimination

522 The Panel notes that urine is the main route for elimination of riboflavin. The Panel considers that the
523 concentration of riboflavin in breast milk is increased by maternal oral supplementation, and that the
524 average concentration of riboflavin in mature breast milk of unsupplemented women is about
525 360 µg/L.

526 **2.3.7. Interaction with other nutrients**

527 Regarding other B-vitamins, riboflavin is involved in the metabolism of niacin and vitamin B6 (EFSA
528 NDA Panel, 2014a, 2016) and FAD is also required by the MTHFR in the folate cycle (EFSA NDA
529 Panel, 2015b) (Section 2.2.1.).

530 In Gambian men with mean EGRAC of about 2.1., the correction of riboflavin deficiency by
531 riboflavin supplementation (10 mg on 6 days per week for 4 weeks) improved haemoglobin
532 concentration, but not plasma ferritin, packed cell volume or iron absorption assessed with labelled
533 iron (Fairweather-Tait et al., 1992). In Nigerian adults, some of them anaemic and whose riboflavin
534 intake and status were unknown, supplementation with riboflavin (5 mg/day for 8 weeks) significantly
535 increased haemoglobin concentration, haematocrit concentration and erythrocyte count (Ajayi et al.,
536 1990). The mechanism by which riboflavin deficiency results in disturbance of the production of
537 erythrocytes is thought to be through impaired mobilisation of iron from ferritin (via reduced flavins)
538 (EFSA NDA Panel, 2015a).

539 **2.4. Biomarkers**

540 **2.4.1. Inflection of the urinary excretion of riboflavin**

541 Urinary excretion of riboflavin reflects dietary intake when tissues are saturated (Section 2.3.6.2.).
542 Within a few days, urinary excretion reacts to the lowering of riboflavin intake (Horwitt et al., 1950).
543 Urinary riboflavin is subject to large variations, and it is most useful in studies in which riboflavin
544 dietary intake is strictly controlled (e.g. (Boisvert et al., 1993)). It can be expressed as 24h urinary
545 riboflavin excretion (Sauberlich et al., 1974) or as fasting (spot) urinary riboflavin (Guo et al., 2016),
546 with or without correction by creatinine concentration to control for the completeness of collection.
547 (Gershoff et al., 1956; Plough and Consolazio, 1959). Cut-off values for deficiency and
548 adequacy/sufficiency have been proposed based on a number of controlled depletion/repletion studies
549 reviewed by (Sauberlich et al., 1974): values of total 24h urinary excretion of riboflavin below
550 40 µg/day (or 27 µg/g creatinine) indicated deficiency, values between 40 and 120 µg/day (or 80 µg/g
551 creatinine) indicated insufficiency, and values exceeding 120 µg/day indicated sufficiency in adults.
552 Corresponding intakes were not available. The cut-off value of 120 µg/day was recently retained by
553 (Said and Ross, 2012).

554 Two supplementation studies (Horwitt et al., 1948; Horwitt MK et al., 1949), one of them designed to
555 assess thiamin requirement, were described by **Horwitt et al. (1950)** and later used by SCF (1993)
556 (Section 4.1.). They were undertaken in the USA in men living in a 'mental institution' (hospital), who
557 consumed different amounts of riboflavin over many months (up to two years in one group) and whose
558 energy intake was not always reported. This study showed that urinary excretion of riboflavin
559 increases as riboflavin intake increases. Across the two projects, 24h urinary riboflavin excretion was
560 measured with microbiological and fluorometric methods in a total of 66 subjects. Across the two
561 projects, riboflavin intake was 0.55 mg/day (basal diet alone), or 0.75, 0.85, 1.1, about 1.6, 2.05, 2.15,
562 2.55 and 3.55 mg/day; all intake values from basal or supplemented diets were obtained by chemical
563 analyses (except the 1.6 mg/day provided by a hospital diet consumed *ad libitum*). Differing numbers
564 (unclear reporting: 11 up to either 39 or 42) of these subjects were investigated under several of these
565 different riboflavin regimen. The highest increase in mean urinary excretion between two doses, i.e.
566 mean urinary excretion from 97 to 434 µg/day, corresponded to total riboflavin intakes between 1.1
567 and 1.6 mg/day. The Panel notes that the inflection in the urinary excretion curve occurred at
568 riboflavin intakes between 1.1 and 1.6 mg/day.

569 The results from the study by Horwitt et al. (1950) were taken into account in the review by Bro-
570 Rasmussen (1958) on 14 studies in adults, pregnant women and children in Western countries
571 published between 1941 and 1950. This review showed that, in adults, the inflection point at which the
572 tissues are saturated with riboflavin and its excretion into the urine starts to increase corresponds to a
573 dietary intake of riboflavin between 1.0 and 1.6 mg/day.

574 In a recent study on Chinese adult men (**Guo et al., 2016**), 78 (73 completers) young healthy men
575 (aged 18–22 years) in the army, were randomly assigned either to one of six groups that received, for
576 six weeks, daily riboflavin supplements of 0, 0.2, 0.4, 0.6, 0.8, or 1.0 mg, respectively. They had no
577 clinical signs of riboflavin deficiency, were physically active, and mean body weights were 62.9–
578 68.8 kg according to groups, and mean energy intake was 13.9 MJ/day. The mean riboflavin intake
579 from food was between 1.0 and 1.1 mg/day according to groups (mean baseline intake obtained from
580 chemical analysis), therefore the total riboflavin intake (food + supplements) was 1, 1.3, 1.5, 1.6, 1.9,
581 2.0 mg/day for the six groups, respectively. In the group with a riboflavin intake of 1.5 mg/day, mean
582 ‘fasting’ urinary riboflavin excretion (assessed fluorophotometrically in the morning urine) was
583 543 µg/g creatinine. With riboflavin intakes above 1.4 mg/day (calculated by the authors), riboflavin
584 excretion showed a strong positive linear correlation with riboflavin intake ($R^2 = 0.9667$, $p < 0.01$).
585 The Panel notes the inflection point of the curve of mean urinary excretion according to intake,
586 calculated by the author as the intercept of two regression lines developed among different riboflavin
587 intake groups, is 1.4 mg/day, which is a result similar to that of Horwitt et al. (1950) although the
588 excretion values were not similar.

589 Older subjects in Guatemala (4 men and 10 women, mean age was 70.9 years), with light physical
590 activity, participated in a 16-week intervention study (**Boisvert et al., 1993**) (Section 2.4.2.). Fourteen
591 subjects were fed for 2–5 weeks a basal diet with a low content of riboflavin (weekly mean was 0.65–
592 0.7 mg/day assessed by a microbiological assay), and with an average weekly energy content of 10.2
593 MJ/day. In the following periods (duration 2–5 weeks each), the diet was supplemented with increases
594 of 0.2 mg riboflavin per period, amounting to a total riboflavin intake of 0.9, 1.1, 1.3 and 1.5 mg/day,
595 respectively. There was a sharp increase in mean 24h urinary excretion of riboflavin (assessed by
596 HPLC with fluorescence detection) for an intake between 1.1 and 1.3 mg/day. At these intakes, mean
597 urinary excretion increased from about 12.4 to 79 µg/day but was higher than 141 µg/day only at
598 intakes ≥ 1.5 mg/day. The Panel notes that the inflection point of the curve of mean urinary excretion
599 according to intake, calculated by the authors as the intercept of two regression lines, was
600 1.13 mg/day.

601 In the USA (**Brewer et al., 1946**), 14 young healthy women (aged 21–32 years, body weights in the
602 range 45.5–68.2 kg) followed two six-day preliminary periods on a self-selected diet supplemented
603 only in the second period with 3 mg/day of riboflavin. Then, the following phase was composed of
604 several 12-day experimental periods. The subjects consumed a controlled experimental diet providing
605 0.79 mg/day riboflavin (analytically measured) for a first period of 12 days and, between each
606 following 12-day experimental period, they followed a three-day intermediate period when they
607 consumed again their self-selected diet supplemented with 3 mg/day riboflavin (to reach a high tissue
608 content of riboflavin at the start of the following period). The controlled experimental diet provided
609 8.8–9.6 MJ/day throughout the study and the authors estimated the energy requirement for each
610 subject on the basis of her activity, size and food habits. Three to nine subjects were studied at each of
611 the following total riboflavin intakes: 0.79, 1.04, 1.26, 1.62, 2.23 and 2.72 mg/day (each value being
612 the average over each 12-day experimental periods). Average 24h urinary excretion of riboflavin
613 (measured by fluorometry or an adsorption procedure) was averaged for the last three days of each
614 period, and values were: 0.07, 0.16, 0.13, 0.32, 1.18 and 1.31 mg/day. The Panel notes that the
615 inflection point in the relationship between urinary excretion and intake occurred between the intakes
616 of 1.26 and 1.62 mg/day (1.44 by interpolation). The Panel also notes that the authors plotted the
617 averages for urinary excretion of riboflavin against riboflavin intake for (i) their study, (ii) five other
618 studies in women published in 1941–1945 and (iii) all data combined. For each of these groups of
619 data, one linear regression line was plotted for urinary riboflavin at intakes ranging from 0.5 to
620 2 mg/day, and another linear regression line was plotted for intakes ranging from 1.3 to 7 mg/day. The

621 points of intersection of these two lines were between intakes of 1.3 and 1.5 mg/day riboflavin, above
622 which a sharp increase in urinary excretion of riboflavin occurred. The Panel notes that this result is in
623 line with the other studies described above.

624 Intervention studies with riboflavin (alone or in combination) or depletion/repletion studies, conducted
625 in the EU (Van der Beek et al., 1988), USA (Keys et al., 1944; Davis et al., 1946; Roe et al., 1982;
626 Alexander et al., 1984; Roughead and McCormick, 1991), and India (Bamji, 1969), in healthy men
627 and women of a wide range of ages showed that the urinary excretion of riboflavin (or total flavin)
628 (collected as spot or 24h urine, either corrected by creatinine or not) increases with increased
629 intakes/supplements over a range of around 2 to 11 mg/day.

630 Data from the Verbundstudie Ernährungserhebung und Risikofaktoren Analytik (VERA Study), an
631 observational study made in a subsample of 2,006 adults (women n = 1,144) of the German National
632 Consumption Study I, showed that median 24h urinary excretion was 614 and 504 µg/day (Heseker et
633 al., 1992). The median riboflavin intake was 1.5 and 1.3 mg/day (2.5–97.5th percentiles: 0.8–3.4 and
634 0.5–2.9 mg/day) for men and women, respectively (Heseker et al., 1994).

635 The inclusion of HPLC measurements in the most recent analytical methods (e.g. (Roughead and
636 McCormick, 1991; Boisvert et al., 1993)) reduced the overestimation of riboflavin excretion compared
637 to older methods e.g. microbiological or fluorometric assays (Horwitt et al., 1950; Bro-Rasmussen,
638 1958), which could not separate the non-active flavin metabolites from the riboflavin fraction of the
639 vitamin in urine, thus improving its reliability as biomarker of nutritional status (Section 2.3.6.2.).

640 **The Panel considers** that 24h (preferably) or fasting urinary excretion of riboflavin is a suitable
641 biomarker of riboflavin short-term intake and of riboflavin status. The Panel also notes that urinary
642 excretion of riboflavin is not a sensitive marker of riboflavin intakes below 1.1 mg/day (Horwitt et al.,
643 1950). The Panel considers that the inflection of the mean urinary excretion curve in relation to
644 riboflavin intake reflects body saturation of riboflavin, and the saturation of all metabolic pathways of
645 riboflavin, thus indicating a level at which all riboflavin functions are fulfilled. Regressing urinary
646 excretion against intake can be useful to derive the requirement. The Panel notes that the
647 methodological limitations, especially in studies with older analytical methods (e.g. microbiological or
648 fluorometric assays), can influence the results for absolute values of urine riboflavin (Section 2.4.1.),
649 but assumes that the overall profile of the curve as a function of intake and the inflection point of this
650 curve are not affected.

651 2.4.2. Erythrocyte glutathione reductase activation coefficient (EGRAC)

652 The activity of EGR (Section 2.2.1.) expressed in terms of activation coefficient (AC) is the ratio of
653 the enzyme activity measured *in-vitro* with and without addition of the cofactor FAD. An EGRAC
654 of 1 indicates a complete saturation of EGR with intracellular FAD, while values higher than 1
655 indicate an incomplete saturation of the enzyme by intracellular FAD. EGRAC therefore provides
656 indirect information on the riboflavin status, to which it is inversely related, and is considered to
657 indicate the degree of tissue saturation with riboflavin (Sauberlich et al., 1974; Hoey et al., 2009).
658 EGRAC cannot be used in people with G6PD deficiency, as their glutathione reductase has an
659 increased avidity for FAD, leading to *in-vitro* activity that can be about 1.5 to 2 times higher than in
660 erythrocytes with normal G6PD activity (Thurnham, 1972; Nichoalds, 1981; Anderson et al., 1987;
661 Bates, 1987; Mushtaq et al., 2009), and that may prevent the identification of a low riboflavin status
662 (Sections 2.2.1. and 2.4.4.). EGRAC is sensitive to riboflavin intake, particularly below 1.0 mg/day
663 both in young and older adults (Bates et al., 1989; Boisvert et al., 1993), but is 'virtually unaffected
664 by daily variations in riboflavin intakes' (Boisvert et al., 1993). In an observational study on 927 free-
665 living adults aged 60 years or more, tobacco smokers had higher EGRAC than non-smokers
666 (Sadowski J.A., 1992).

827 In the 16-weeks supplementation study by **Boisvert et al. (1993)** (Section 2.4.1.) in 14 Guatemalan
828 older subjects with a mean baseline EGRAC of 1.64, EGRAC decreased significantly with increasing

829 riboflavin intake. In 10 out of 14 subjects, at a mean riboflavin intake of 1.3 mg/day, EGRAC was
 830 below the 'limit of normality' of 1.34 chosen by the authors. Based on the inflection point of the curve
 831 of mean urinary excretion of riboflavin according to mean EGRAC (that reflects body saturation),
 832 urinary excretion started to increase at EGRAC below 1.3–1.4. The Panel considers that from the
 833 results of this study, an EGRAC of 1.3 or less can be used to define adequacy in relation to changes in
 834 urinary excretion.

835 In an intervention study in Filipino women, either non-pregnant (n = 6), pregnant (n = 12, 2nd or 3rd
 836 trimester) or lactating (n = 11, mean of 7 weeks of lactation), and Filipino children aged 4–6 years
 837 (n = 20) and 10–12 years (n = 14), all with mean EGRAC at baseline ranging between 1.3 and 2,
 838 EGRAC was measured but not urinary excretion of riboflavin, and the content of the basal diet was
 839 analysed chemically (Kuizon et al., 1998). The habitual riboflavin intake was low (0.25–0.34 mg/day
 840 in children, 0.45 mg/day in non-pregnant women and 0.30–0.53 mg/day in pregnant and lactating
 841 women), and the energy intake approximately met the WHO/FAO 1976 recommended dietary
 842 allowances (RDA)². The adult participants went through four sequential feeding periods with duration
 843 of 8–10 days each: with a diet containing riboflavin at the usual level of their intake (period 1) or at
 844 increasing percentages of the 1976 Filipino RDA (0.5 mg/day) i.e. 80% (period 2), 100% (period 3)
 845 then 120% (period 4). Thus, mean riboflavin intake increased up to 1.09 mg/day in non-pregnant
 846 women, up to 1.56 mg/day in pregnant women and up to 1.6 mg/day in lactating women in the last
 847 period. The children went through two feeding periods at their usual level of intake, then two periods
 848 with increasing intake up to a mean of 1.21 mg/day. By regression analysis, the authors showed that
 849 the mean intake needed to reach an EGRAC below 1.3 were 0.72 mg/day (0.38 mg/1,000 kcal) in non-
 850 pregnant women, 1.36 mg/day (0.58 mg/1,000 kcal) in pregnant women, 1.31 mg/day
 851 (0.60 mg/1,000 kcal) in lactating women, 0.58 mg/day (0.43 mg/1,000 kcal) in children aged 4–
 852 6 years and 0.70 mg/day (0.38 mg/1,000 kcal) in children aged 10–12 years.

853 In an intervention study in Gambia (non-randomised), 278 infants followed between 0 and 2 years and
 854 their mothers, with mean EGRAC of 1.52 (cord blood) and 1.95 (at parturition), were studied to
 855 investigate the effect of supplementation on riboflavin status (Bates C. J et al., 1982) (Section 4.2.).
 856 Some infants (n = 175) were breastfed and received a weaning food supplemented with riboflavin (1.4
 857 µg/g fresh weight) between 3 and 12 months of age in addition to the local weaning food. Their
 858 mothers were supplemented to increase the content of riboflavin in breastmilk. Another group of
 859 infants were breastfed and, received, at 3–4 months of age, a local weaning food which was a poor
 860 source of vitamin (content not given), and their mothers were not supplemented. The mean EGRAC
 861 corresponding to un-supplemented intakes (breast milk and weaning food) ranging between 0.13 and
 862 0.21 mg/day in infants aged 0–12 months remained always above or only slightly below 1.3. However,
 863 mean EGRAC remained below 1.3 until 12 months (although it increased between 9 to 12 months in
 864 20% of the infants) in infants receiving the supplemented weaning food and breastmilk from
 865 supplemented mothers (total intake 0.3–0.4 mg/day).

866 Usual intakes of 0.5 mg/day induced mean EGRAC in Gambian pregnant and lactating women of 1.75
 867 and 1.82, respectively, with associated clinical signs of deficiency, especially in mothers close to
 868 parturition (Bates, 1981). In a study in India on pregnant and non-pregnant women, pregnant women
 869 with clinical signs of deficiency had a mean EGRAC significantly higher than that of non-pregnant
 870 women with clinical signs of deficiency or that of pregnant women without clinical signs of deficiency
 871 (2.64 vs 2.05 with p < 0.001, and 2.11 with p < 0.05, respectively) (Bamji and Prema, 1981) (Section
 872 5.2.3.1). As regards association between EGRAC and some other health parameters, in a randomised
 873 controlled trial (RCT) in 123 women with EGRAC > 1.4, supplementation with 2 or 4 mg/day
 874 riboflavin for 8 weeks, compared with placebo, in addition to a mean intake of 1.1–1.3 mg/day
 875 according to groups, did not lead to any significant change in any of the haematological parameters
 876 investigated (Powers et al., 2011). However, in this study, a significant positive relationship (p < 0.02)

² Energy intake was about 1,900 kcal/day for non-pregnant, about 2,300–2,400 kcal/day for pregnant and lactating women, and about 1,350 and 1,800 kcal/day for children aged 4–6 years and 10–12 years, respectively.

877 was observed between baseline EGRAC and the change in haemoglobin concentration in the 4 mg/day
878 group or both supplemented groups combined (but not in the 2 mg/day group). There was also a
879 significant association between baseline tertile of EGRAC and the change in erythrocyte number
880 ($p = 0.002$).

881 In a study on apparently healthy children (12–14 years) in Croatia, 20% of the 124 subjects had
882 baseline EGRAC > 1.20 (Suboticanec et al., 1990). Then, 38 subjects were assigned to a ‘riboflavin
883 group’ supplemented with 2 mg/day riboflavin for two months and 40 received a placebo (mean
884 baseline EGRAC: 1.15 and 1.13 respectively, no randomisation, no information on energy or
885 riboflavin intake from the diet). Mean EGRAC did not change significantly in the placebo group (1.12
886 compared to 1.13 at baseline), while it decreased significantly in the riboflavin group (1.00 compared
887 to 1.15 at baseline, $p = 0.001$) in which there were no subjects with EGRAC > 1.20 anymore. This
888 result in children is in line with results from intervention studies in the EU and the USA, which
889 showed that EGRAC decreases with increasing riboflavin intake in healthy young and older adults.
890 EGRAC exceeded 1.3 (i.e. 1.37–1.46) with low riboflavin intakes (e.g. 0.53 mg/day) (Van der Beek et
891 al., 1988). It was above 1.2 at intakes of 0.6 mg/1,000 kcal (energy intake not given), but declined
892 following increased riboflavin intakes of 0.8 and 1.0 mg/1,000 kcal (Roe et al., 1982). In older adults
893 and adolescent rural Gambians with initial EGRAC ranging from 1.6 to 2.06, and median dietary daily
894 riboflavin intake of 0.7 mg/day, EGRAC decreased with supplementation (doses ranging from 0.25 to
895 2.5 mg/day), reaching values of 1.3–1.4 with total intakes between 1.7 and 2.5 mg/day (Bates et al.,
896 1989).

897 It was previously considered that an adequate riboflavin status was defined as an EGRAC of 1.2 or
898 less (Glatzle et al., 1970; Sauberlich et al., 1974; Sadowski J.A., 1992; Benton et al., 1997; Sauberlich,
899 1999), insufficiency as EGRAC between 1.2 and 1.4, and deficiency as EGRAC greater than 1.4
900 (Sauberlich et al., 1974; Sadowski J.A., 1992; Sauberlich, 1999). A revised cut-off of 1.3 to define
901 adequacy was used (Bates et al., 2016). From the comparison of the performance of the analytical
902 methods used in the National Diet and Nutrition Survey (NDNS) in 1990 and 2003, Hill et al. (2009)
903 concluded that the analytical method used in 1990 NDNS significantly underestimated the EGRAC
904 compared to that used in 2003 NDNS ($p < 0.0001$), due to methodological differences. The authors
905 concluded that the EGRAC analytical method should be standardised for measuring EGRAC in
906 nutrition surveys. In a systematic review including 18 supplementation studies (Hoey et al., 2009), the
907 authors explained that a cut-off of 1.3 had been proposed elsewhere as ‘generally indicative of
908 suboptimal status’ or ‘upper limit of a normal range’ or ‘upper limit of normality’ (Bates C. J. et al.,
909 1982; Powers et al., 1987; McNulty et al., 2006) and was a result of a ‘change of assay methodology’
910 compared to earlier studies.

911 Data on riboflavin intake and EGRAC are available from two large European observational studies. In
912 the NDNS (years 5–6 i.e. 2012/13–2013/14), a survey representative of the UK population (Bates et
913 al., 2016), for adults 19–64 years, intake ($n = 965$ men and women) and EGRAC ($n = 526$ men and
914 women) were measured. Mean EGRAC was 1.36, with 55% of the adults with an EGRAC above 1.3,
915 and the mean intake was 1.61 mg/day (2.5–97.5th percentiles: 0.54–3.14 mg/day). In earlier NDNS
916 (1990 and 2003), EGRAC were not correlated with intake (Hill et al., 2009). Data from the VERA
917 Study made in 2,006 adults in Germany (Section 2.4.1.) showed a median EGRAC of 1.33 and 1.37
918 (Heseker et al., 1992), with a median riboflavin intake of 1.5 and 1.3 (2.5–97.5th percentiles: 0.8–3.4
919 and 0.5–2.9 mg/day) for men and women, respectively (Heseker et al., 1994).

920 **The Panel** considers that EGRAC is a useful biomarker of riboflavin status. It is high in case of
921 clinical symptoms of riboflavin deficiency, and decreases with increasing riboflavin intakes. The Panel
922 notes that the analytical methods to assess EGRAC are not standardised. From a study in older adults,
923 the Panel also considers that an EGRAC of 1.3 or less indicates adequate riboflavin status based on the
924 inflection point observed in the relationship between mean EGRAC and mean urinary excretion. The
925 Panel considers that this cut-off value may be used in younger adults, children, infants, pregnant
926 women, lactating women.

927 **2.4.3. Plasma and erythrocyte riboflavin, FAD, FMN**928 **2.4.3.1 Plasma riboflavin, FAD and FMN concentration**

929 Plasma/serum concentrations of riboflavin, FMN and FAD have been proposed to evaluate riboflavin
930 status. However, no cut-off value for these biomarkers to assess riboflavin deficiency and/or adequacy
931 has been proposed. Plasma/serum riboflavin reflects recent dietary intake and therefore is variable as
932 reviewed by Sauberlich et al. (1974) and it is significantly lowered by tobacco smoking, as
933 investigated by Ulvik et al. (2010).

934 In the RCT on Chinese adult men (Guo et al., 2016) (Section 2.4.1.), compared to the group with an
935 intake of 1.0 mg/day, fasting plasma free riboflavin concentration was significantly higher at a mean
936 total riboflavin intake of 1.5 mg/day ($p < 0.05$) and continued to increase for the higher intake levels
937 investigated.

938 In a randomised, placebo-controlled study in Northern Ireland, 46 older subjects with EGRAC ≥ 1.2
939 (selected from a population of 124 individuals with mean age of 69 years) received for 12 weeks either
940 a placebo ($n = 23$) or a daily riboflavin dose of 1.6 mg ($n = 23$) after an overnight fast (Hustad et al.,
941 2002). Mean baseline dietary intake (1.6 mg/day) did not differ significantly between groups. Mean
942 plasma free riboflavin and plasma FMN increased significantly after supplementation compared to
943 baseline (13.2 to 19.5 nmol/L or by about 83%, $p = 0.001$, and 6.5 to 7.9 nmol/L or by about 27% ($p =$
944 0.04 respectively), while plasma FAD (i.e. the major form present in plasma, Section 2.3.2.) did not.
945 Plasma FMN was strongly associated with the plasma concentration of its precursor riboflavin
946 (Spearman correlation coefficient 0.58, $p < 0.01$), while the correlation coefficient of plasma FAD
947 with its precursor FMN was lower (0.30, $p < 0.01$), and plasma riboflavin and FAD concentrations
948 were not correlated. None of these plasma concentrations were correlated with EGRAC.

949 This result of Hustad et al. (2002) on a relationship of plasma riboflavin and FMN (but not FAD) with
950 riboflavin intake is in line with a previous study in the USA, in which 10 men received a basal diet
951 containing 0.55 mg/day riboflavin whilst 6 other men received the basal diet for 16 months and were
952 supplemented with 2.55 mg/day riboflavin for 14 months, and 3.55 mg/day riboflavin for the last two
953 months (Bessey et al., 1956) (Section 2.4.3.2.). Supplemented subjects were reported to have
954 'significantly' higher mean **plasma free riboflavin plus FMN** compared to the restricted group (about
955 19.2 vs 7.6 nmol/L) and higher mean **plasma total riboflavin** (about 83.2 vs 63.7 nmol/L), but a
956 similar mean plasma FAD (about 62.4 vs 58.6 nmol/L) (statistics not reported).

957 However, the results of Hustad et al. (2002) are in contrast with an observational study (Vasilaki et al.,
958 2010) that reported, in 119 healthy subjects, a positive correlation between plasma FMN and FAD,
959 and between plasma free riboflavin and plasma FAD or FMN ($r = 0.5$, 0.49 and 0.55, respectively;
960 $p < 0.001$).

961 **The Panel notes** that plasma free or total riboflavin reflects recent intakes, and that plasma free
962 riboflavin and FMN increase with riboflavin supplementation, while plasma FAD is not a sensitive
963 biomarker of riboflavin intake. The Panel notes that no plateauing of the riboflavin concentration in
964 plasma was observed in the range of intake investigated (1–2 mg/day) and that no conclusion can be
965 drawn regarding the interpretation of the results on plasma concentration for this range of intake. The
966 Panel notes that plasma riboflavin, FMN or FAD are not correlated with EGRAC and that no normal
967 range or cut-off value to assess riboflavin deficiency and/or adequacy has been proposed for these
968 biomarkers.

969 **2.3.4.2. Erythrocyte riboflavin, FAD, FMN concentration**

970 The erythrocyte concentration of FAD and FMN (i.e. the main forms present in erythrocytes,
971 Section 2.3.2.) has been considered for the evaluation of riboflavin status (Burch et al., 1948). A cut-
972 off of 270 nmol/L for erythrocyte riboflavin has been proposed to define riboflavin deficiency (IOM,

973 1998). According to Sauberlich et al. (1974), who used the available evidence (ICNND, 1963) to set
974 guidelines for the interpretation of erythrocyte concentrations of riboflavin in adults, concentrations of
975 less than 270 nmol/L indicated deficiency, between 270 and 400 nmol/L in cells indicated
976 insufficiency and more than 400 nmol/L in cells indicated sufficiency.

977 In a first intervention study in India in 16 healthy subjects and 11 subjects with clinical signs of
978 riboflavin deficiency (Bamji, 1969), at baseline, the mean erythrocyte total riboflavin content in
979 deficient subjects was significantly lower compared to healthy subjects (616.1 vs 854.0 nmol/L,
980 $p < 0.01$) and increased to 920.7 nmol/L (significance not reported) after 7 days of supplementation
981 with 10 mg/day riboflavin. In a second intervention study of 15–18 days described in the same paper,
982 4 healthy women received a basal diet containing 0.6 mg/day riboflavin, subsequently supplemented
983 with riboflavin at weekly intervals to reach a total intake of 0.8, 1 and 1.2 mg/day respectively. The
984 erythrocyte total riboflavin concentrations did not change except in one subject (statistics not given),
985 which may indicate saturation.

986 In the study by Bessey et al. (1956) (Section 2.4.3.1), in which 10 men received a basal diet containing
987 0.55 mg/day riboflavin and 6 men received the basal diet for 16 months then were supplemented (2.55
988 mg/day for 14 months, then 3.55 mg/day for two months), the mean erythrocyte riboflavin
989 concentration in the restricted group was lower than in the supplemented group (315.9 vs 602.1
990 nmol/L, statistics not provided). In a second study described in the same paper, 4 groups of 7–8 men
991 each were fed, for 9 months (280 days), a basal diet (0.4 mg/day riboflavin) supplemented with
992 different amounts, reaching a total intake of riboflavin ranging across groups between 0.5 (restricted
993 group) and 2.4 mg/day. The restricted group was later supplemented with riboflavin (1.3 mg/day for
994 71 more days and 2.4 mg/day for the last two weeks). A fifth group was fed with a regular hospital
995 diet (1.6 mg/day riboflavin). At baseline, all groups had similar erythrocyte riboflavin concentration
996 (about 540 nmol/L). During the first 9 months, the restricted group had significantly lower erythrocyte
997 riboflavin (range 321.3–569.7 nmol/L) ($p = 0.05$) compared to the three other groups that were not
998 different from each other (range between 488.7 and 648 nmol/L) or from the 5th group on the hospital
999 diet and did not change with time. This difference with the restricted group was significant when data
1000 were analysed between day 80 and day 280 when the erythrocyte concentration in the restricted group
1001 was the lowest i.e. about 405 nmol/L (but not anymore at the end of the study when the restricted
1002 group was additionally supplemented to 2.4 mg/day). The authors concluded that an erythrocyte
1003 riboflavin content of 540 nmol/L or more indicates an adequate intake, i.e. a concentration that
1004 occurred in most individuals at intakes of about 1.5 to 2.5 mg/day. At higher intakes (10 mg/day), the
1005 authors reported that, after a temporary increase of few hours, erythrocyte riboflavin content returned
1006 to values of 540–675 nmol/L, which may indicate saturation. The authors considered an erythrocyte
1007 riboflavin concentration of 405 nmol/L, on the contrary, as an indication that the intake of riboflavin
1008 (i.e. about 0.5 mg/day) should be increased.

1009 In an observational study by Graham et al. (2005), the authors compared 84 pregnant women in Nepal
1010 (mean EGRAC = 1.7, mean erythrocyte riboflavin 141 nmol/L and unknown riboflavin intake) with
1011 unpublished data from healthy Californian adults, in which the 5th percentile of erythrocyte riboflavin
1012 concentration was 170 nmol/L. An erythrocyte concentration of riboflavin + FAD below 170 nmol/L
1013 detected 92% of subjects with EGRAC ≥ 1.4 , whilst 73% of those with EGRAC < 1.4 had erythrocyte
1014 riboflavin+FAD concentrations above 170 nmol/L.

1015 In the RCT by Hustad et al. (2002) in which 46 older adults with EGRAC ≥ 1.2 received either a
1016 placebo or a daily riboflavin dose of 1.6 mg for 12 weeks in addition to a baseline intake of
1017 1.6 mg/day (Section 2.4.3.1.), after supplementation, the erythrocyte concentration of free riboflavin
1018 remained below the limit of quantification (< 1 nmol/L), while mean erythrocyte FMN increased
1019 compared to baseline (32 to 54 nmol/L or by 87%, $p < 0.001$), as well as mean erythrocyte FAD (463
1020 to 525 nmol/L or by 14%, $p = 0.01$). Erythrocyte FMN was correlated with erythrocyte FAD (0.57, p
1021 < 0.01). Both erythrocyte FMN and FAD were correlated with EGRAC ($r = 0.45$, $p < 0.01$ and 0.30, p
1022 < 0.05 , respectively). Neither erythrocyte FMN or FAD was correlated with plasma FMN or FAD.

1023 In the observational study by Vasilaki et al. (2010), on 119 healthy subjects, erythrocyte FMN was
1024 also positively correlated with erythrocyte FAD ($r = 0.44$, $p < 0.001$). Erythrocyte FMN (but not FAD)
1025 was positively correlated with erythrocyte free riboflavin ($p < 0.001$). However, contrary to Hustad et
1026 al. (2002), erythrocyte FAD was weakly but significantly correlated with plasma FAD ($r = 0.21$,
1027 $p < 0.05$).

1028 **The Panel notes** that the concentration of FAD and FMN in erythrocyte could be considered a marker
1029 of long-term riboflavin intake. Erythrocyte concentration of riboflavin (mainly FMN and FAD) is
1030 decreased with riboflavin deficiency. However, the Panel notes that limited data are available on a
1031 dose-response relationship with riboflavin intake: erythrocyte total riboflavin was not a sensitive
1032 biomarker of riboflavin intakes in the range 0.8–1.2 mg/day in one study, while in another study,
1033 erythrocyte FMN and to a lower extent erythrocyte FAD reacted to riboflavin supplementation of 1.6
1034 mg/day in addition to the baseline intake of 1.6 mg/day. The Panel notes that erythrocyte FMN and
1035 FAD are correlated with EGRAC, while correlation with plasma values is unclear. A variety of cut-off
1036 values for erythrocyte concentration of riboflavin (or riboflavin + FAD) have been proposed to assess
1037 riboflavin deficiency or adequacy. The Panel thus considers that additional data are required before a
1038 conclusion on the suitability of the erythrocyte riboflavin content as a biomarker of riboflavin status
1039 can be made.

1040 2.4.4. Pyridoxamine phosphate oxidase (PPO) activity and activation coefficient

1041 As for EGR, an activation coefficient for PPO (Section 2.2.1.), i.e. PPOAC, can be defined: PPO is
1042 expressed as nmol pyridoxal phosphate formed per hour and g haemoglobin, and PPOAC as the ratio
1043 of the enzyme activity measured with and without the cofactor FMN *in-vitro* (Bates and Powers, 1985;
1044 Mushtaq et al., 2009).

1045 PPO activity or PPOAC were proposed for measuring riboflavin status, especially in population with
1046 high prevalence of G6PD deficiency (Section 2.4.3.). In an intervention study (Bates and Powers,
1047 1985), 72 pregnant and lactating Gambian women, the vast majority with clinical signs of riboflavin
1048 deficiency, were randomly assigned to receive either a placebo ($n = 38$) or a riboflavin supplement
1049 (5 mg/day, intake from food not reported, $n = 34$). In the non-supplemented group, at the end of the
1050 study compared to baseline, mean PPO activity in haemolysates decreased (3.60 vs 4.34, $p < 0.05$) and
1051 mean EGRAC increased (mean 2.88 vs 2.20, $p < 0.001$) significantly. In the supplemented group,
1052 three women were G6PD deficient. Before supplementation, PPO was ‘similar’ in G6PD-deficient and
1053 non-deficient subjects (mean of 4.44 and 5.43, respectively), while EGRAC was lower in the deficient
1054 subjects (mean of 1.41 vs 2.24) (significance not tested). After supplementation, in subjects who were
1055 not G6PD deficient, mean EGRAC significantly decreased compared to baseline (1.37 vs 2.24) and
1056 mean PPO significantly increased (16.41 vs 5.43) ($p < 0.001$). In the G6PD-deficient subjects, the
1057 authors reported a ‘substantial stimulation’ of PPO compared to baseline (mean value of 11.85 vs 4.44,
1058 significance not tested), while the EGRAC decrease after supplementation was ‘small’ (mean EGRAC
1059 1.16 vs 1.41 at baseline).

1060 In a study in the UK, haemolysate samples were selected from a previous intervention study in
1061 145 young healthy non G6PD deficient women selected for EGRAC ≥ 1.40 (Mushtaq et al., 2009). A
1062 total of 68 samples were randomly selected from subjects who had received for eight weeks either a
1063 placebo ($n = 23$), or riboflavin (2 or 4 mg/day, $n = 23$ or 22 respectively). After supplementation,
1064 compared to baseline, mean EGRAC decreased significantly in both supplemented groups (1.34 and
1065 1.25 for the 2 and the 4 mg/day group respectively compared to 1.59, $p = 0.002$ and $p < 0.001$), and
1066 the decrease was significantly larger than in the placebo group ($p < 0.001$). Both PPO and PPOAC
1067 responded to supplementation. There was a dose-response relationship with supplementation only for
1068 PPO activity as its increase in the 4 mg/day group was significantly higher than in the 2 mg/day
1069 ($p < 0.001$), while the decrease in PPOAC was not significantly different between the supplemented
1070 groups. There was a strong inverse correlation between PPO activity and PPOAC ($r = -0.65$, $p < 0.001$)
1071 and both correlated significantly with EGRAC (baseline or post-intervention, r between 0.41 and

1072 0.57). A significant relationship was shown between PPO activity or PPOAC and riboflavin intake
1073 measured at baseline ($r = 0.35$ and 0.42 respectively, $p < 0.003$ or 0.002 respectively)

1074 **The Panel notes** that PPO activity and PPOAC are promising biomarkers, as they respond to
1075 riboflavin intake from foods or supplements and could be used in populations with a high prevalence
1076 of G6PD deficiency. However, the Panel also notes that no criteria have been developed for these
1077 biomarkers to assess riboflavin adequacy.

1078 2.4.5. Conclusion on biomarkers

1079 The Panel considers that 24h (preferably) or fasting urinary excretion of riboflavin is a suitable marker
1080 of riboflavin short-term intake and of riboflavin status. The Panel considers that the inflection of the
1081 urinary excretion curve in relation to riboflavin intake reflects body saturation of riboflavin and can be
1082 used to indicate adequate riboflavin status. The Panel notes that analytical methods can influence the
1083 results for absolute values of urinary riboflavin, but assumes that the overall profile of the curve as a
1084 function of intake and the inflection point of this curve are not affected.

1085 The Panel considers that EGRAC is a useful biomarker of riboflavin status and that EGRAC of 1.3 or
1086 less indicates adequate riboflavin status. The Panel also notes that EGRAC determination requires a
1087 single blood sample, and thus is more easily performed than urine collection over 24h. The Panel notes
1088 that there is a lack of standardisation of EGRAC measurement (thus comparison of results from
1089 different experimental/observational studies are difficult) and that EGR saturation with the coenzyme
1090 cannot be considered as representative for all riboflavin functions (described in Section 2.2.1.).

1091 The Panel considers that plasma riboflavin, either free or total, responds to riboflavin intake but this
1092 biomarker has several limitations including its sensitivity to recent intakes. However, riboflavin status
1093 can be derived from fasting concentration of free riboflavin (or free riboflavin + FMN) in plasma
1094 determined in controlled conditions. Plasma FMN, but not FAD, responds to riboflavin
1095 supplementation. A normal range or cut-off for deficiency or adequacy for plasma riboflavin, FMN or
1096 FAD is not available. The Panel considers that that additional data are required before a conclusion on
1097 the suitability of the erythrocyte riboflavin concentration as a biomarker of riboflavin status can be
1098 made. The Panel also considers that PPO activity or PPOAC are promising biomarkers but notes that
1099 no criteria have been developed for them to assess riboflavin adequacy.

1100 Overall, the Panel considers that the inflection point of the urinary excretion curve in relation to
1101 riboflavin intake is the most suitable biomarker to assess adequacy of riboflavin status. EGRAC can be
1102 used as a supportive biomarker of the urinary excretion in order to assess riboflavin status.

1103 2.5. Effect of energy intake or expenditure or exercise

1104 Twelve US young healthy normal-weight women at study entry consumed a diet with a mean
1105 riboflavin intake of 1.45 mg/day (**Belko et al., 1983**). After a 2-week basal period, in which 'caloric
1106 intakes were adjusted to achieve weight management' and subjects (mean EGRAC of 1.27) were fed a
1107 basal diet providing 2,000 kcal/day and 1.2 mg/day riboflavin (0.14 mg/MJ or 0.6 mg
1108 riboflavin/1,000 kcal), the subjects went through a four-week sedentary period. Mean EGRAC first
1109 increased to 1.41 when subjects were fed only the basal diet and had to continue their normal daily
1110 activities while limiting 'any recreational exercise'. Then, mean EGRAC decreased to 1.24 when the
1111 riboflavin content of the diet was increased by 0.2 or 0.4 mg/1,000 kcal increments (up to 1.6 or
1112 2 mg/day, i.e. 0.19 or 0.24 mg/MJ or 0.8 or 1.0 mg/1,000 kcal, depending on the subject). During the
1113 following period of exercise, mean EGRAC was 1.27 (first 3 weeks) when the diet did not change
1114 except for the increased energy intake by additional 240 kcal/day (total of 2,240 kcal, 9.37 MJ/day).
1115 Then, EGRAC decreased significantly compared to the first 3 weeks, only when riboflavin intake was
1116 increased by 0.4 mg/day (0.047 mg/MJ or 0.2 mg/1,000 kcal), in the second 3 weeks. Throughout the
1117 study, urinary excretion of riboflavin did not change during most of the exercise period, and remained
1118 significantly (but weakly) negatively correlated with EGRAC ($r = -0.23$, $p \leq 0.01$).

1119 In a US study, 12 'overweight and obese' women were randomly divided in two groups of six (**Belko**
 1120 **et al., 1984**). Both groups had an initial baseline period of non-exercise, with a diet containing
 1121 1,200 kcal and 0.96 mg/day of riboflavin (0.19 mg/MJ or 0.8 mg/1,000 kcal), and two 5-week
 1122 metabolic periods of either exercise or non-exercise (cross-over design). During the study, the
 1123 riboflavin/calorie ratio was kept constant. EGRAC increased from a baseline mean of 1.28 to 1.40
 1124 during non-exercise and to 1.49 during exercise. Mean 24h urinary excretion of riboflavin (collection
 1125 over 3 days) fell from about 48% of intake during baseline to about 30% of intake during non-exercise
 1126 and to about 19% of intake during exercise (statistically significant effect of exercise: $p = 0.01$).

1127 In another study in the USA (**Belko et al., 1985**) that also examined the effect of exercise on riboflavin
 1128 status of 'moderately overweight' women (defined as in Belko et al. (1984)), 12 women consumed a
 1129 diet providing 1,250 kcal/day. They were randomly assigned to receive either only the basal diet with
 1130 a riboflavin content of 1.2 mg/day (0.23 mg/MJ, 0.94 mg/1,000 kcal) ($n = 6$, 'moderate riboflavin'
 1131 group) or a diet containing 1.4 mg/day (0.28 mg/MJ or 1.16 mg riboflavin/1,000 kcal) ($n = 6$, 'high
 1132 riboflavin' group). Within each group, they were then randomly assigned to sequences of exercise and
 1133 non-exercise with a cross-over design. In both groups, mean EGRAC significantly increased during
 1134 exercise, compared to non-exercise, from 1.16 to 1.20 ('high riboflavin' group) and from 1.31 to 1.36
 1135 ('moderate riboflavin' group) ($p < 0.05$). Mean urinary riboflavin excretion was significantly lower
 1136 with exercise compared to non-exercise in the 'high riboflavin' group (0.176 versus 0.326 mg/day,
 1137 $p < 0.05$) but not in the 'moderate riboflavin' group (0.072 versus 0.127 mg/day).

1138 Fourteen healthy women participated in a 10-week exercise study in the USA (**Winters et al., 1992**).
 1139 After a 2-week basal period, the subjects were randomly allocated to either a diet ('low riboflavin,
 1140 LRibo') providing 1.2 mg/day riboflavin (0.15 mg/MJ or 0.6 mg/1,000 kcal, mean energy intake of
 1141 1,801 kcal/day i.e. 7.54 MJ/day) or to the basal diet supplemented with riboflavin as FMN ('high
 1142 riboflavin, HRibo') providing 1.8 mg/day riboflavin (0.22 mg/MJ or 0.9 mg/1,000 kcal, mean energy
 1143 intake: 1,933 kcal/day i.e. 8.09 MJ/day). All subjects were then randomly allocated to two four-week
 1144 metabolic periods of either exercise or non-exercise, when mean energy intake was 1,875 kcal/day
 1145 (7.84 MJ/day) and about 1,976 kcal/day (8.27 MJ/day), respectively, for both LRibo and HRibo groups.
 1146 The HRibo group had significantly lower EGRAC than the LRibo group during both non-exercise
 1147 ($p < 0.0005$) and exercise (p not reported) periods (mean: HRibo: 1.07 (non-ex), 1.109 (ex), LRibo:
 1148 1.22 (non-ex), 1.283 (ex)). However, both the LRibo and HRibo groups showed significant increases
 1149 in EGRAC during exercise periods ($p < 0.0001$ for both groups) compared to the non-exercise period.
 1150 Mean urinary excretion of riboflavin in the HRibo group was approximately three times the value of
 1151 that for the LRibo group during both no exercise (0.66 and 0.17 mg/day, respectively) and exercise
 1152 (0.46 and 0.14 mg/day, respectively) and both groups showed a significant decline in urinary
 1153 riboflavin excretion with exercise ($p < 0.01$). These results showed that EGRAC was lower and
 1154 urinary excretion is higher in the group with the higher riboflavin intake, and that EGRAC was
 1155 increased and urinary excretion decreased by exercise.

1156 Six healthy sedentary to moderately active men with high baseline mean EGRAC of 1.53, and with a
 1157 body mass index (BMI) 17.2–30.2 kg/m², were enrolled in a physical intervention metabolic study³ in
 1158 India (**Soares et al., 1993**). The study was divided in two periods of maintenance (M1 and M2 of 16
 1159 and 12 days respectively), with an exercise period of 18 days (EXER) of daily exercise in between.
 1160 The mean total energy expenditure (TEE) across metabolic periods (10.33, 11.01 and 10.64 MJ/day in
 1161 M1, M2 and EXER, respectively) was not substantially different (p value not reported). In both
 1162 maintenance periods, energy intake was 10.34 MJ/day and riboflavin intake was 1.04 mg/day (i.e.
 1163 0.10 mg/MJ or 0.42 mg/1,000 kcal). In the exercise period, additional energy was provided to
 1164 compensate for the increased energy cost of exercise (energy intake in EXER 11.63 MJ/day), and the
 1165 riboflavin intake was higher, 1.28 mg/day (or 0.11 mg/MJ or 0.46 mg/1,000 kcal). Mean EGRAC was
 1166 statistically significantly different over the three metabolic periods ($p < 0.05$): 1.36 (M1), 1.57
 1167 (EXER), and 1.54 (M2). Mean urinary excretion expressed as % of intake was significantly lower in

³ Well-controlled studies in which participants were housed in a metabolic unit are termed metabolic studies

1168 the exercise period compared to period M1 ($p < 0.05$, 18.1% (EXER, i.e. mean of 232 $\mu\text{g}/\text{day}$) versus
1169 26.2% (M1) or 22.3% (M2)).

1170 Two experiments in a US study aimed at investigating the effect of exercise in healthy subjects
1171 (**Tucker et al., 1960**). In the first experiment, seven 'normal' men on uncontrolled diets collected
1172 urine samples at rest (2h), then after they exercised, and after another period of rest after the exercise
1173 (1h). Hourly urinary riboflavin excretion during three periods of rest was significantly higher than
1174 during exercise (158, 138 and 150% of the exercise value, respectively, $p < 0.05$). In a second
1175 experiment, nine healthy men maintained a constant riboflavin intake of 2 mg/day throughout the
1176 study. During a control period of daily exercise, the energy composition of the diet needed for
1177 maintenance of their body weight was 3,300 kcal/day (i.e. 13.81 MJ/day), the riboflavin intake was 1.2
1178 mg/day (0.15 mg/MJ or about 0.6 mg/1,000 kcal), and the mean urinary excretion of riboflavin was
1179 285 $\mu\text{g}/\text{day}$. Then, the training session intensity was increased and also the diet composition was
1180 changed up to 5,500–6,000 kcal/day for maintenance of body weight (i.e. 23.03–25.12 MJ/day, with a
1181 riboflavin intake of 0.69–0.77 mg/day, 0.09–0.08 mg/MJ or about 0.33–0.36 mg/1,000 kcal). This
1182 physical activity reduced the mean urinary riboflavin excretion to 137 $\mu\text{g}/\text{day}$ by the third day
1183 ($p < 0.01$).

1184 **The Panel notes** that some results indicate that riboflavin status is modified by physical activity. This
1185 is supported by the influence of exercise on EGRAC (that increased) (Belko et al., 1984; Belko et al.,
1186 1985; Winters et al., 1992; Soares et al., 1993) and urinary excretion of riboflavin that generally
1187 decreased (Tucker et al., 1960; Belko et al., 1984; Belko et al., 1985; Winters et al., 1992; Soares et
1188 al., 1993) but not always (Belko et al., 1983). This suggests a higher utilisation of riboflavin with
1189 increased energy expenditure, thus these results support the idea that riboflavin requirement could be
1190 related to physical activity. However, the Panel notes the limitations of these studies. Only one study
1191 (Soares et al., 1993) reported total energy expenditure (TEE) in a small number of subjects, over a
1192 very wide range (8.3–19.6 MJ/day) although mean TEE did not differ during the different
1193 experimental periods in which riboflavin intake was changed. The Panel considers this a strong
1194 limitation. The Panel also notes the lack of information on the method of measurement of riboflavin
1195 intake in some of the studies, the particular aim of some of the studies (i.e. weight management studies
1196 in overweight or obese women), their short duration or small sample size, and the high variability in
1197 the characteristics of the subjects (e.g. large range of BMIs). The Panel considers that, from the studies
1198 available, there is a lack of experimental data showing a clear quantitative relationship between
1199 riboflavin status biomarkers (urinary excretion of riboflavin and EGRAC) and energy expenditure (or
1200 physical activity).

1201 2.6. Effects of genotype

1202 FAD is required as a cofactor for the enzyme MTHFR (Section 2.2.1.). A common polymorphism of
1203 the gene encoding this enzyme, MTHFR C677T polymorphism, is reported to have unfavourable
1204 metabolic and health consequences related to riboflavin. Homozygosity for the T allele is associated
1205 with up to 70% reduced enzyme activity, which is caused by an increased propensity of the enzyme to
1206 dissociate from its FAD cofactor (Guenther et al., 1999; Yamada et al., 2001) and it results in impaired
1207 folate metabolism and high plasma total homocysteine concentrations (Jacques et al., 1996; Hustad et
1208 al., 2007).

1209 Studies found that impaired functioning of the MTHFR enzyme is dependent on riboflavin status
1210 measured by EGRAC, and that elevated plasma total homocysteine concentrations are evident only in
1211 individuals with 677TT genotype and poor riboflavin status (McNulty et al., 2002; Garcia-Minguillan
1212 et al., 2014). Plasma riboflavin also emerged as a factor influencing plasma total homocysteine in men
1213 and women from the Framingham Offspring Cohort (Jacques et al., 2002), as well as in a cohort of
1214 423 healthy Norwegian blood donors (Hustad et al., 2000). An RCT with supplementation with
1215 1.6 mg/day riboflavin (baseline intake not reported) showed increased riboflavin status (measured by
1216 EGRAC) to the same extent in all genotype groups (CC, CT and TT), but plasma total homocysteine
1217 lowering was found only in people with TT genotype without any effect in those with CC and CT

1218 genotypes (McNulty et al., 2006). Thus, both observational studies and an RCT show consistent
1219 results. This genotype-specific effect of riboflavin on homocysteine concentrations is probably a result
1220 of stabilising the variant enzyme and restoring MTHFR activity.

1221 Meta-analyses of observational studies showed that the MTHFR C677T polymorphism increases the
1222 risk of high blood pressure by 24–87% (Qian et al., 2007; Niu et al., 2012; Wu et al., 2014; Yang et
1223 al., 2014). A meta-analysis of genome-wide association studies, based on data from 200,000
1224 Europeans, listed the MTHFR gene among 12 independent genetic variants associated with an
1225 increased risk of high blood pressure (Ehret et al., 2011), but mechanisms are reported to be only
1226 speculative (McNulty et al., 2017). There is also evidence that riboflavin supplementation can modify
1227 the effect of the MTHFR C677T polymorphism on blood pressure. Results from three RCTs
1228 conducted in patients with premature cardiovascular disease (Horgan et al., 2010; Wilson et al., 2012)
1229 and in hypertensive individuals without overt cardiovascular disease (Wilson et al., 2013) showed that
1230 the high blood pressure in individuals with TT genotype is highly responsive to riboflavin
1231 supplementation at a dose of 1.6 mg/day for 16 weeks in addition to the usual diet, with an average
1232 decrease by 6–13 mmHg. Importantly, the effect of riboflavin on blood pressure was independent of
1233 the effect of antihypertensive drugs taken by these patients.

1234 Two observational studies suggested that bone mineral density (BMD) is positively associated with
1235 riboflavin intake in case of MTHFR 677TT homozygosity (a genotype that has been reported to be
1236 associated with reduced BMD and increased risk of fracture) (Macdonald et al., 2004; Abrahamsen et
1237 al., 2005).

1238 Some genetic defects that result in a ‘deficiency’ of riboflavin relative to the increased need for
1239 riboflavin have been described and respond to riboflavin administration in amounts above the
1240 reference values. These gene defects lead to disturbed transport of riboflavin or of riboflavin
1241 coenzymes at the plasma membrane or between intracellular organelles or to insufficient synthesis of
1242 FAD or to dysfunctional flavoproteins and can result in a typical organic aciduria (Gregersen et al.,
1243 1986; Barile et al., 2016). The organic aciduria is the consequence of decreased activities of multiple
1244 acyl-CoA dehydrogenases that are involved in fatty acid, choline and amino acid metabolism (similar
1245 to multiple acyl-CoA-dehydrogenase deficiency (MADD, MIM #231680)). Increased excretion of
1246 dicarboxylic acids in these cases results from microsomal and peroxisomal handling of fatty acids that
1247 cannot undergo β -oxidation (Hoppel et al., 1979; Goodman, 1981; Veitch et al., 1988).

1248 Mutations of human riboflavin transporters RFT 2 and 3 (coded for by *SLC52A2* and *SLC52A3*,
1249 respectively, and expressed in brain/salivary glands and intestine, prostate/testis/stomach/pancreas,
1250 respectively) have been identified in patients with Brown-Vialetto-van Laere syndrome (homo- or
1251 compound heterozygous mutation of *SLC52A2*) and Fazio-Londe syndrome (homo- or compound
1252 heterozygous mutation of *SLC52A3*), autosomal recessive progressive neurologic disorders with early
1253 onset of sensorineural hearing loss, bulbar dysfunction and severe muscle weakness leading to
1254 respiratory insufficiency (Bosch et al., 2011; Haack et al., 2012; Subramanian et al., 2015).

1255 Several mutations in the gene coding for the FAD synthetase (FLAD1) that occurs in a cytosolic and a
1256 mitochondrial isoform have been identified in patients with riboflavin-responsive MADD and
1257 combined respiratory chain deficiency. Riboflavin responsiveness was observed in cases with
1258 mutations expressing proteins with residual enzyme activity (Olsen et al., 2016).

1259 Schiff et al. (2016) reported on a unique case of a 14 year old girl with recurrent exercise intolerance
1260 and biochemical features of the MADD syndrome, which both responded promptly to high doses of
1261 riboflavin. The authors identified a mutation of the FAD transporter (coded for by *SLC52A32*) that
1262 transports FAD from the cytosol to the mitochondrion where the flavoprotein dehydrogenases are
1263 located.

1264 **The Panel** notes that the data indicate that MTHFR 677TT genotype, with a prevalence of 12 to 24%
1265 of European populations, can increase the individual requirement for riboflavin, although the extent of

1266 this increase cannot be defined. The Panel considers that this polymorphism should be considered in
1267 determining the requirements for riboflavin.

1268 **3. Dietary sources and intake data**

1269 **3.1. Dietary sources**

1270 The primary dietary sources of riboflavin include milk, milk products, eggs, and offal according to the
1271 European Nutrient Composition Database of the European Food Safety Authority (EFSA) (Section
1272 3.2). Cow's milk contains mainly free riboflavin, and smaller amounts of FMN and FAD. Milk and
1273 dairy products make the greatest contribution to riboflavin intake in Western diets (Powers, 2003).
1274 Due to its photosensitivity, riboflavin can be lost from breast milk used in enteral nutrition of
1275 newborns (Bates et al., 1985).

1276 Currently, riboflavin as well as riboflavin 5'-phosphate sodium (Section 2.1.) can be added to food⁴
1277 and food supplements⁵. The riboflavin content of infant and follow-on formulae and of processed
1278 cereal-based foods and baby foods for infants and children is regulated⁶.

1279 **3.2. Dietary intake**

1280 EFSA estimated dietary intake of riboflavin from food consumption data from the EFSA
1281 Comprehensive Food Consumption Database (EFSA, 2011b), classified according to the food
1282 classification and description system FoodEx2 (EFSA, 2011a). This assessment includes food
1283 consumption data from 13 dietary surveys (Appendix B) from nine countries (Finland, France,
1284 Germany, Ireland, Italy, Latvia, the Netherlands, Sweden and the UK). Individual data from these
1285 nationally representative surveys (except for the Finnish surveys in children) undertaken between 2000
1286 and 2012 were available to EFSA, and classified according to the FoodEx2 food classification system
1287 (EFSA, 2011a). Riboflavin intake calculations were performed only on subjects with at least two
1288 reporting days. The data cover all age groups from infants to adults.

1290 Composition data for riboflavin were derived from the EFSA Nutrient Composition Database (Roe et
1291 al., 2013), involving several national food database compiler organisations that were allowed to
1292 borrow compatible data from other countries in case no original composition data were available.
1293 Food composition information from Finland, France, Germany, Italy, the Netherlands, Sweden and the
1294 UK were used to calculate riboflavin intakes in these countries, assuming that the best intake estimate
1295 would be obtained when both the consumption data and the composition data are from the same
1296 country. The amount of borrowed riboflavin values in the seven composition databases used varied
1297 between 15% (Germany) and 85% (Sweden). For countries not having any food composition database,
1298 i.e. Ireland and Latvia, food composition data were used from the UK and Germany, respectively.
1299 EFSA estimates are based on consumption of foods that may be fortified or not (and without taking
dietary supplements into account).

1300 Data on infants (1–11 months old) were available from Finland, Germany, Italy and UK. The
1301 proportions of breastfed infants were between 21% and 58% according to the survey considered and
1302 most breastfed infants were partially breastfed (see table footnotes of Appendices C–D). The Panel
1303 notes the limitations in the methods used for assessing breast milk consumption in infants (table
1304 footnotes of Appendices C–D) and related uncertainties in the riboflavin intake estimates for infants.

⁴ Regulation (EC) No 1925/2006 of the European Parliament and of the Council of 20 December 2006 on the addition of vitamins and minerals and of certain other substances to foods, OJ L 404, 30.12.2006, p. 26.

⁵ Directive 2002/46/EC of the European Parliament and of the Council of 10 June 2002 on the approximation of the laws of the Member States relating to food supplements, OJ L 183, 12.7.2002, p. 51.

⁶ Commission Directive 2006/141/EC of 22 December 2006 on infant formulae and follow-on formulae and amending Directive 1999/21/EC, OJ L 401, 30.12.2006, p.1 and Commission Directive 2006/125/EC of 5 December 2006 on processed cereal based foods and baby foods for infants and young children, OJ L 339, 06.12.2006, p. 16.

1305 Average riboflavin intake ranged from 0.6 to 1.2 mg/day (0.2–0.4 mg/MJ) in infants (< 1 year), from
1306 0.9 to 1.4 mg/day (0.2–0.4 mg/MJ) in children aged 1 to < 3 years, from 1 to 1.8 mg/day (0.2–
1307 0.3 mg/MJ) in children aged 3 to < 10 years and, from 1.2 to 2.2 mg/day (0.2–0.3 mg/MJ) in children
1308 aged 10 to <18 years. Average riboflavin intake ranged between 1.4 and 2.2 mg/day (0.2 mg/MJ) in
1309 adults (≥ 18 years).

1310 The main food groups contributing to riboflavin intake among infants and children aged 1–< 3 years
1311 were ‘food products for young population’ and ‘milk and milk products’. From the age of 3 years
1312 onwards, the main contributors of riboflavin were the food groups ‘milk and milk products’, ‘grains
1313 and grain-based products’ and ‘meat and meat products’. Within these three food groups, liquid milk
1314 types, fresh meat and breakfast cereals were the most contributing foods among adults. Differences in
1315 main contributors to riboflavin intakes between sexes were minor.

1316 4. Overview of dietary reference values and recommendations

1317 4.1. Adults

1318 D-A-CH (2015) considered data on 24h riboflavin urinary excretion (with a target of at least 120 µg in
1319 24h urine) and on EGRAC (with a target of EGRAC < 1.2) (Sauberlich et al., 1974). The reference
1320 values were derived in consideration of the reference values for energy intake, due to the functions of
1321 riboflavin in energy metabolism (German Nutrition Society, 2015). In long-term studies in adults
1322 consuming 9.4 MJ/day and increasing riboflavin doses (starting from an intake of 0.55 mg/day at
1323 which signs of deficiency were observed), a major change in 24h urinary riboflavin excretion occurred
1324 between intakes of 1.1 and 1.6 mg/day (0.12 and 0.17 mg/MJ), which was assumed to indicate tissue
1325 saturation (Horwitt et al., 1950) (Section 2.4.1.). Other data in children, men and women showed that,
1326 at a riboflavin intake of about 0.12 mg/MJ, adequate EGRAC and riboflavin urinary excretion are
1327 observed (Horwitt et al., 1950; Kuizon et al., 1998). An intake of 0.12 mg/MJ was considered as the
1328 Average Requirement (AR). For older adults (65 years and over), there was no indication of a
1329 requirement for riboflavin different from the one of younger adults (Boisvert et al., 1993)
1330 (Sections 2.4.1 and 2.4.2.). The PRIs for the age ranges 19–< 51, 51–< 65 and ≥ 65 years were
1331 calculated considering a CV of 10 % and the reference values for energy.

1332 In NNR 2012, because of the lack of new studies, the Nordic Council of Ministers (2014) maintained
1333 their previous AR of 0.12 mg/MJ (NNR, 2004) based on data on urinary excretion and on EGRAC
1334 (Roe et al., 1982; Belko et al., 1983; National Research Council, 1989; Toh et al., 1994). A
1335 Recommended Intake (RI) was derived at 0.14 mg/MJ, which corresponded to about 1.5–1.6 mg/day
1336 for men and 1.2–1.3 mg/day for women with moderate physical activity. The Nordic Countries
1337 stressed that, when planning diets, the riboflavin content should not be lower than 1.2 mg/day even at
1338 an energy intake below 8 MJ/day (FAO/WHO, 1967; National Research Council, 1989). A Lower
1339 level of Intake of 0.8 mg/day was set based on depletion/repletion studies (Horwitt et al., 1950;
1340 FAO/WHO, 1967; IOM, 1998). Data on riboflavin intake/status and health outcomes could not be
1341 used to set DRVs (de Vogel et al., 2008; Kabat et al., 2008; Sharp et al., 2008; Maruti et al., 2009;
1342 Shrubsole et al., 2009; Bassett et al., 2012b; Key et al., 2012).

1343 WHO/FAO (2004) set a Recommended Nutrient Intake for men and women respectively at 1.3 and
1344 1.1 mg/day. The WHO/FAO reported on studies on riboflavin status measured by EGRAC (Belko et
1345 al., 1983; Belko et al., 1984; Bates et al., 1989; Kuizon, 1992), on a daily intake of 1.7 mg/day that
1346 was largely excreted in the urine (Roughead and McCormick, 1991), and noted that riboflavin tissue
1347 saturation occurred at intake above 1.1 mg/day. Two studies undertaken in older adults were cited
1348 (Alexander et al., 1984; Boisvert et al., 1993), but no specific value was set.

1349 Afssa (2001) set PRIs based on data on urinary riboflavin excretion (Horwitt et al., 1948), adapted
1350 according to the energy requirements proposed by Afssa (2001), and discarded some studies where
1351 riboflavin status was measured as EGRAC or urinary riboflavin excretion (Roe et al., 1982; Kuizon,
1352 1992; Boisvert et al., 1993) based on their small sample size. PRIs of 1.6 mg/day (for men) and 1.5
1353 mg/day (for women) and 1.6 mg/day (for both sexes at 75 years of age or above) were proposed.

1354 The Health Council of the Netherlands (2000) set an AI of 1.1 mg/day for men and of 0.8 mg/day for
1355 women based on studies on urinary excretion (Horwitt et al., 1950; Horwitt, 1966). Urinary excretion
1356 increases at riboflavin intakes of 1.1–1.6 mg/day. A ratio between riboflavin urine excretion and
1357 riboflavin intakes appeared to be constant for an intake of 1.1 mg/day, which meant that a saturation of
1358 tissues occurred. The Council set different PRIs for men and women on the basis of different energy
1359 intakes (Bates et al., 1989; Zempleni et al., 1996). For older adults (over 51 years old), it was
1360 considered that data on urinary excretion studies and EGRAC did not suggest the setting of different
1361 PRIs from those determined for younger adults (Bates et al., 1989; Lowik et al., 1990; Boisvert et al.,
1362 1993; Bates, 1997).

1363 IOM (1998) considered mainly studies on subjects receiving riboflavin from food or food and
1364 supplements, and reporting occurrence of clinical signs of deficiency, and/or measuring EGRAC
1365 and/or erythrocyte concentration of riboflavin or changes in the riboflavin urinary excretion curve.
1366 These studies were undertaken in women (Sebrell et al., 1941; Williams et al., 1943; Brewer et al.,
1367 1946; Davis et al., 1946; Roe et al., 1982; Belko et al., 1983; Kuizon, 1992), in men (Keys et al., 1944;
1368 Horwitt M et al., 1949; Horwitt et al., 1950; Bessey et al., 1956) or both (Boisvert et al., 1993). Based
1369 on these references, the IOM considered that normal EGRAC values were associated mostly with
1370 intakes below 1.3 mg/day. Deficiency was observed for intakes of about 0.5–0.6 mg/day with
1371 measures of urinary riboflavin excretion by microbiological assays (Sebrell et al., 1941; Horwitt et al.,
1372 1950). IOM (1998) considered that the difference in riboflavin requirement between sexes was
1373 explained by size and energy expenditure. For men (19–70 years), an Estimated Average Requirement
1374 (EAR) of 1.1 mg/day and, using a coefficient of variation (CV) of 10 % (due to a lack of data on the
1375 variation in requirements), an RDA of 1.3 mg/day was determined. Regarding women, an EAR at 0.9
1376 mg/day and a RDA at 1.1 mg/day were set. It was considered that the limited data available in older
1377 adults (Alexander et al., 1984; Boisvert et al., 1993) did not support a requirement for older adults
1378 (above 70 years old) different from that of younger adults.
1379

1380 SCF (1993) assessed the intake at which clinical signs of deficiency appear, from clinical data with
1381 controlled riboflavin intakes and from epidemiological studies that reported deficiency for an intake
1382 range of 0.5–0.8 mg/day. The SCF also took into account the inflection in urinary riboflavin excretion
1383 according to increasing riboflavin intakes considered as an indication of tissue content (Horwitt et al.,
1384 1950; Bro-Rasmussen, 1958). For all adults, a Lowest Threshold Intake was defined at 0.6 mg/day.
1385 For men, an AR was determined at 1.3 mg/day by interpolation between the intakes of 1.1 and
1386 1.6 mg/day, between which a sharp increase in urinary riboflavin excretion occurred (Horwitt et al.,
1387 1950). A PRI was set at 1.6 mg/day for men also on the basis of urinary excretion studies. For women,
1388 the AR was derived from the AR for men taking into account body weight. Thus, for women, the AR
1389 and PRI were 1.1 and 1.3 mg/day, respectively. SCF acknowledged the conventional expression of
1390 riboflavin requirements on the basis of energy intake, but did not relate riboflavin requirement to
1391 energy expenditure, as flavoproteins are involved in a number of reactions not limited to energy
1392 metabolism and therefore riboflavin requirements are not related only to energy expenditure. The SCF
1393 considered that no evidence was available to set specific values for older adults.

1394 The UK COMA (DH, 1991) took into account the appearance of clinical signs of riboflavin deficiency
1395 at intakes below 0.5–0.8 mg/day (Adamson et al., 1945; Burgess, 1946; Horwitt M et al., 1949; Nicol,
1396 1949; Horwitt et al., 1950; Bro-Rasmussen, 1958; Bates, 1981). The UK COMA also took into
1397 account the sharp increase in urinary riboflavin excretion for intakes higher than 0.11 mg/MJ
1398 (0.44 mg/1,000 kcal) (FAO/WHO, 1967; DHSS, 1969, 1979) and the riboflavin intakes in British
1399 adults (Gregory et al., 1990), i.e. 1.3 mg/day (for men) and 1.1 mg/day (for women), associated with
1400 EGRAC values below 1.3 considered as representing saturation of tissues with riboflavin (Glatzle et
1401 al., 1970; Thurnham et al., 1970). The Reference Nutrient Intakes were determined at 1.3 mg/day
1402 (men) and 1.1 mg/day (women). The corresponding Lower Reference Nutrient Intakes (LRNI) was
1403 0.8 mg/day for all adults and the EARs were 1.0 and 0.9 mg/day for men and women respectively. The
1404 limited data in older adults (Thurnham et al., 1970) and the decreased resting energy expenditure and
1405 riboflavin intakes with age were considered as insufficient evidence to set specific values for older
1406 adults.

1407 An overview of DRVs for riboflavin for adults is given in Table 1.

1408 **Table 1:** Overview of Dietary Reference Values for riboflavin for adults

	D-A-CH (2015)^(a)	NCM (2014)^(a)	WHO/FAO (2004)	Afssa (2001)	NL (2000)	IOM (1998)	SCF (1993)	DH (1991)^(a)
Age (years)	≥ 19	18–30	≥ 19	20–74	≥ 19	≥ 19	≥ 18	≥ 19
PRI men (mg/day)	1.4	1.6	1.3	1.6	1.5	1.3	1.6	1.3
PRI women (mg/day)	1.1	1.3	1.1	1.5	1.1	1.1	1.3	1.1
Age (years)	≥ 51	31–60			≥ 75			
PRI men (mg/day)	1.3	1.5			1.6			
PRI women (mg/day)	1.0	1.2			1.6			
Age (years)	> 65	61–74						
PRI men (mg/day)	1.3	1.4						
PRI women (mg/day)	1.0	1.2						
Age (years)		≥ 75						
PRI men (mg/day)		1.3						
PRI women (mg/day)		1.2						

1409 NCM: Nordic Council of Ministers. NL: The Netherlands.

1410 (a): DRVs in mg/day obtained from the DRVs in mg/MJ and the respective energy requirement.

1411 4.2. Infants and children

1412 D-A-CH (2015) indicated that there were no data on riboflavin requirement for infants aged
1413 4–12 months, whereas data in children 4–12 years old with riboflavin deficiency showed a return of
1414 EGRAC to normal values of about 1.2 with a riboflavin intake of 0.12 mg/MJ (Kuizon et al., 1998).
1415 D-A-CH (2015) set PRIs ranging from 0.4 mg/day for infants aged 4–12 months to 1.6 mg/day for
1416 boys aged 15–19 years, on the basis of an AR of 0.12 mg/MJ as for adults, a CV of 10 % and the
1417 reference values for energy.

1418 For children, the Nordic Council of Ministers (2014) used the same AR and RI expressed in mg/MJ as
1419 for adults, and converted them into mg/day.

1420 WHO/FAO (2004) set a Recommended Nutrient Intake at 0.3 mg/day for infants up to six months of
1421 age based on the daily average riboflavin content in breast milk (0.35 mg/L and an average breast milk
1422 consumption of 0.75 L/day) (IOM, 1998). For older children, RNIs increased gradually with age.

1423 Afssa (2001) set PRIs for children from the adult PRIs adjusted for the energy requirement of each age
1424 range.

1425 The Health Council of the Netherlands (2000) derived an Adequate Intake (AI) for infants up to five
1426 months at 0.4 mg/day on the basis of a daily human milk consumption of 0.8 L and a riboflavin
1427 concentration in milk of 0.53 mg/L (Fomon and McCormick, 1993). For children and adolescents, data
1428 to set ARs were considered too limited (Oldham, 1944; Snyderman et al., 1949; Lo, 1985). Thus, an
1429 interpolation between the reference values of infants (under 5 months) and of adults was used to set
1430 AIs of children and adolescents, following the IOM (1998) approach. It was considered that the AI for
1431 children aged 14–18 years should be in line with the requirement of adults due to the linear increase of
1432 the requirement. Thus, for this age range, an AI of 1.5 mg/day and of 1.1 mg/day, respectively, for
1433 boys and girls was set.

1434 Considering a riboflavin concentration of 0.35 mg/L in human milk (WHO, 1965) and a milk
1435 consumption of 0.78 L/day, and after rounding, IOM (1998) set an AI at 0.3 mg/day for infants up to
1436 six months of age. The IOM set the AI at 0.4 mg/day for infants aged 7 to 12 months based on upward
1437 extrapolation from the value for younger infants and rounding, which was confirmed by downward

1438 extrapolation from the adult EAR. The approach of adding riboflavin intakes from breast milk
 1439 consumption and from solid foods was discarded as providing a value considered as too high. For
 1440 children aged from 1 to 18 years, due to the limited data (Oldham, 1944; Sauberlich et al., 1973) to
 1441 base an EAR, IOM (1998) decided to extrapolate the EARs from adults to children using allometric
 1442 scaling (power 0.75) with growth factors, and rounding. A CV of 10% was also used to set RDAs.

1443 SCF (1993) derived a PRI of 0.4 mg/day for infants 6–11 months based on data on changes in EGRAC
 1444 in Gambian infants according to the level of supplementation (Bates C. J et al., 1982), and PRIs for
 1445 children from the PRIs of adults on the basis of energy requirement due to lack of data to assess
 1446 children's requirement.

1447 The UK COMA (DH, 1991) set reference nutrient intakes for children by interpolation between the
 1448 adult and infant values, and corresponding LRNIs and EARs were set. The reference nutrient intakes
 1449 for infants were set at 0.4 mg/day, according to the average concentration of riboflavin in breast milk
 1450 in the UK (0.31 mg/L) (DHSS, 1977), and a supplement intake of 0.4 mg/day which led to a
 1451 satisfactory EGRAC value (1.15) in Gambian infants (Bates C. J et al., 1982).

1452 An overview of DRVs for riboflavin for children is given in Table 2.

1453 **Table 2:** Overview of Dietary Reference Values for riboflavin for children

	D-A-CH (2015) ^(a)	NCM (2014) ^(a)	WHO/FAO (2004)	Afssa (2001)	NL (2000) ^(b)	IOM (1998)	SCF (1993)	DH (1991)
Age (months)	4–12	6–11	0–6	0–12	6–11	0–6	6–11	7–9
PRI (mg/day)	0.4	0.5	0.3	0.4	0.4	0.3	0.4	0.4
Age (years)	1–4	1–< 2	7–12	1–3	1–3	7–12	1–3	1–3
PRI (mg/day)	0.7	0.6	0.4	0.8	0.5	0.4 ^(a)	0.8	0.6
Age (years)	4–7	2–5	1–3	4–6	4–8	1–3	4–6	4–6
PRI (mg/day)	0.8	0.7	0.5	1	0.7	0.5	1.0	0.8
Age (years)	7–10	6–9	4–6	7–9	9–13	4–8	7–10	7–10
PRI Boys (mg/day)	1.0	1.1	0.6	1.3	1.0	0.6	1.2	1.0
PRI Girls (mg/day)	0.9	1.1	0.6	1.3	1.0	0.6	1.2	1.0
Age (years)	10–13	10–13	7–9	10–12	14–18		11–14	11–14
PRI Boys (mg/day)	1.1	1.3	0.9	1.4	1.5		1.3	1.2
PRI Girls (mg/day)	1.0	1.2	0.9	1.3	1.1		1.3	1.1
Age (years)	13–15	14–17	10–18	13–15		9–13	15–17	15–18
PRI Boys (mg/day)	1.4	1.7	1.3	1.6		0.9	1.5	1.3
PRI Girls (mg/day)	1.1	1.4	1.0	1.4		0.9		1.1
Age (years)	15–19			16–19		14–18		
PRI Boys (mg/day)	1.6			1.6		1.3		
PRI Girls (mg/day)	1.2			1.5		1.0		

1454 (a) DRVs in mg/day obtained from the DRVs in mg/MJ and the respective energy requirement.

1455 (b) AI

1456 NCM: Nordic Council of Ministers. NL: The Netherlands.

1457 4.3. Pregnancy and lactation

1458 For pregnancy and lactation, D-A-CH (2015) considered the average requirement of 0.12 mg/MJ set
 1459 for other women, a CV of 10% and the respective reference values for energy, i.e. an additional energy
 1460 requirement of 1.04 and 2.09 MJ/day in the second and third trimester of pregnancy, respectively, and
 1461 a reference value of 10 MJ/day for exclusively breastfeeding women during the first four to six months
 1462 of lactation.

1463 The Nordic Council of Ministers (2014) recommended an increase in intake of 0.3 mg/day for
 1464 pregnancy and of 0.4 mg/day for lactation, to be added to the RI for non-pregnant non-lactating
 1465 women.

1466 WHO/FAO (2004) acknowledged that EGRAC increases during pregnancy and that riboflavin intakes
 1467 and fetal growth are associated (Bates, 1981; Vir et al., 1981; Kuizon, 1992; Badart-Smook et al.,
 1468 1997). An increase in intake of 0.3 mg/day for pregnant women (added to the reference value for non-
 1469 pregnant women) was considered necessary for the growth of both maternal and fetal compartments.
 1470 A transfer of 0.3 mg/day riboflavin to breast milk (IOM, 1998) and an efficiency of milk production of
 1471 70% (WHO, 1965) were considered to set the additional riboflavin intake for lactating women at 0.4
 1472 mg/day (rounded value, to be added to the RNI for non-lactating women).

1473 Afssa (2001) set a PRI of 1.6 mg/day for pregnancy to cover fetus growth, and an additional intake of
 1474 0.3 mg/day for lactation to cover riboflavin losses through breast milk.

1475 The Health Council of the Netherlands (2000) decided to increase the value during pregnancy and set
 1476 an AR of 1.0 mg/day and a PRI of 1.4 mg/day. Indeed, it was acknowledged that a higher intake of
 1477 riboflavin is required to lower EGRAC, which rises during pregnancy (Kuizon, 1992) and that urinary
 1478 excretion decreases during the 3rd trimester (Bro-Rasmussen, 1958; FAO/WHO, 1967). For lactating
 1479 women, it was considered that an amount of 0.4 mg/day of riboflavin is excreted in human milk. Thus,
 1480 an AR of 1.2 mg/day and a PRI of 1.7 mg/day were set.

1481 During pregnancy, IOM (1998) added 0.3 mg/day to the EAR for non-pregnant women, to allow for
 1482 the growth in maternal compartments and of the foetus. IOM (1998) noted that urinary excretion of
 1483 riboflavin is lower during pregnancy, that clinical signs of deficiency could appear more frequently for
 1484 low intakes (less than 0.8 mg/day) (Brzezinski et al., 1952; Jansen and Jansen, 1954) and that EGRAC
 1485 tends to increase during pregnancy (Heller et al., 1974; Bates, 1981; Vir et al., 1981). As 0.3 mg/day
 1486 of riboflavin is considered to be transferred to breast milk during the first six months of lactation, and
 1487 considering a milk production efficiency of 70% (WHO, 1965), IOM (1998) set an extra intake of 0.4
 1488 mg/day during lactation to be added to the EAR of non-lactating women. The same CV of 10% was
 1489 used to set RDAs for pregnancy and lactation, i.e. 1.4 and 1.6 mg/day respectively.

1490 SCF (1993) stated that EGRAC data could not be used to set riboflavin requirement during pregnancy.
 1491 An increase in intake of 0.3 mg/day was recommended, added to the PRI of non-pregnant women, to
 1492 take into account the increased tissue synthesis by the fetus and the mother. In order to meet the
 1493 increased metabolic burden and the losses in breast milk, the SCF proposed an increase in riboflavin
 1494 intake of 0.4 mg/day during lactation, to be added to the PRI for non-lactating women.

1495 The UK COMA (DH, 1991) considered an intake of 0.3 mg/day for pregnant women to be added to
 1496 the reference value of non-pregnant women, to meet the need of the fetus (DHSS, 1979) and
 1497 considered that EGRAC data in pregnancy could not be interpreted. For lactation (either before or
 1498 after four months), an extra-intake of 0.5 mg/day was recommended, to be added to the RNI for non-
 1499 lactating women, based on the riboflavin concentration in breast milk and its metabolic cost (DHSS,
 1500 1979).

1501 An overview of DRVs for riboflavin for pregnant or lactating women is given in Table 3.

1502 **Table 3:** Overview of Dietary Reference Values for riboflavin for pregnant or lactating women

	D-A-CH (a)	NCM (2014)	WHO/FAO (2004)	Afssa (2001)	NL (2000)	IOM (1998)	SCF (1993)	DH (1991)
PRI Pregnancy (mg/day)	1.3 (2 nd trimester) 1.4 (3 rd trimester)	1.6	1.4	1.6	1.4	1.4	1.6	1.4
PRI Lactation (mg/day)	1.4	1.7	1.6	1.8	1.7	1.6	1.7	1.6

1503 (a) DRVs in mg/day obtained from the DRVs in mg/MJ and the respective energy requirement.
 1504 NCM: Nordic Council of Ministers. NL: The Netherlands.

1505 **5. Criteria (endpoints) on which to base dietary reference values**1506 **5.1. Clinical signs of deficiency**

1507 Riboflavin intakes of less than 0.5 to 0.6 mg/day riboflavin for several months led to clinical signs of
1508 deficiency, but intakes of about 0.8 mg/day were sufficient to avoid them in men or women (Sebrell et
1509 al., 1941; Williams et al., 1943; Keys et al., 1944; Horwitt et al., 1950), and non-pregnant women with
1510 a riboflavin intake of 0.45 mg/day for 8–10 days showed no clinical signs of deficiency (Kuizon et al.,
1511 1998) (Section 2.4.2.). Regarding biomarkers, skin lesions were reported in three men (at an intake of
1512 0.55 mg/day riboflavin and 2,200 kcal/day) with a urinary excretion of riboflavin below 40 µg/day
1513 (Horwitt et al., 1950) (Section 2.4.1). However, older subjects with urinary riboflavin excretion
1514 < 10 µg/g creatinine (and EGRAC > 2) did not show clinical signs of riboflavin deficiency either
1515 before or during their participation to the study by Boisvert et al. (1993) (Sections 2.4.1 and 2.4.2.).

1516 **The Panel notes** that clinical signs of deficiency are unspecific (Section 2.2.2.1.), take several months
1517 to develop and are unreliable to assess adequacy or inadequacy of the riboflavin supply. The Panel
1518 considers that clinical signs of deficiency cannot be used as criteria to set DRVs.

1519 **5.2. Indicators of riboflavin requirements**

1520 The Panel considers that the inflection point of the urinary excretion curve according to intake is the
1521 most suitable biomarker to assess adequacy of riboflavin status. EGRAC can be used as a supportive
1522 biomarker of the urinary excretion in order to assess riboflavin status (Section 2.4.5.). The Panel also
1523 considers that riboflavin status is modified by physical activity, urinary excretion of riboflavin is
1524 (generally) decreased and EGRAC increased when physical activity is increased, suggesting higher
1525 utilisation of riboflavin with increased energy expenditure (Section 2.5.). However, there is a lack of
1526 experimental data showing a clear quantitative relationship between riboflavin status biomarkers
1527 (urinary excretion of riboflavin and EGRAC) and energy expenditure (or physical activity) (Section
1528 2.5). In addition, the Panel considers that the relationship between riboflavin intake and biomarkers of
1529 riboflavin status is also influenced by MTHFR 677C>T polymorphism, as homozygosity for the T
1530 allele can increase the individual requirement for riboflavin, although the extent of this increase cannot
1531 be defined (Section 2.6.).

1532 **5.2.1. Adults**

1533 The Panel notes that new scientific data have become available for adults since the publication of the
1534 SCF report in 1993. These data are either on the inflection of the urinary excretion curve or on
1535 EGRAC, according to riboflavin intake.

1536 **5.2.1.1. Inflection of the urinary excretion of riboflavin**

1537 The Panel considers that the inflection of the urinary excretion curve in relation to riboflavin intake
1538 reflects body saturation of riboflavin and can be used to indicate adequate riboflavin status (Section
1539 2.4.1). The Panel considers that the inflection in the urinary excretion curve reflects the overall
1540 saturation of all metabolic pathways of riboflavin (provided the collection of urinary samples are
1541 complete), thus indicating a level at which all riboflavin functions are fulfilled.

1542 Four intervention studies investigated the inflection of the curve in 24h or fasting urinary excretion of
1543 riboflavin according to riboflavin intake in adults. These were: one study of the longest duration and in
1544 66 US men from a ‘mental institution’ (Horwitt et al., 1950) that was used by SCF (1993) for setting
1545 DRVs, one study in 73 young physically active Chinese men (Guo et al., 2016), and two other studies
1546 of smaller size i.e. one study in 14 low-physically active older Guatemalan men and women (Boisvert
1547 et al., 1993) and one study in 14 young and healthy US women (Brewer et al., 1946) (Section 2.4.1.).
1548 The Panel acknowledges that the study by Brewer et al. (1946) was published before the SCF report in
1549 1993 in which it was not considered. However, so far, it is the only available study that provides

1550 information on the inflection point of the urinary excretion curve according to riboflavin intake in
1551 healthy women. The Panel notes that no study was available on subjects representative of the healthy
1552 European population. However, the Panel notes that the average body weights of the young men (Guo
1553 et al., 2016) and the young women (Brewer et al., 1946) investigated were close to the reference body
1554 weights for adults in the EU, i.e. 68.1 kg for men and 58.5 kg for women.

1555 The inflection in the urinary excretion curve occurred at riboflavin intakes between 1.1 and
1556 1.6 mg/day (Horwitt et al., 1950) (inflection point estimated at 1.3 mg/day by SCF by interpolation,
1557 Section 4.1.). The inflection occurred at intakes between 1.3 and 1.5 mg/day in adult men (Guo et al.,
1558 2016), between 1.1 and 1.3 mg/day in older men and women (Boisvert et al., 1993) and between 1.26
1559 and 1.62 mg/day in adult women (Brewer et al., 1946). The inflection point, calculated as the intercept
1560 of two regression lines of mean urinary excretion versus intake, was calculated by the authors to be
1561 1.4 mg/day (Guo et al., 2016), to be 1.13 mg/day (Boisvert et al., 1993), or to be between 1.3 and
1562 1.5 mg/day (Brewer et al., 1946).

1563 **The Panel notes** the consistency in these results, and considers that, from these different studies, no
1564 difference in riboflavin requirement could be shown between sex and between younger and older
1565 adults.

1566 5.2.1.2. Erythrocyte glutathione reductase activation coefficient (EGRAC)

1567 The Panel considers that EGRAC is a useful biomarker of riboflavin status in all population groups,
1568 reflecting the saturation of EGR with the coenzyme (Section 2.4.2.). As discussed in Section 2.4.2.,
1569 the Panel considers that an EGRAC of 1.3 or less is indicative of adequate riboflavin status in all
1570 population groups.

1571 Two intervention studies investigated the relationship between dietary riboflavin intake and EGRAC
1572 in adults: in 14 older low-physically active Guatemalan men and women (Boisvert et al., 1993), and in
1573 6 non-pregnant women in the Philippines (Kuizon et al., 1998) (Section 2.4.2.). The mean intake at
1574 which the mean weekly EGRAC was below 1.3 was 1.37 mg/day in older adults (Boisvert et al.,
1575 1993). However, according to the regression analysis in the study by Kuizon et al. (1998), Filipino
1576 women reached EGRAC values of 1.3 with an average riboflavin intake of 0.72 mg/day. The Panel
1577 notes that the mean intake of 1.37 mg/day estimated by Boisvert et al. (1993) falls within the range of
1578 intake corresponding to the inflection point of the urinary excretion curve from four intervention
1579 studies discussed previously (Section 5.2.1.1.). The Panel however notes the discrepancy in the results
1580 from the only two intervention studies on riboflavin intake and EGRAC.

1581 Two large observational studies in Europe (VERA in Germany and NDNS 2012–2014 in the UK) also
1582 provide data on riboflavin intake and EGRAC (Section 2.4.2.). The Panel notes that
1583 mean/median EGRAC values from NDNS and VERA are 1.3 or higher at mean/median intake higher
1584 than that calculated to reach an EGRAC of 1.3 from experimental data mentioned above (Boisvert et
1585 al., 1993; Kuizon et al., 1998).

1586 **The Panel concludes** that the data on the relationship between riboflavin intake and EGRAC cannot
1587 be used alone to set DRVs for riboflavin for adults, but can be used in support of data on the inflection
1588 in the urinary excretion curve in view of setting DRVs for riboflavin.

1589 5.2.1.3. Conclusions on riboflavin requirements in adults

1590 The Panel concludes that, among the available biomarkers to estimate riboflavin requirements in
1591 adults, the inflection point in the urinary excretion curve represents the primary biomarker of
1592 riboflavin requirement. This inflection point was estimated to occur at an intake of riboflavin between
1593 1.13 and 1.4 mg/day (Brewer et al., 1946; Horwitt et al., 1950; Boisvert et al., 1993; Guo et al., 2016).

1594 The Panel concludes that, using this biomarker, there is no indication of different riboflavin
1595 requirement according to sex or between younger and older adults.

1596 In relation to the fact that MTHFR genotype can influence the requirement for riboflavin
1597 (Section 2.6.), in the intervention studies used for setting DRVs for riboflavin for adults, no
1598 information is provided on this genotype. The Panel however considers that these studies were
1599 conducted in different countries (USA, Guatemala, Philippines, China) and population groups, and
1600 therefore assumes that their participants represent the diversity of this polymorphism. The Panel also
1601 notes that these studies included subjects that were either physically active (Guo et al., 2016) or with a
1602 low physical activity (Boisvert et al., 1993). The Panel considers that the potential effect of physical
1603 activity and of MTHFR 677TT genotype on riboflavin requirement is covered by the data presented
1604 from the studies considered. The Panel notes that the subjects in these studies were either physically
1605 active (Guo et al., 2016) or with a low physical activity (Boisvert et al., 1993). The Panel considers
1606 that the potential effect of physical activity and of MTHFR 677TT genotype on riboflavin requirement
1607 is covered by the data presented from the studies considered.

1608

1609 **5.2.2. Infants and children**

1610 One intervention study in infants and children aged between 0 and 2 years in Gambia (Bates C. J et al.,
1611 1982) (Sections 2.4.2. and 4.2., used by SCF) showed that 0.13 to 0.21 mg/day riboflavin intake was
1612 not sufficient to support an EGRAC below 1.3 in infants up to 1 year. With a total intake of 0.3–
1613 0.4 mg/day (from food and supplements), most of the infants aged 3–9 months had an EGRAC below
1614 1.3, but at 9–12 months, EGRAC increased above 1.3 in about 20% of the infants.

1615 Based on a regression analysis, another intervention study in Filipino children (Kuizon et al., 1998)
1616 (Section 2.4.2.) showed that EGRAC reached values of 1.3 with an average riboflavin intake of
1617 0.58 and 0.70 mg/day in children aged 4–6 years (n = 20) and 10–12 years (n = 14), respectively. One
1618 large observational study in Europe (NDNS 2012–2014 in the UK) (Section 2.4.2.) provides
1619 information on mean EGRAC and mean riboflavin intake in children. The Panel notes that mean
1620 EGRAC were at or above 1.3 for children aged 4–10 years and 11–18 years but below 1.3 in children
1621 aged 1.5–3 years, while mean intakes were higher than the average intake derived in the intervention
1622 study by Kuizon et al. (1998).

1623 In view of the limitations in the use of EGRAC discussed previously (Sections 2.4. and 5.2.1.), **the**
1624 **Panel concludes** that these two intervention studies can provide only supportive evidence for setting
1625 DRVs for riboflavin for infants and children. The Panel concludes that data on riboflavin intake of
1626 breastfed infants during the first 6 months of lactation (Section 2.3.6.3.) can be used to derive a DRV
1627 for infants aged 7–11 months.

1628 **5.2.3. Pregnant and lactating women**

1629 **5.2.3.1. Pregnant women**

1630 The Panel assessed whether data were available on the riboflavin transfer from the mother to the fetus
1631 and the riboflavin accretion in the fetus and placenta during pregnancy (Section 2.3.2.). Mean EGRAC
1632 measured in placenta of full-term infants was significantly lower than in cord blood or maternal
1633 plasma (0.92 versus 1.18 and 1.31 respectively) in relation with the high FAD placental content
1634 (Ramsay et al., 1983). **The Panel considers** that riboflavin demand is increased during pregnancy in
1635 relation with the riboflavin uptake by the fetus and concentration in the placenta (Baker et al., 1981;
1636 Dancis et al., 1985; Dancis et al., 1986; Zempleni et al., 1995), but that these data cannot be used to set
1637 DRVs for riboflavin for pregnant women.

1638 A progressive fall in maternal riboflavin status assessed by urinary excretion or EGRAC during the
1639 third trimester was reported in studies conducted in countries with low riboflavin intake (0.5, or less
1640 than 1 mg/day, (Jansen and Jansen, 1954; Bates, 1981)) with clinical signs of deficiency towards the

1641 end of pregnancy (Jansen and Jansen, 1954; Bamji and Prema, 1981; Bates, 1981) (Sections 2.4.2. and
1642 4.3.)

1643 Urinary riboflavin excretion decreases during the third trimester of pregnancy (Bro-Rasmussen, 1958;
1644 FAO/WHO, 1967) (Section 4.3.). EGRAC increases during pregnancy (Heller et al., 1974; Vir et al.,
1645 1981; Kuizon, 1992) (Section 4.3.).

1646 In the intervention study in 12 Filipino pregnant women (2nd or 3rd trimester) (Kuizon et al., 1998)
1647 (Section 2.4.2.), based on a regression analysis, EGRAC reached values of 1.3 and below with an
1648 average riboflavin intake of 1.36 mg/day, which was higher than for non-pregnant women.

1649 **The Panel concludes** that studies investigating riboflavin fetal uptake and riboflavin placental
1650 concentration provide evidence that pregnant women need more riboflavin than non-pregnant women.
1651 However, these data are not sufficient to estimate the additional need for dietary riboflavin during
1652 pregnancy. In view of the limitations in the use of EGRAC discussed previously (Sections 2.4. and
1653 5.2.1.), the Panel concludes that the intervention study in Filipino pregnant women can provide only
1654 supportive evidence for setting DRVs for riboflavin for pregnant women.

1655 5.2.3.2. Lactating women

1656 From the available studies undertaken on healthy lactating mothers (Appendix A, Section 2.3.6.3.), the
1657 Panel estimated a riboflavin secretion of 0.291 mg/day in breast milk during the first six months of
1658 lactation, based on the three studies (Nail et al., 1980; Thomas et al., 1980; Ortega et al., 1999)
1659 undertaken in Spain and the USA providing the concentration of riboflavin in mature breast milk of
1660 healthy unsupplemented mothers as well as information on the maternal riboflavin intake and status.

1661 In an intervention study in 10 Filipino lactating women (Kuizon et al., 1998) (Section 2.4.2.), based on
1662 a regression analysis, EGRAC reached values of 1.3 with an average riboflavin intake of 1.31 mg/day,
1663 which was higher than for non-lactating women.

1664 **The Panel concludes** that an additional intake of riboflavin for lactating women is required to
1665 compensate for the amount of riboflavin secreted in breast milk during the first six months of
1666 exclusive breastfeeding. In view of the limitations in the use of EGRAC discussed previously
1667 (Sections 2.4. and 5.2.1.), the Panel concludes that the intervention study in Filipino lactating women
1668 can provide only supportive evidence for setting DRVs for riboflavin for lactating women.

1669 5.3. Riboflavin intake and health consequences

1670 Trials (randomised or not), prospective cohort, case-control and systematic reviews of observational
1671 studies are discussed in this Section. The relationship between riboflavin intake and chronic disease
1672 outcomes has been investigated in trials, and also in observational studies where associations between
1673 intake and disease outcomes may be confounded by uncertainties inherent to the methodology used for
1674 the assessment of riboflavin intake and by the effect of dietary, lifestyle, or other undefined factors on
1675 the disease outcomes investigated. A comprehensive search of the literature published between 1990
1676 and 2014 was performed as preparatory work to this assessment in order to identify new data on
1677 relevant health outcomes upon which DRVs for riboflavin could be based (Buijsse et al., 2014). An
1678 additional literature search (in Pubmed) was performed to identify new data published until mid-2016
1679 on riboflavin intake and health outcomes. The Panel only considered studies that include assessment
1680 of riboflavin intake, whereas studies on the relationship of levels of riboflavin biomarkers (Section
1681 2.4.) and health outcomes with no quantitative data on riboflavin intake are not considered.

1682 **The Panel considers** that evidence from only one observational study on a particular outcome is not
1683 sufficient to provide strong evidence of a relationship and thus cannot be used for setting DRVs for
1684 riboflavin. Thus, data on riboflavin intake and bone mineral density in postmenopausal women
1685 (Rejnmark et al., 2008), the risk of overactive bladder syndrome (Dalloso et al., 2004), the risk of
1686 premenstrual syndrome (Chocano-Bedoya et al., 2011), 'psychological distress' (Mishra et al., 2008),

1687 cognition (McNeill et al., 2011), risk of total cardiovascular diseases (Zee et al., 2007), or cancer at
1688 some sites (gastric adenocarcinoma (Eussen et al., 2010); pancreatic cancer (Chuang et al., 2011);
1689 prostate cancer (Bassett et al., 2012a); oral carcinoma (Petridou et al., 2002); ovarian cancer (Kabat et
1690 al., 2008); oesophageal cancer (Siassi et al., 2000); cervical cancer (Liu et al., 1993); renal cell
1691 carcinoma (Gibson et al., 2010)) are not considered below. In addition, intervention studies
1692 investigating riboflavin supplementation, in addition to intake, at levels higher than the observed
1693 average intake of riboflavin in the EU (Appendices C and D) were also not considered by the Panel in
1694 this Section (e.g. 15 mg twice weekly or between 5 and 400 mg/day (Tremblay et al., 1984; Powers et
1695 al., 1987; Weight et al., 1988; Prasad PA et al., 1990; Schoenen et al., 1998; Condo et al., 2009; Di
1696 Lorenzo et al., 2009; Bruijn et al., 2010). Trials using combined supplementation with riboflavin and
1697 another nutrient (Blot et al., 1993), ecological studies or narrative reviews were also not considered.
1698 Since the reports by SCF (1993), more data have become available on risk of cancer and other health
1699 outcomes (risk of cataract, pregnancy-related outcomes, physical performance or all-cause mortality)
1700 which are described below.

1701 5.3.1. Riboflavin intake and the risk of cancer

1702 Regarding the risk of **lung cancer**, after adjustments for potential confounders, there was no
1703 association with riboflavin intake among women (Kabat et al., 2008), and a significant linear inverse
1704 association only in current smokers (Bassett et al., 2012b).

1705 Regarding the risk of **colorectal cancer**, after adjustments for potential confounders, no association
1706 with riboflavin intake was found in most cohorts (de Vogel et al., 2008; Kabat et al., 2008; Shrubsole
1707 et al., 2009; Key et al., 2012; Yoon et al., 2016). In one cohort (Zschabitz et al., 2013) included in the
1708 systematic review below, no association was shown with riboflavin intake from food or from
1709 supplement, but a significantly increased risk was observed in the highest quartile of total riboflavin
1710 intake (food and supplements) compared to the lowest one. A significantly lower odds ratio (OR) in
1711 the highest tertile of riboflavin intake compared to the lowest one in K-ras mutation negative, but not
1712 K-ras mutation positive, colorectal adenomas was observed in one case-control study (Wark et al.,
1713 2006). In one systematic review (Liu et al., 2015a) of five cohort studies (de Vogel et al., 2008;
1714 Shrubsole et al., 2009; Bassett et al., 2013; Zschabitz et al., 2013), a significant inverse association
1715 with riboflavin intake was observed (relative risk (RR) 0.86, 95% confidence interval (CI) 0.76–0.97,
1716 (heterogeneity index (I^2) =0%). In another systematic review from the same author (Liu et al., 2015b)
1717 on 5 cohort studies and 4 case-control studies (La Vecchia et al., 1997; Jedrychowski et al., 2001; de
1718 Vogel et al., 2008; Ma et al., 2009; Shrubsole et al., 2009; van Lee et al., 2011; Bassett et al., 2013;
1719 Zschabitz et al., 2013) a significant inverse association with riboflavin intake was also observed
1720 (pooled OR for the highest versus the lowest categories of intake: 0.83, 95%CI 0.75–0.91, I^2 =0%).
1721 The Panel considers that no quantitative value could be drawn from these two systematic reviews to
1722 support a DRV for riboflavin.

1723 For **endometrial cancer**, after adjustments for potential confounders, in most prospective cohort or
1724 case-control studies, there was no association between riboflavin intake (from food and supplements
1725 or from food only) and OR or hazard ratio (HR) of endometrial cancer (Xu et al., 2007b; Xu et al.,
1726 2007a; Liu et al., 2013) or the RR of type-I endometrial cancer (Uccella et al., 2011). However, a
1727 significant positive (non-linear) association was found between supplemental intake of riboflavin or
1728 total intake from food and supplements (but not intake from food only) and the risk of type-II
1729 endometrial cancer (total intake: RR (95%CI) = 2.41 (1.13–5.13) for > 3.57 versus 0.23–1.61 mg/day;
1730 p trend = 0.026; supplements: RR (95%CI) = 1.94 (1.12–3.34) for > 1.70 versus 0 mg/day; p trend =
1731 0.011) (Uccella et al., 2011).

1732 For **breast cancer**, after adjustments for potential confounders, in three prospective cohort studies,
1733 there was no association between riboflavin intake and the risk of breast cancer (Kabat et al., 2008;
1734 Maruti et al., 2009; Bassett et al., 2013).

1735 The Panel considers that the available studies on riboflavin intake and risk of various types of cancer
1736 are **inconsistent and cannot be used to derive DRVs for riboflavin**.

1737 5.3.2. Riboflavin intake and other health outcomes

1738 Two prospective cohort studies found inconsistent results on riboflavin intake and the risk of
1739 **cataracts**. There was a significant inverse non-linear association between total intake of riboflavin
1740 (food and supplements) and the odds for nuclear lens opacities (Jacques et al., 2001). However, there
1741 was no association between intake (total or from food only) and the risk of cataract extraction
1742 (Hankinson et al., 1992).

1743 Regarding **all-cause mortality**, one prospective cohort study did not provide evidence for an
1744 association between mortality and the use of riboflavin supplements (users compared to non-users,
1745 either in smokers or non-smokers: HR (95%CI) 0.71 (0.45–1.11) and 1.60 (1.00–2.56) respectively)
1746 (Brzozowska et al., 2008). However, another prospective cohort study found a significant inverse non-
1747 linear association between riboflavin intake and the risk of mortality (RR (95%CI: 0.38 (0.16–0.90)
1748 for intake above 2.70 mg/day compared to intake below 1.92 mg/day, after adjustment for potential
1749 confounders (Fortes et al., 2000).

1750 **Pregnancy-related outcomes** have been investigated in three studies (Badart-Smook et al., 1997;
1751 Smedts et al., 2008; Robitaille et al., 2009). After adjustments for potential confounders, there was a
1752 statistically significant positive linear association between riboflavin intake at 22nd week of gestation
1753 and birth length or weight (Badart-Smook et al., 1997). There was no association between riboflavin
1754 intake (assessed at 16 months after pregnancy as a proxy for usual intake in the preconception period)
1755 and the odds of congenital heart defects, after adjustments for potential confounders in particular for
1756 folate and nicotinamide intake (Smedts et al., 2008). Low riboflavin intake of women before
1757 conception was associated with the risk of transverse limb deficiencies in their infants with an adjusted
1758 OR (95% CI): 2.94 (1.04–8.32) for women not using folic acid supplements and with a riboflavin
1759 intake < 1.35 mg/day, compared with those also unsupplemented and with an intake > 2.57 mg
1760 riboflavin/day (Robitaille et al., 2009).

1761 Regarding **physical performance**, trials on increasing intake of riboflavin (0.15 versus 0.22 µg/kJ, in
1762 a cross-over study) (Winters et al., 1992) (Section 2.5.), riboflavin supplementation (2 mg/day versus
1763 placebo (Suboticanec et al., 1990), Section 2.4.2.) or riboflavin restriction (to about 55% of the Dutch
1764 RDA, in a double-blind complete factorial study) (van der Beek et al., 1994)) did not show any effect
1765 of these dietary changes on the parameters investigated (e.g. maximal oxygen capacity, onset of blood
1766 lactate accumulation, anaerobic threshold by gas exchange or peak power).

1767 The Panel considers that the available studies on riboflavin intake and several health outcomes or all-
1768 cause mortality **cannot be used to derive DRV for riboflavin**.

1769 5.3.3. Conclusions on riboflavin intake and health consequences

1770 The Panel considers that studies on riboflavin intake and health outcomes or all-cause mortality cannot
1771 be used to set DRVs for riboflavin.

1772 6. Data on which to base dietary reference values

1773 The Panel considers that, since the release of the DRVs for riboflavin by SCF (1993), new data are
1774 available to update the AR and the PRI proposed by the SCF (1993).

1775 6.1. Adults

1776 The Panel concludes that, among the available biomarkers to estimate riboflavin requirements in
1777 adults, the inflection point in the urinary excretion curve, estimated to occur at an intake of riboflavin
1778 between 1.13 and 1.4 mg/day (Brewer et al., 1946; Horwitt et al., 1950; Boisvert et al., 1993; Guo et
1779 al., 2016) (Section 5.2.1.3.) represents the primary biomarker for assessing the riboflavin requirement.
1780 The Panel concludes that there is no indication in the available studies of different riboflavin
1781 requirement according to sex or between younger and older adults.

1782 The Panel sets the same DRV for men and women and for older and younger adults, without
 1783 correction for difference in body weight between sex and age group. The AR for riboflavin in adults is
 1784 determined from the mean of the riboflavin intake, weighted for the number of subjects in each study,
 1785 associated with the inflection point in the urinary excretion curve, i.e. of 1.3 (n = 66), 1.4 (n = 73),
 1786 1.13 (n = 14), 1.4 (n = 14) mg/day obtained in US men (Horwitt et al. (1950), Chinese young men
 1787 (Guo et al., 2016), US young women (Brewer et al., 1946), and older Guatemalan men and women
 1788 (Boisvert et al., 1993), respectively (Section 5.2.1.1.). Based on this calculation, an AR of 1.34 mg/day
 1789 riboflavin is derived for men and women, rounded down to the nearest one decimal place to
 1790 1.3 mg/day.

1791 The Panel concludes that the effect of physical activity and of MTHFR 677TT genotype on riboflavin
 1792 requirement is covered by the data from the key studies considered (Section 5.2.1.3.), thus is
 1793 accounted for in the assumed CV applied to set the PRI for riboflavin. Assuming a CV of 10% (in the
 1794 absence of information on the variability in the requirement), the Panel sets a PRI of 1.61 mg/day for
 1795 men and women, rounded down to the nearest one decimal place to 1.6 mg/day.

1796 **6.2. Infants aged 7–11 months**

1797 Considering that there is no evidence for an insufficient riboflavin intake of fully breastfed infants of
 1798 healthy mothers during the first six months of life, the amount of riboflavin provided in human milk is
 1799 considered to be adequate. For infant 7–11 months of age, the Panel concludes that no sufficient data
 1800 are available to set an AR from the available study (Bates C. J et al., 1982) (Section 5.2.2), and set an
 1801 AI by upwards extrapolation of riboflavin intake from breast milk in exclusively breastfed infants aged
 1802 0–6 months, by allometric scaling (on the assumption that riboflavin requirement is related to
 1803 metabolically active body mass).

1804 Considering a mean milk transfer of 0.8 L/day during the first six months of lactation in exclusively
 1805 breastfeeding women and a concentration of riboflavin in mature breast milk of unsupplemented
 1806 mothers of term infants of 364 µg/L (Section 2.3.6.3.), the Panel calculated the secretion of riboflavin
 1807 into milk during lactation as 0.291 mg/day. For the calculation (Table 4), the Panel used calculated
 1808 averages of the median weights of male and female infants, aged 3 months (6.1 kg) and 9 months
 1809 (8.6 kg); the median weight-for-age data came from the WHO Multicentre Growth Reference Study
 1810 Group (2006).

$$1811 \quad AI_{\text{infants 7-11 months}} = \text{riboflavin intake}_{\text{infants 0-6 months}} \times (\text{weight}_{\text{infants 9 mo}} / \text{weight}_{\text{infants 3 mo}})^{0.75}$$

1812 Following this approach, the Panel calculates an AI for riboflavin for infants aged 7–11 months of
 1813 0.4 mg/day.

1814 **Table 4:** Reference body weight and Adequate Intake (AI) of riboflavin for infants aged 7–11 months

Age	Reference body weight (kg)	AI (mg/day)
7–11 months	8.6 ^(a)	0.4

1815 (a): Average of the median weight-for-age of male or female infants, respectively, aged nine months according to the WHO
 1816 Growth Standards (WHO Multicentre Growth Reference Study Group, 2006)

1817 **6.3. Children**

1818 The Panel notes that there are no sufficient data in children on which to base an AR for riboflavin
 1819 (Section 5.2.2.). Therefore, the ARs were calculated by downward extrapolation from the AR of adult
 1820 men and women (the unrounded value of 1.34 mg/day was used in the calculation, Section 6.1.).
 1821 Allometric scaling was used on the assumption that riboflavin requirement is related to metabolically
 1822 active body mass:

$$1823 \quad AR_{\text{children}} = AR_{\text{adults}} \times (\text{weight}_{\text{children}} / \text{weight}_{\text{adult}})^{0.75} \times (1 + \text{growth factor})$$

1824 For the calculations (Table 5), median body weights of boys and girls (van Buuren et al., 2012) were
 1825 used (for the age ranging from 4 to 17 years) as well as median body weights of 18- to 79-year-old
 1826 men and women based on measured body heights of 16,500 men and 19,969 women in 13 EU
 1827 Member States and assuming a body mass index of 22 kg/m² (see Appendix 11 in EFSA NDA Panel
 1828 (2013)).

1829 The following growth factors were applied: 0.25 for boys and girls aged 1–3 years, 0.06 for boys and
 1830 girls aged 4–6 years, 0.13 for boys and girls aged 7–10 years, 0.11 for boys and 0.08 for girls aged 11–
 1831 14 years and 0.08 for boys and 0.03 for girls aged 15–17 years. Growth factors were calculated as the
 1832 proportional increase in protein requirement for growth relative to the maintenance requirement at the
 1833 different ages (EFSA NDA Panel, 2012) (Section 6.2.). The value for each age group corresponds to
 1834 the mean of values for the years included (EFSA NDA Panel, 2014b). For the calculation of the PRI,
 1835 as for adults (Section 6.1.), a CV of 10% was assumed. The calculated values were rounded to the
 1836 nearest one decimal place.

1837 As for adults, the Panel considered unnecessary to set sex-specific AR and PRIs for boys and girls of
 1838 all ages.

1839 **Table 5:** Reference body weights, Average Requirements (ARs) and (rounded) Population Reference
 1840 Intakes (PRIs) of riboflavin for children

Age	Reference body weight (kg)		Calculated ARs (mg/day)			Calculated PRIs (mg/day)			Proposed PRIs ^(f) (mg/day) Boys and girls
	Boys	Girls	Boys	Girls	Mean	Boys	Girls	Mean	
1–3 years	12.2 ^(a)	11.5 ^(a)	0.46	0.49	0.48	0.55	0.59	0.57	0.6
4–6 years	19.2 ^(b)	18.7 ^(b)	0.55	0.60	0.58	0.66	0.72	0.69	0.7
7–10 years	29.0 ^(c)	28.4 ^(c)	0.80	0.88	0.84	0.96	1.06	1.01	1.0
11–14 years	44.0 ^(d)	45.1 ^(d)	1.07	1.19	1.13	1.29	1.43	1.36	1.4
15–17 years	64.1 ^(e)	56.4 ^(e)	1.38	1.34	1.36	1.66	1.61	1.64	1.6

1841 (a): Average of the median weight-for-age of male or female children aged 24 months according to the WHO Growth
 1842 Standards (WHO Multicentre Growth Reference Study Group, 2006).

1843 (b): Average of the median weight of male or female children aged 5 years (van Buuren et al., 2012).

1844 (c): Average of the median weight of male or female children aged 8.5 years (van Buuren et al., 2012).

1845 (d): Average of the median weight of male or female children aged 12.5 years (van Buuren et al., 2012).

1846 (e): Average of the median weight of male or female children aged 16 years (van Buuren et al., 2012).

1847 (f): Values for PRIs were calculated based on the unrounded ARs and rounded to the nearest one decimal place.

1848 6.4. Pregnancy

1849 The Panel concludes that data are not sufficient to estimate the additional need for dietary riboflavin
 1850 during pregnancy based on fetal uptake and riboflavin accretion in the placenta during pregnancy, and
 1851 that only one study shows a higher requirement in pregnant women compared to non-pregnant women
 1852 (Kuizon et al., 1998) (Section 5.2.3.1).

1853 Thus, the Panel calculates the additional riboflavin intake needed by pregnant women by allometric
 1854 scaling (on the assumption that riboflavin requirement is related to metabolically active body mass). It
 1855 was calculated from the AR of non-pregnant women (the unrounded value of 1.34 mg/day was used in
 1856 the calculation, Section 6.1.), using the reference body weight for non-pregnant women and the mean
 1857 gestational increase in body weight.

1858 The reference body weight of 18–79-year-old women (58.5 kg) was previously calculated from the
 1859 measured body heights of 19,969 women in 13 EU Member States and assuming a BMI of 22 kg/m²

1860 (see Appendix 11 in EFSA NDA Panel (2013)). A mean gestational increase in body weight of 12 kg,
1861 for women with a singleton pregnancy and a pre-pregnancy BMI in the range between 18.5 and
1862 24.9 kg/m², was also previously considered (EFSA NDA Panel, 2013). Thus, the calculation is based
1863 on the equation below:

1864
$$AR_{\text{pregnant}} = AR_{\text{non-pregnant}} \times (\text{weight}_{\text{pregnant}} / \text{weight}_{\text{non-pregnant}})^{0.75}$$

1865 The calculated AR is 1.5 mg/day.

1866
1867 The Panel notes that the accretion in fetal tissues mostly occurs in the last months of pregnancy. In
1868 order to allow for the extra need related to the growth of maternal tissues (e.g. placenta), the Panel
1869 applies this additional requirement to the whole period of pregnancy.

1870
1871 As for non-pregnant adults (Section 6.1.), assuming a CV of 10%, and rounding to the nearest one
1872 decimal place, a PRI of 1.9 mg/day riboflavin is derived.

1873 **6.5. Lactation**

1874 The Panel concludes that concentration of riboflavin in breast milk rises with riboflavin intake of the
1875 mother (Sections 2.3.6.3.), and that an additional intake of riboflavin is required to balance the losses
1876 through breast milk (Section 5.2.3.2.). The Panel notes that only one study shows a higher requirement
1877 in lactating women compared to non-lactating women (Kuizon et al., 1998)

1878 Thus, the Panel set an AR for lactating women by adding to the AR for non-lactating woman (the
1879 unrounded value of 1.34 mg/day was used in the calculation, Section 6.1.) an additional requirement to
1880 account for the losses through breast milk (Section 5.2.3.2.). This additional requirement can be
1881 calculated as the secretion of riboflavin into milk during lactation (0.291 mg/day (Section 2.3.6.3.))
1882 corrected for absorption efficiency of 95% (Section 2.3.1.). The Panel calculated an AR of
1883 1.65 mg/day. Considering, as for adults, a CV of 10% (Section 6.1.) and rounding to the nearest one
1884 decimal place, the Panel set a PRI of 2 mg/day for exclusively breastfeeding women during the first
1885 six months of lactation.

1886 **CONCLUSIONS**

1887 The Panel concludes that ARs and PRIs for riboflavin for adults can be derived from the weighted
1888 mean of riboflavin intake associated to the inflection point in the urinary riboflavin excretion curve
1889 reported in four intervention studies in non-EU countries. The Panel considers that the potential effect
1890 of physical activity and of MTHFR 677TT genotype on riboflavin requirement is covered by the data
1891 presented from the studies considered, thus is accounted for in the assumed CV applied to set the PRI
1892 for riboflavin. A CV of 10% was used to calculate PRIs from the ARs for adults and similarly for all
1893 other population groups. Based on the study on men in a 'mental institution' considered by SCF
1894 (1993), data on young women published before the release of the SCF report and newly available
1895 intervention studies in young and older men and women, the Panel sets an AR and a PRI for all adults,
1896 without correction for body weight of men and women. For infants aged 7–11 months, no sufficient
1897 data are available to set an AR, thus the Panel sets an AI, based on upward extrapolation by allometric
1898 scaling from the estimated intake of riboflavin of exclusively breastfed infants from birth to six
1899 months. For all children aged 1–17 years, the Panel sets ARs by downward extrapolation from the
1900 adult AR, by allometric scaling, applying growth factors and taking into account the differences in
1901 reference body weight. As for adults, the Panel considers unnecessary to set sex-specific AR and PRIs
1902 for boys and girls of all ages. For pregnant women, the Panel derives the AR by allometric scaling
1903 from the requirement for non-pregnant women, considering the mean gestational increase in body
1904 weight, to account for fetal uptake and riboflavin accretion in the placenta during pregnancy. For
1905 lactating women, the AR is increased compared to the AR for non-lactating women, to account for the
1906 secretion through breast milk, after correction for an absorption efficiency of 95% (Table 6)

1907

Table 6: Summary of Dietary Reference Values for riboflavin

Age	Average Requirement (mg/day)	Population Reference Intake (mg/day) ^(a)
7–11 months	-	0.4 ^(b)
1–3 years	0.5	0.6
4–6 years	0.6	0.7
7–10 years	0.8	1.0
11–14 years	1.1	1.4
15–17 years	1.4	1.6
≥18 years ^(g)	1.3	1.6
Pregnancy	1.5	1.9
Lactation	1.7	2.0

1908

(a): Values for ARs and PRIs are rounded to the closest one decimal place in this table. PRI are calculated with unrounded AR values (e.g. for adolescents and adults: 1.36 and 1.34).

1909

(b): Adequate Intake

1910

1911

1912

RECOMMENDATION FOR RESEARCH

1913

The Panel suggests to undertake further research on:

1914

- biomarkers of riboflavin intake and status, and their dose-response relationship with riboflavin intake

1915

- the standardisation of EGRAC measurement, its relationship with urinary excretion of riboflavin and the cut-off value for EGRAC to assess adequacy for riboflavin

1916

- the requirement for riboflavin in some population groups e.g. infants, children, pregnant or lactating women and the potential influence of age and sex

1917

- the effect of physical activity and energy expenditure on riboflavin requirement

1918

- the quantification of the effect of genetic polymorphism on riboflavin requirement, in particular the polymorphism of MTHFR 677 C>T.

1919

REFERENCES

1920

Abrahamsen B, Madsen JS, Tofteng CL, Stilgren L, Bladbjerg EM, Kristensen SR, Brixen K and Mosekilde L, 2005. Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. *Bone*, 36, 577-583.

1921

Adamson JD, Jolliffe N, Kruse HD, Lowry OH, Moore PE, Platt BS, Sebrell WH, Tice JW, Tisdall FF, Wilder RM and Zamecnik PC, 1945. Medical Survey of Nutrition in Newfoundland. Canadian Medical Association Journal, 52, 227-250.

1922

Afssa (Agence française de sécurité sanitaire des aliments), 2001. Apports nutritionnels conseillés pour la population française. Editions Tec&Doc, Paris, France, 605 pp.

1923

Agte V, Jahagirdar M and Chiplonkar S, 2005. Apparent absorption of eight micronutrients and phytic acid from vegetarian meals in ileostomized human volunteers. *Nutrition*, 21, 678-685.

1924

Ajayi OA, Okike OC and Yusuf Y, 1990. Haematological response to supplements of riboflavin and ascorbic acid in Nigerian young adults. *European Journal of Haematology*, 44, 209-212.

1937 Alexander M, Emanuel G, Golin T, Pinto JT and Rivlin RS, 1984. Relation of riboflavin nutriture in
1938 healthy elderly to intake of calcium and vitamin supplements: evidence against riboflavin
1939 supplementation. *American Journal of Clinical Nutrition*, 39, 540-546.

1940 Anderson BB, Clements JE, Perry GM, Studds C, Vullo C and Salsini G, 1987. Glutathione reductase
1941 activity and its relationship to pyridoxine phosphate activity in G6PD deficiency. *European Journal*
1942 *of Haematology*, 38, 12-20.

1943 Badart-Smook A, van Houwelingen AC, Al MD, Kester AD and Hornstra G, 1997. Fetal growth is
1944 associated positively with maternal intake of riboflavin and negatively with maternal intake of
1945 linoleic acid. *Journal of the American Dietetic Association*, 97, 867-870.

1946 Baker H, Frank O, Deangelis B, Feingold S and Kaminetzky HA, 1981. Role of placenta in maternal-
1947 fetal vitamin transfer in humans. *American Journal of Obstetrics and Gynecology*, 141, 792-796.

1948 Bamji MS, 1969. Glutathione reductase activity in red blood cells and riboflavin nutritional status in
1949 humans. *Clinica Chimica Acta*, 26, 263-269.

1950 Bamji MS and Prema K (National Institute of Nutrition, Indian Council of Medical Research), 1981.
1951 Enzymatic riboflavin and pyridoxine deficiencies in young Indian women suffering from different
1952 grades of glossitis. *Nutrition Reports International*. 649-658.

1953 Barile M, Giancaspero TA, Leone P, Galluccio M and Indiveri C, 2016. Riboflavin transport and
1954 metabolism in humans. *Journal of Inherited Metabolic Disease*, 39, 545-557.

1955 Bassett JK, Severi G, Hodge AM, Baglietto L, Hopper JL, English DR and Giles GG, 2012a. Dietary
1956 intake of B vitamins and methionine and prostate cancer incidence and mortality. *Cancer Causes*
1957 and Control, 23, 855-863.

1958 Bassett JK, Hodge AM, English DR, Baglietto L, Hopper JL, Giles GG and Severi G, 2012b. Dietary
1959 intake of B vitamins and methionine and risk of lung cancer. *European Journal of Clinical*
1960 *Nutrition*, 66, 182-187.

1961 Bassett JK, Baglietto L, Hodge AM, Severi G, Hopper JL, English DR and Giles GG, 2013. Dietary
1962 intake of B vitamins and methionine and breast cancer risk. *Cancer Causes and Control*, 24, 1555-
1963 1563.

1964 Bates B, Cox L, Nicholson S, Page P, Prentice A, Steer T and Swan G, 2016. National Diet and
1965 Nutrition Survey Results from Years 5 and 6 (combined) of the Rolling Programme (2012/2013 –
1966 2013/2014). A survey carried out on behalf of the Department of Health and the Food Standards
1967 Agency. 29 pp.

1968 Bates CJ, 1981. Riboflavin status in Gambian pregnant and lactating women and its implications for
1969 recommended dietary allowances. *American Journal of Clinical Nutrition*, 34, 928-935.

1970 Bates CJ, Prentice AM, Watkinson M, Morrell P, Sutcliffe BA, Foord FA and Whitehead RG, 1982.
1971 Riboflavin requirements of lactating Gambian women: a controlled supplementation trial.
1972 *American Journal of Clinical Nutrition*, 35, 701-709.

1973 Bates CJ, Prentice AM and Paul AA, 1982. Riboflavin status in infants born in rural Gambia, and the
1974 effect of a weaning food supplement. *Transactions of the Royal Society of Tropical Medicine and*
1975 *Hygiene*, 76, 253-258.

1976 Bates CJ, Liu DS, Fuller NJ and Lucas A, 1985. Susceptibility of riboflavin and vitamin A in breast
1977 milk to photodegradation and its implications for the use of banked breast milk in infant feeding.
1978 *Acta Paediatrica Scandinavica*, 74, 40-44.

1979 Bates CJ and Powers HJ, 1985. A simple fluorimetric assay for pyridoxamine phosphate oxidase in
1980 erythrocyte haemolysates: effects of riboflavin supplementation and of glucose 6-phosphate
1981 dehydrogenase deficiency. *Human Nutrition. Clinical Nutrition*, 39, 107-115.

1982 Bates CJ, 1987. Human riboflavin requirement and metabolic consequences of deficiency in the man
1983 and animals. *World Review of Nutrition and Dietetics*, 50, 215-265.

1984 Bates CJ, Powers HJ, Downes R, Brubacher D, Sutcliffe V and Thurnhill A, 1989. Riboflavin status of
1985 adolescent vs elderly Gambian subjects before and during supplementation. *American Journal of*
1986 *Clinical Nutrition*, 50, 825-829.

1987 Bates CJ and Prentice A, 1994. Breast milk as a source of vitamins, essential minerals and trace
1988 elements. *Pharmacology and Therapeutics*, 62, 193-220.

1989 Bates CJ, 1997. Bioavailability of riboflavin. *European Journal of Clinical Nutrition*, 51 Suppl 1, S38-
1990 42.

1991 Belko AZ, Obarzanek E, Kalkwarf HJ, Rotter MA, Bogusz S, Miller D, Haas JD and Roe DA, 1983.
1992 Effects of exercise on riboflavin requirements of young women. *American Journal of Clinical*
1993 *Nutrition*, 37, 509-517.

1994 Belko AZ, Obarzanek E, Roach R, Rotter M, Urban G, Weinberg S and Roe DA, 1984. Effects of
1995 aerobic exercise and weight loss on riboflavin requirements of moderately obese, marginally
1996 deficient young women. *American Journal of Clinical Nutrition*, 40, 553-561.

1997 Belko AZ, Meredith MP, Kalkwarf HJ, Obarzanek E, Weinberg S, Roach R, McKeon G and Roe DA,
1998 1985. Effects of exercise on riboflavin requirements: biological validation in weight reducing
1999 women. *American Journal of Clinical Nutrition*, 41, 270-277.

2000 Benton D, Haller J and Fordy J, 1997. The vitamin status of young British adults. *International Journal*
2001 *for Vitamin and Nutrition Research*, 67, 34-40.

2002 Bessey OA, Horwitt MK and Love RH, 1956. Dietary deprivation of riboflavin and blood riboflavin
2003 levels in man. *Journal of Nutrition*, 58, 367-383.

2004 Blot WJ, Li JY, Taylor PR, Guo W, Dawsey S, Wang GQ, Yang CS, Zheng SF, Gail M, Li GY and et
2005 al., 1993. Nutrition intervention trials in Linxian, China: supplementation with specific
2006 vitamin/mineral combinations, cancer incidence, and disease-specific mortality in the general
2007 population. *Journal of the National Cancer Institute*, 85, 1483-1492.

2008 Boisvert WA, Mendoza I, Castaneda C, De Portocarrero L, Solomons NW, Gershoff SN and Russell
2009 RM, 1993. Riboflavin requirement of healthy elderly humans and its relationship to macronutrient
2010 composition of the diet. *Journal of Nutrition*, 123, 915-925.

2011 Bosch AM, Abeling NG, Ijlst L, Knoester H, van der Pol WL, Stroomer AE, Wanders RJ, Visser G,
2012 Wijburg FA, Duran M and Waterham HR, 2011. Brown-Vialetto-Van Laere and Fazio Londe
2013 syndrome is associated with a riboflavin transporter defect mimicking mild MADD: a new inborn
2014 error of metabolism with potential treatment. *Journal of Inherited Metabolic Disease*, 34, 159-164.

2015 Bowman BB, McCormick DB and Rosenberg IH, 1989. Epithelial transport of water-soluble vitamins.
2016 *Annual Review of Nutrition*, 9, 187-199.

2017 Brewer W, Porter T, Ingalls R and Olhelson MA, 1946. The urinary excretion of riboflavin by college
2018 women. *Journal of Nutrition*, 32, 583-596.

2019 Bro-Rasmussen F, 1958. The riboflavin requirement of animals and man and associated metabolic
2020 relations. II. Relation of requirement to the metabolism of protein and energy. *Nutrition abstracts*
2021 *and reviews. Series A: Human and experimental*, 28, 369-386.

2022 Brown M.L., 1990. Present Knowledge in Nutrition. International Life Sciences Institute-Nutrition
2023 Foundation, Washington, DC, USA.

2024 Bruijn J, Duivenvoorden H, Passchier J, Locher H, Dijkstra N and Arts WF, 2010. Medium-dose
2025 riboflavin as a prophylactic agent in children with migraine: a preliminary placebo-controlled,
2026 randomised, double-blind, cross-over trial. *Cephalgia*, 30, 1426-1434.

2027 Brzezinski A, Bromberg YM and Braun K, 1952. Riboflavin excretion during pregnancy and early
2028 lactation. *Journal of Laboratory and Clinical Medicine*, 39, 84-90.

2029 Brzozowska A, Kaluza J, Knoops KT and de Groot LC, 2008. Supplement use and mortality: the
2030 SENECA study. *European Journal of Nutrition*, 47, 131-137.

2031 Buijssen M, Eeuwijk J and Vonk Noordegraaf-Schouten M, 2014. Literature search and review related
2032 to specific preparatory work in the establishment of Dietary Reference Values for Riboflavin.
2033 EFSA supporting publication 2014:EN-591, 245 pp.

2034 Burch HB, Bessey OA and Lowry OH, 1948. Fluorometric measurements of riboflavin and its natural
2035 derivatives in small quantities of blood serum and cells. *Journal of Biological Chemistry*, 175, 457-
2036 470.

2037 Burgess RC, 1946. Deficiency diseases in prisoners of war at Changi, Singapore, February 1942 to
2038 August 1945. *Lancet*, 2, 411-418.

2039 Butte N and King JC, 2002. Energy requirements during pregnancy and lactation. *Public Health
2040 Nutrition*, 8, 1010-1027.

2041 Cappellini MD and Fiorelli G, 2008. Glucose-6-phosphate dehydrogenase deficiency. *Lancet*, 371, 64-
2042 74.

2043 Chastain JL and McCormick DB, 1987. Flavin catabolites: identification and quantitation in human
2044 urine. *American Journal of Clinical Nutrition*, 46, 830-834.

2045 Chiong MA, Sim KG, Carpenter K, Rhead W, Ho G, Olsen RK and Christodoulou J, 2007. Transient
2046 multiple acyl-CoA dehydrogenation deficiency in a newborn female caused by maternal riboflavin
2047 deficiency. *Molecular Genetics and Metabolism*, 92, 109-114.

2048 Chocano-Bedoya PO, Manson JE, Hankinson SE, Willett WC, Johnson SR, Chasan-Taber L,
2049 Ronnenberg AG, Bigelow C and Bertone-Johnson ER, 2011. Dietary B vitamin intake and incident
2050 premenstrual syndrome. *American Journal of Clinical Nutrition*, 93, 1080-1086.

2051 Chuang SC, Stolzenberg-Solomon R, Ueland PM, Vollset SE, Midttun O, Olsen A, Tjonneland A,
2052 Overvad K, Boutron-Ruault MC, Morois S, Clavel-Chapelon F, Teucher B, Kaaks R, Weikert C,
2053 Boeing H, Trichopoulou A, Benetou V, Naska A, Jenab M, Slimani N, Romieu I, Michaud DS,
2054 Palli D, Sieri S, Panico S, Sacerdote C, Tumino R, Skeie G, Duell EJ, Rodriguez L, Molina-Montes
2055 E, Huerta JM, Larranaga N, Gurea AB, Johansen D, Manjer J, Ye W, Sund M, Peeters PH,
2056 Journink S, Wareham N, Khaw KT, Crowe F, Riboli E, Bueno-de-Mesquita B and Vineis P, 2011.
2057 A U-shaped relationship between plasma folate and pancreatic cancer risk in the European
2058 Prospective Investigation into Cancer and Nutrition. *European Journal of Cancer*, 47, 1808-1816.

2059 Condo M, Posar A, Arbizzani A and Parmeggiani A, 2009. Riboflavin prophylaxis in pediatric and
2060 adolescent migraine. *J Headache Pain*, 10, 361-365.

2061 D-A-CH (Deutsche Gesellschaft für Ernährung, Österreichische Gesellschaft für Ernährung,
2062 Schweizerische Gesellschaft für Ernährung), 2015. Referenzwerte für die Nährstoffzufuhr. 2.
2063 Auflage, 1. Ausgabe.

2064 Dainty JR, Bullock NR, Hart DJ, Hewson AT, Turner R, Finglas PM and Powers HJ, 2007.
2065 Quantification of the bioavailability of riboflavin from foods by use of stable-isotope labels and
2066 kinetic modeling. *American Journal of Clinical Nutrition*, 85, 1557-1564.

2067 Dalloso HM, McGrother CW, Matthews RJ and Donaldson MM, 2004. Nutrient composition of the
2068 diet and the development of overactive bladder: a longitudinal study in women. *Neurourology and
2069 Urodynamics*, 23, 204-210.

2070 Dancis J, Lehanka J and Levitz M, 1985. Transfer of riboflavin by the perfused human placenta.
2071 *Pediatric Research*, 19, 1143-1146.

2072 Dancis J, Lehanka J, Levitz M and Schneider H, 1986. Establishment of gradients of riboflavin, L-
2073 lysine and alpha-aminoisobutyric acid across the perfused human placenta. *Journal of Reproductive
2074 Medicine*, 31, 293-296.

2075 Dancis J, Lehanka J and Levitz M, 1988. Placental transport of riboflavin: differential rates of uptake
2076 at the maternal and fetal surfaces of the perfused human placenta. *American Journal of Obstetrics
2077 and Gynecology*, 158, 204-210.

2078 Daniel H, Wille U and Rehner G, 1983. In vitro kinetics of the intestinal transport of riboflavin in rats.
2079 Journal of Nutrition, 113, 636-643.

2080 Darby W.J., 1981. Annual Review of Nutrition. Annual Reviews, Palo Alto, CA USA.

2081 Davis MV, Oldham HG and Roberts LJ, 1946. Riboflavin excretions of young women on diets
2082 containing varying levels of the B vitamins. Journal of Nutrition, 32, 143-161.

2083 de Vogel S, Dindore V, van Engeland M, Goldbohm RA, van den Brandt PA and Weijenberg MP,
2084 2008. Dietary folate, methionine, riboflavin, and vitamin B-6 and risk of sporadic colorectal cancer.
2085 Journal of Nutrition, 138, 2372-2378.

2086 Deodhar AD, Hajalakshmi R and Ramakrishnan CV, 1964. Studies on Human Lactation. Iii. Effect of
2087 Dietary Vitamin Supplementation on Vitamin Contents of Breast Milk. Acta Paediatrica, 53, 42-48.

2088 DH (Department of Health), 1991. Dietary Reference Values for food energy and nutrients for the
2089 United Kingdom. Report of the Panel on Dietary Reference Values of the Committee on Medical
2090 Aspects of Food Policy. HMSO, London, UK, 212 pp.

2091 DHSS (Department of Health and Social Security), 1969. Recommended Intakes of Nutrients for the
2092 United Kingdom, Report on public health and medical subjects 120. HMSO, London, UK, 43.

2093 DHSS (Department of Health and Social Security), 1977. The Composition of Mature Human Milk.
2094 HMSO, London, UK.

2095 DHSS (Department of Health and Social Security), 1979. Recommended Daily Amounts of Food
2096 Energy and Nutrients for Groups of People in the United Kingdom, Reports on health and social
2097 subjects 15. HMSO, London, UK, 27 pp.

2098 Di Lorenzo C, Pierelli F, Coppola G, Grieco GS, Rengo C, Ciccolella M, Magis D, Bolla M, Casali C,
2099 Santorelli FM and Schoenen J, 2009. Mitochondrial DNA haplogroups influence the therapeutic
2100 response to riboflavin in migraineurs. Neurology, 72, 1588-1594.

2101 Dostálová L, Salmenperä L, Václavinková V, Heinz-Erian P and Schüep W, 1988. Vitamin
2102 concentration in term milk of European mothers. In: Vitamins and minterals in pregancy and
2103 lactation. Ed Berger E. Nestec Ltd., Vevey/Raven Press, Ltd., New York, USA, 275-298.

2104 EFSA (European Food Safety Authority), 2011a. Report on the development of a food classification
2105 and description system for exposure assessment and guidance on its implementation and use. EFSA
2106 Journal 2011;9(12):2489, 84 pp. doi:10.2903/j.efsa.2011.2489

2107 EFSA (European Food Safety Authority), 2011b. Use of the EFSA Comprehensive European Food
2108 Consumption Database in Exposure Assessment. EFSA Journal 2011;9(3):2097, 34 pp.
2109 doi:10.2903/j.efsa.2011.2097

2110 EFSA ANS Panel (EFSA Panel on Food Additives and Nutrient Sources added to Food), 2013.
2111 Scientific Opinion on the re-evaluation of riboflavin (E 101(i)) and riboflavin-5'-phosphate sodium
2112 (E 101(ii)) as food additives. EFSA Journal 2013;11(10):3357, 49 pp. doi:10.2903/j.efsa.2013.3357

2113 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2009. Scientific
2114 Opinion on the appropriate age for introduction of complementary feeding of infants. EFSA
2115 Journal 2009;7(12):1423, 38 pp. doi:10.2903/j.efsa.2009.1423

2116 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2012. Scientific
2117 Opinion on Dietary Reference Values for protein. EFSA Journal 2012;10(2):2557, 66 pp.
2118 doi:10.2903/j.efsa.2012.2557

2119 EFSA NDA Panel (EFSA Panel on Dietetic Products Nutrition and Allergies), 2013. Scientific
2120 Opinion on Dietary Reference Values for energy. EFSA Journal 2013;11(1):3005, 112 pp.
2121 doi:10.2903/j.efsa.2013.3005

2122 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014a. Scientific
2123 Opinion on Dietary Reference Values for niacin. EFSA Journal 2014;12(7):3759, 42 pp.
2124 doi:10.2903/j.efsa.2014.3759

2125 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014b. Scientific
2126 Opinion on Dietary Reference Values for selenium. EFSA Journal 2014;12(10):3846, 66 pp.
2127 doi:10.2903/j.efsa.2014.3846

2128 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015a. Scientific
2129 Opinion on Dietary Reference Values for iron. EFSA Journal 2015;13(10):4254, 115 pp.
2130 doi:10.2903/j.efsa.2015.4254

2131 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2015b. Scientific
2132 Opinion on Dietary Reference Values for cobalamin (vitamin B12). EFSA Journal
2133 2015;13(7):4150, 64 pp. doi:10.2903/j.efsa.2015.4150

2134 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2016. Scientific
2135 opinion on Dietary Reference Values for vitamin B6. EFSA Journal 2016;14(6):4485, 79 pp.
2136 doi:10.2903/j.efsa.2016.4485

2137 Ehret GB, Munroe PB, Rice KM, Bochud M, Johnson AD, Chasman DI, Smith AV, Tobin MD and et
2138 al., 2011. Genetic variants in novel pathways influence blood pressure and cardiovascular disease
2139 risk. *Nature*, 478, 103-109.

2140 Eussen SJ, Vollset SE, Hustad S, Midttun O, Meyer K, Fredriksen A, Ueland PM, Jenab M, Slimani
2141 N, Ferrari P, Agudo A, Sala N, Capella G, Del Giudice G, Palli D, Boeing H, Weikert C, Bueno-
2142 de-Mesquita HB, Buchner FL, Carneiro F, Berrino F, Vineis P, Tumino R, Panico S, Berglund G,
2143 Manjer J, Stenling R, Hallmans G, Martinez C, Arrizola L, Barricarte A, Navarro C, Rodriguez L,
2144 Bingham S, Linseisen J, Kaaks R, Overvad K, Tjonneland A, Peeters PH, Numans ME, Clavel-
2145 Chapelon F, Boutron-Ruault MC, Morois S, Trichopoulou A, Lund E, Plebani M, Riboli E and
2146 Gonzalez CA, 2010. Vitamins B2 and B6 and genetic polymorphisms related to one-carbon
2147 metabolism as risk factors for gastric adenocarcinoma in the European prospective investigation
2148 into cancer and nutrition. *Cancer Epidemiology, Biomarkers and Prevention*, 19, 28-38.

2149 Fairweather-Tait SJ, Powers HJ, Minski MJ, Whitehead J and Downes R, 1992. Riboflavin deficiency
2150 and iron absorption in adult Gambian men. *Annals of Nutrition and Metabolism*, 36, 34-40.

2151 FAO/WHO (Food and Agriculture Organization of the United Nations/World Health Organization),
2152 1967. Requirements of vitamin A, thiamine, riboflavin and niacin. Report of a Joint FAO/WHO
2153 Expert Group. FAO Food and Nutrition Series No. 8, WHO Technical Report Series No. 362, 91
2154 pp.

2155 FAO/WHO/UNU (Food and Agriculture Organization of the United Nations/World Health
2156 Organization/United Nations University), 2004. Human energy requirements. Report of a Joint
2157 FAO/WHO/UNU Expert Consultation. Rome, Italy, 17-24 October 2001. FAO Food and Nutrition
2158 Technical Report Series, 103 pp.

2159 Fomon SJ and McCormick DB, 1993. B vitamins and choline. In: Nutrition of normal infants. Ed
2160 Fomon SJ r. Mosby-Year Book, St Louis, USA, 366-394 pp.

2161 Foraker AB, Khantwal CM and Swaan PW, 2003. Current perspectives on the cellular uptake and
2162 trafficking of riboflavin. *Advanced Drug Delivery Reviews*, 55, 1467-1483.

2163 Ford JE, Zechalko A, Murphy J and Brooke OG, 1983. Comparison of the B vitamin composition of
2164 milk from mothers of preterm and term babies. *Archives of Disease in Childhood*, 58, 367-372.

2165 Fortes C, Forastiere F, Farchi S, Rapiti E, Pastori G and Perucci CA, 2000. Diet and overall survival in
2166 a cohort of very elderly people. *Epidemiology*, 11, 440-445.

2167 Garcia-Minguillan CJ, Fernandez-Ballart JD, Ceruelo S, Rios L, Bueno O, Berrocal-Zaragoza MI,
2168 Molloy AM, Ueland PM, Meyer K and Murphy MM, 2014. Riboflavin status modifies the effects
2169 of methylenetetrahydrofolate reductase (MTHFR) and methionine synthase reductase (MTRR)
2170 polymorphisms on homocysteine. *Genes and Nutrition*, 9.

2171 Gastaldi G, Ferrari G, Verri A, Casirola D, Orsenigo MN and Laforenza U, 2000. Riboflavin
2172 phosphorylation is the crucial event in riboflavin transport by isolated rat enterocytes. *Journal of*
2173 *Nutrition*, 130, 2556-2561.

2174 German Nutrition Society, 2015. New reference values for energy intake. *Annals of Nutrition and*
2175 *Metabolism*. 66, 219-223.

2176 Gershoff SN, Hegsted DM, Jolly DH and Trulson MF, 1956. Variation in riboflavin excretion. *Journal*
2177 *of Nutrition*, 60, 581-597.

2178 Gibson RS, 2005. Riboflavin. In: *Principles of nutritional assessment*. Oxford University Press.,
2179 Oxford, New York USA, pp. 554-562.

2180 Gibson TM, Weinstein SJ, Mayne ST, Pfeiffer RM, Selhub J, Taylor PR, Virtamo J, Albanes D and
2181 Stolzenberg-Solomon R, 2010. A prospective study of one-carbon metabolism biomarkers and risk
2182 of renal cell carcinoma. *Cancer Causes and Control*, 21, 1061-1069.

2183 Glatzle D, Korner WF, Christeller S and Wiss O, 1970. Method for the detection of a biochemical
2184 riboflavin deficiency. Stimulation of NADPH2-dependent glutathione reductase from human
2185 erythrocytes by FAD in vitro. *Investigations on the vitamin B2 status in healthy people and*
2186 *geriatric patients*. *Internationale Zeitschrift fur Vitaminforschung (International Journal of Vitamin*
2187 *Research)*, 40, 166-183.

2188 Goodman SI, 1981. Organic aciduria in the riboflavin-deficient rat. *American Journal of Clinical*
2189 *Nutrition*, 34, 2434-2437.

2190 Graham JM, Peerson JM, Haskell MJ, Shrestha RK, Brown KH and Allen LH, 2005. Erythrocyte
2191 riboflavin for the detection of riboflavin deficiency in pregnant nepali women. *Clinical Chemistry*,
2192 51, 2162-2165.

2193 Gregersen N, Christensen MF, Christensen E and Kolvraa S, 1986. Riboflavin responsive multiple
2194 acyl-CoA dehydrogenation deficiency. Assessment of 3 years of riboflavin treatment. *Acta*
2195 *Paediatrica Scandinavica*, 75, 676-681.

2196 Gregory J, Foster K, Tyler H and Wiseman M, 1990. The Dietary and Nutritional Survey of British
2197 Adults. 393 PP.

2198 Gromisch DS, Lopez R, Cole HS and Cooperman JM, 1977. Light (phototherapy)--induced riboflavin
2199 deficiency in the neonate. *Journal of Pediatrics*, 90, 118-122.

2200 Guenther BD, Sheppard CA, Tran P, Rozen R, Matthews RG and Ludwig ML, 1999. The structure
2201 and properties of methylenetetrahydrofolate reductase from *Escherichia coli* suggest how folate
2202 ameliorates human hyperhomocysteinemia. *Nature Structural Biology*, 6, 359-365.

2203 Guo C, Wei J, Gao W, Pu L, Tang Z and Li L, 2016. Plasma riboflavin is a useful marker for studying
2204 riboflavin requirement in Chinese male adults. *Nutrition Research*, 36, 534-540.

2205 Haack TB, Makowski C, Yao Y, Graf E, Hempel M, Wieland T, Tauer U, Ahting U, Mayr JA,
2206 Freisinger P, Yoshimatsu H, Inui K, Strom TM, Meitinger T, Yonezawa A and Prokisch H, 2012.
2207 Impaired riboflavin transport due to missense mutations in SLC52A2 causes Brown-Vialetto-Van
2208 Laere syndrome. *Journal of Inherited Metabolic Disease*, 35, 943-948.

2209 Hankinson SE, Stampfer MJ, Seddon JM, Colditz GA, Rosner B, Speizer FE and Willett WC, 1992.
2210 Nutrient intake and cataract extraction in women: a prospective study. *BMJ (Clinical Research*
2211 *Ed.)*, 305, 335-339.

2212 Health Council of the Netherlands, 2000. Dietary reference intakes: calcium, vitamin D, thiamin,
2213 riboflavin, niacin, pantothenic acid, and biotin. 180 pp.

2214 Heller S, Salkeld RM and Korner WF, 1974. Riboflavin status in pregnancy. *American Journal of*
2215 *Clinical Nutrition*, 27, 1225-1230.

2216 Heseker H, Schneider R, Moch KJ, Kohlmeier M and Kübler W, 1992. Vitaminversorgung
2217 Erwachsener in der Bundesrepublik Deutschland. VERA Schriftenreihe Band IV
2218 Wissenschaftlicher Fachverlag Dr. Fleck, Niederkleen, Germany.

2219 Heseker H, Adolf T, Eberhardt W, Hartmann S, Herwig A, Kübler W, Matiaske B, Moch K, Schneider
2220 R and Zipp A, 1994. Lebensmittel und Nährstoffaufnahme Erwachsener in der Bundesrepublik
2221 Deutschland. VERA Schriftenreihe Band III. Second, revised edition. In: Wissenschaftlicher
2222 Fachverlag Dr. Fleck, Niederkleen, Germany.

2223 Hill MH, Bradley A, Mushtaq S, Williams EA and Powers HJ, 2009. Effects of methodological
2224 variation on assessment of riboflavin status using the erythrocyte glutathione reductase activation
2225 coefficient assay. *British Journal of Nutrition*, 102, 273-278.

2226 Ho G, Yonezawa A, Masuda S, Inui K-i, Sim KG, Carpenter K, Olsen RKJ, Mitchell JJ, Rhead WJ,
2227 Peters G and Christodoulou J, 2011. Maternal riboflavin deficiency, resulting in transient neonatal-
2228 onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene
2229 GPR172B. *Human Mutation*, 32, E1976-E1984.

2230 Hoey L, McNulty H and Strain JJ, 2009. Studies of biomarker responses to intervention with
2231 riboflavin: a systematic review. *American Journal of Clinical Nutrition*, 89, 1960S-1980S.

2232 Hoppel C, DiMarco JP and Tandler B, 1979. Riboflavin and rat hepatic cell structure and function.
2233 Mitochondrial oxidative metabolism in deficiency states. *Journal of Biological Chemistry*, 254,
2234 4164-4170.

2235 Horigan G, McNulty H, Ward M, Strain JJ, Purvis J and Scott JM, 2010. Riboflavin lowers blood
2236 pressure in cardiovascular disease patients homozygous for the 677C->T polymorphism in
2237 MTHFR. *Journal of Hypertension*, 28, 478-486.

2238 Horwitt M, Hills O, Harvey C, Liebert E and Steinberg D, 1949. Effects of dietary depletion of
2239 riboflavin. *Journal of Nutrition*, 39, 357-373.

2240 Horwitt MK, Liebet E, Kreisler O and Wittman P, 1948. Investigations of human requirements for B-
2241 complex vitamins. National Research Council, Washington, DC, USA, 100.

2242 Horwitt MK, Hills OW and et al., 1949. Effects of dietary depletion of riboflavin. *Journal of Nutrition*,
2243 39, 357-373.

2244 Horwitt MK, Harvey CC, Hills OW and Liebert E, 1950. Correlation of urinary excretion of riboflavin
2245 with dietary intake and symptoms of ariboflavinosis. *Journal of Nutrition*, 41, 247-264.

2246 Horwitt MK, 1966. Nutritional requirements of man, with special reference to riboflavin. *American
2247 Journal of Clinical Nutrition*, 18, 458-466.

2248 Hovi L, Hekali R and Siimes MA, 1979. Evidence of riboflavin depletion in breast-fed newborns and
2249 its further acceleration during treatment of hyperbilirubinemia by phototherapy. *Acta Paediatrica
2250 Scandinavica*, 68, 567-570.

2251 Hustad S, Ueland PM, Vollset SE, Zhang Y, Bjørke-Monsen AL and Schneede J, 2000. Riboflavin as
2252 a determinant of plasma total homocysteine: effect modification by the methylenetetrahydrofolate
2253 reductase C677T polymorphism. *Clinical Chemistry*, 46, 1065-1071.

2254 Hustad S, McKinley MC, McNulty H, Schneede J, Strain JJ, Scott JM and Ueland PM, 2002.
2255 Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and
2256 erythrocytes at baseline and after low-dose riboflavin supplementation. *Clinical Chemistry*, 48,
2257 1571-1577.

2258 Hustad S, Midttun O, Schneede J, Vollset SE, Grotmol T and Ueland PM, 2007. The
2259 methylenetetrahydrofolate reductase 677C->T polymorphism as a modulator of a B vitamin
2260 network with major effects on homocysteine metabolism. *American Journal of Human Genetics*,
2261 80, 846-855.

2262 ICNND (Interdepartmental Committee on Nutrition for National Defense), 1963. Manual for Nutrition
2263 Surveys. 2nd ed., 327 PP.

2264 Innis WS, McCormick DB and Merrill AH, Jr., 1985. Variations in riboflavin binding by human
2265 plasma: identification of immunoglobulins as the major proteins responsible. *Biochemical
2266 Medicine*, 34, 151-165.

2267 Innis WS, Nixon DW, Murray DR, McCormick DB and Merrill AH, Jr., 1986. Immunoglobulins
2268 associated with elevated riboflavin binding by plasma from cancer patients. *Proceedings of the
2269 Society for Experimental Biology and Medicine*, 181, 237-241.

2270 Instituto de Nutrición (CSIC), 1994. Tablas de Composición de Alimentos españoles.

2271 IOM (Institute of Medicine), 1998. Dietary Reference Intakes for thiamin, riboflavin, niacin, vitamin
2272 B6, folate, vitamin b12, pantothenic acid, biotin, and choline. Food and Nutrition Board. National
2273 Academy Press, Washington, D. C., USA, 591 pp.

2274 Jacques PF, Boston AG, Williams RR, Ellison RC, Eckfeldt JH, Rosenberg IH, Selhub J and Rozen
2275 R, 1996. Relation between folate status, a common mutation in methylenetetrahydrofolate
2276 reductase, and plasma homocysteine concentrations. *Circulation*, 93, 7-9.

2277 Jacques PF, Chylack LT, Jr., Hankinson SE, Khu PM, Rogers G, Friend J, Tung W, Wolfe JK, Padhye
2278 N, Willett WC and Taylor A, 2001. Long-term nutrient intake and early age-related nuclear lens
2279 opacities. *Archives of Ophthalmology*, 119, 1009-1019.

2280 Jacques PF, Kalmbach R, Bagley PJ, Russo GT, Rogers G, Wilson PW, Rosenberg IH and Selhub J,
2281 2002. The relationship between riboflavin and plasma total homocysteine in the Framingham
2282 Offspring cohort is influenced by folate status and the C677T transition in the
2283 methylenetetrahydrofolate reductase gene. *Journal of Nutrition*, 132, 283-288.

2284 Jansen AP and Jansen BC, 1954. Riboflavin-excretion with urine in pregnancy. *Internationale
2285 Zeitschrift fur Vitaminforschung (International Journal of Vitamin Research)*, 25, 193-199.

2286 Jedrychowski W, Steindorf K, Popiela T, Wahrendorf J, Tobiasz-Adamczyk B, Kulig J and Penar A,
2287 2001. Risk of colorectal cancer from alcohol consumption at lower vitamin intakes. A hospital-
2288 based case-control study in Poland. *Reviews on Environmental Health*, 16, 213-222.

2289 Jusko WJ and Levy G, 1967. Absorption, metabolism, and excretion of riboflavin-5'-phosphate in
2290 man. *Journal of Pharmaceutical Sciences*, 56, 58-62.

2291 Jusko WJ and Levy G., 1975. Absorption, protein binding and elimination of riboflavin. In:
2292 Riboflavin. Ed Rivlin RS. Plenum Press, New York, NY, 99-152

2293 Kabat GC, Miller AB, Jain M and Rohan TE, 2008. Dietary intake of selected B vitamins in relation to
2294 risk of major cancers in women. *British Journal of Cancer*, 99, 816-821.

2295 Kanno C, Kanehara N, Shirafuji K, Tanji R and Imai T, 1991. Binding form of vitamin B2 in bovine
2296 milk: its concentration, distribution and binding linkage. *Journal of Nutritional Science and
2297 Vitaminology*, 37, 15-27.

2298 Kersting M and Clausen K, 2003. Ernährungsphysiologische Auswertung einer repräsentativen
2299 Verzehrsstudie bei Säuglingen und Kleinkindern VELS mit dem Instrumentarium der DONALD
2300 Studie. *Forschungsinstitut für Kinderernährung* Dortmund, 103 pp.

2301 Key TJ, Appleby PN, Masset G, Brunner EJ, Cade JE, Greenwood DC, Stephen AM, Kuh D, Bhaniani
2302 A, Powell N and Khaw KT, 2012. Vitamins, minerals, essential fatty acids and colorectal cancer
2303 risk in the United Kingdom Dietary Cohort Consortium. *International Journal of Cancer*, 131,
2304 E320-325.

2305 Keys A, Henschel AF, Mickelsen O, Brozek JM and Crawford JH, 1944. Physiological and
2306 biochemical functions in normal young men on a diet restricted in riboflavin. *Journal of Nutrition*,
2307 27, 165-178.

2308 Kodentsova VM and Vrzhesinskaya OA, 2006. Evaluation of the vitamin status in nursing women by
2309 vitamin content in breast milk. *Bulletin of Experimental Biology and Medicine*, 141, 323-327.

2310 Komindr S and Nichoalds G, 1980. Clinical significance of riboflavin deficiency. In: *Nutritional*
2311 *Elements in Clinical Biochemistry*. Ed Brewster MA NH, USA. Plenum Press, New York, NY, 15-
2312 68

2313 Kuizon MD, 1992. Riboflavin requirement of Filipino women. *European Journal of Clinical Nutrition*,
2314 46, 257-264.

2315 Kuizon MD, Madriaga JR, Perlas LA, Avena EM, Marcos JM, Desnacido JA, Fuertes RT and
2316 Macapinlac MP, 1998. Riboflavin requirements of Filipino children and non-pregnant, pregnant
2317 and lactating women: Studied by the erythrocyte glutathione reductase activation test. *Asia Pacific*
2318 *Journal of Clinical Nutrition*, 7, 41-48.

2319 La Vecchia C, Braga C, Negri E, Franceschi S, Russo A, Conti E, Falcini F, Giacosa A, Montella M
2320 and Decarli A, 1997. Intake of selected micronutrients and risk of colorectal cancer. *International*
2321 *Journal of Cancer*, 73, 525-530.

2322 Lane M and Alfrey CP, Jr., 1965. The Anemia of Human Riboflavin Deficiency. *Blood*, 25, 432-442.

2323 Levy G and Jusko WJ, 1966. Factors affecting the absorption of riboflavin in man. *Journal of*
2324 *Pharmaceutical Sciences*, 55, 285-289.

2325 Liu JJ, Hazra A, Giovannucci E, Hankinson SE, Rosner B and De Vivo I, 2013. One-carbon
2326 metabolism factors and endometrial cancer risk. *British Journal of Cancer*, 108, 183-187.

2327 Liu T, Soong SJ, Wilson NP, Craig CB, Cole P, Macaluso M and Butterworth CE, Jr., 1993. A case
2328 control study of nutritional factors and cervical dysplasia. *Cancer Epidemiology, Biomarkers and*
2329 *Prevention*, 2, 525-530.

2330 Liu Y, Yu Q, Zhu Z, Zhang J, Chen M, Tang P and Li K, 2015a. Vitamin and multiple-vitamin
2331 supplement intake and incidence of colorectal cancer: a meta-analysis of cohort studies. *Medical*
2332 *Oncology*, 32, 434.

2333 Liu Y, Yu QY, Zhu ZL, Tang PY and Li K, 2015b. Vitamin B2 intake and the risk of colorectal
2334 cancer: a meta-analysis of observational studies. *Asian Pacific Journal of Cancer Prevention*, 16,
2335 909-913.

2336 Lo CS, 1985. Riboflavin status of adolescent southern Chinese: riboflavin saturation studies. *Human*
2337 *Nutrition. Clinical Nutrition*, 39, 297-301.

2338 Lowik MR, Schrijver J, Odink J, van den Berg H, Wedel M and Hermus RJ, 1990. Nutrition and
2339 aging: nutritional status of "apparently healthy" elderly (Dutch nutrition surveillance system).
2340 *Journal of the American College of Nutrition*, 9, 18-27.

2341 Ma E, Iwasaki M, Kobayashi M, Kasuga Y, Yokoyama S, Onuma H, Nishimura H, Kusama R and
2342 Tsugane S, 2009. Dietary intake of folate, vitamin B2, vitamin B6, vitamin B12, genetic
2343 polymorphism of related enzymes, and risk of breast cancer: a case-control study in Japan.
2344 *Nutrition and Cancer*, 61, 447-456.

2345 Macdonald HM, McGuigan FE, Fraser WD, New SA, Ralston SH and Reid DM, 2004.
2346 Methylenetetrahydrofolate reductase polymorphism interacts with riboflavin intake to influence
2347 bone mineral density. *Bone*, 35, 957-964.

2348 Maruti SS, Ulrich CM and White E, 2009. Folate and one-carbon metabolism nutrients from
2349 supplements and diet in relation to breast cancer risk. *American Journal of Clinical Nutrition*, 89,
2350 624-633.

2351 McCormick DB, 1989. Two interconnected B vitamins: riboflavin and pyridoxine. *Physiological*
2352 *Reviews*, 69, 1170-1198.

2353 McCormick DB, 2000. A trail of research on cofactors: an odyssey with friends. *Journal of Nutrition*,
2354 130, 323S-330S.

2355 McKinley MC, McNulty H, McPartlin J, Strain JJ, Pentieva K, Ward M, Weir DG and Scott JM,
2356 2001. Low-dose vitamin B-6 effectively lowers fasting plasma homocysteine in healthy elderly
2357 persons who are folate and riboflavin replete. *American Journal of Clinical Nutrition*, 73, 759-764.

2358 McNulty H, McKinley MC, Wilson B, McPartlin J, Strain JJ, Weir DG and Scott JM, 2002. Impaired
2359 functioning of thermolabile methylenetetrahydrofolate reductase is dependent on riboflavin status:
2360 implications for riboflavin requirements. *American Journal of Clinical Nutrition*, 76, 436-441.

2361 McNulty H, Dowey le RC, Strain JJ, Dunne A, Ward M, Molloy AM, McAnena LB, Hughes JP,
2362 Hannon-Fletcher M and Scott JM, 2006. Riboflavin lowers homocysteine in individuals
2363 homozygous for the MTHFR 677C->T polymorphism. *Circulation*, 113, 74-80.

2364 McNulty H, Strain JJ, Hughes CF and Ward M, 2017. Riboflavin, MTHFR genotype and blood
2365 pressure: A personalized approach to prevention and treatment of hypertension. *Molecular Aspects*
2366 *of Medicine*, 53, 2-9.

2367 Meinen M, Aepli R and Rehner G, 1977. Studies on the absorption of thiamine, riboflavin and
2368 pyridoxine in vitro. *Nutrition and Metabolism*, 21 Suppl 1, 264-266.

2369 Merrill AH, Jr., Lambeth JD, Edmondson DE and McCormick DB, 1981. Formation and mode of
2370 action of flavoproteins. *Annual Review of Nutrition*, 1, 281-317.

2371 Mushtaq S, Su H, Hill MH and Powers HJ, 2009. Erythrocyte pyridoxamine phosphate oxidase
2372 activity: a potential biomarker of riboflavin status? *American Journal of Clinical Nutrition*, 90,
2373 1151-1159.

2374 Nail PA, Thomas MR and Eakin R, 1980. The effect of thiamin and riboflavin supplementation on the
2375 level of those vitamins in human breast milk and urine. *American Journal of Clinical Nutrition*, 33,
2376 198-204.

2377 National Research Council, 1989. Recommended Dietary Allowances, 10th edition. 302 pp.

2378 Natraj U, George S and Kadam P, 1988. Isolation and partial characterisation of human riboflavin
2379 carrier protein and the estimation of its levels during human pregnancy. *Journal of Reproductive*
2380 *Immunology*, 13, 1-16.

2381 Nichoalds G, 1981. Riboflavin Symposium in Laboratory Medicine. In: *Symposium on Laboratory*
2382 *Assessment of Nutritional Status*. Ed Labbae RF. WB Saunders, Philadelphia, PA, 685-698 pp.

2383 Nicol BM, 1949. Nutrition of Nigerian peasant farmers, with special reference to the effects of vitamin
2384 A and riboflavin deficiency. *British Journal of Nutrition*, 3, 25-43.

2385 Niu WQ, You YG and Qi Y, 2012. Strong association of methylenetetrahydrofolate reductase gene
2386 C677T polymorphism with hypertension and hypertension-in-pregnancy in Chinese: a meta-
2387 analysis. *Journal of Human Hypertension*, 26, 259-267.

2388 NNR (Nordic Nutrition Recommendations), 2004. Integrating nutrition and physical activity. Nordic
2389 Council of Ministers, Copenhagen, Denmark, 435 pp.

2390 Nordic Council of Ministers, 2014. Nordic Nutrition Recommendations 2012. Integrating nutrition and
2391 physical activity. Nordic Council of Ministers, Copenhagen, Denmark, 627 pp.

2392 Oldham HG, 1944. A study of the riboflavin and thiamine requirements of children of preschool age.
2393 *Journal of Nutrition*, 27, 435-446.

2394 Olsen RK, Konarikova E, Giancaspero TA, Mosegaard S, Boczonadi V, Matakovic L, Veauville-
2395 Merllie A, Terrile C, Schwarzmayr T, Haack TB, Auranen M, Leone P, Galluccio M, Imbard A,
2396 Gutierrez-Rios P, Palmfeldt J, Graf E, Vianey-Saban C, Oppenheim M, Schiff M, Pichard S, Rigal
2397 O, Pyle A, Chinnery PF, Konstantopoulou V, Moslinger D, Feichtinger RG, Talim B, Topaloglu H,
2398 Coskun T, Gucer S, Botta A, Pegoraro E, Malena A, Vergani L, Mazza D, Zollino M, Ghezzi D,
2399 Acquaviva C, Tyni T, Boneh A, Meitinger T, Strom TM, Gregersen N, Mayr JA, Horvath R, Barile
2400 M and Prokisch H, 2016. Riboflavin-Responsive and -Non-responsive Mutations in FAD Synthase

2401 Cause Multiple Acyl-CoA Dehydrogenase and Combined Respiratory-Chain Deficiency. American
2402 Journal of Human Genetics, 98, 1130-1145.

2403 Ortega RM, Quintas ME, Martinez RM, Andres P, Lopez-Sobaler AM and Requejo AM, 1999. Riboflavin levels in maternal milk: the influence of vitamin B2 status during the third trimester of
2404 pregnancy. Journal of the American College of Nutrition, 18, 324-329.

2405 Parsons HG and Dias VC, 1991. Intramitochondrial fatty acid metabolism: riboflavin deficiency and
2406 energy production. Biochemistry and Cell Biology, 69, 490-497.

2407 Paul AA, Black AE, Evans J, Cole TJ and Whitehead RG, 1988. Breastmilk intake and growth from
2408 two to ten months. Journal of Human Nutrition and Dietetics, 1, 437-450.

2409 Petridou E, Zavras AI, Lefatzis D, Dessypris N, Laskaris G, Dokianakis G, Segas J, Douglas CW,
2410 Diehl SR and Trichopoulos D, 2002. The role of diet and specific micronutrients in the etiology of
2411 oral carcinoma. Cancer, 94, 2981-2988.

2412 Picciano MF, 1995. Water soluble vitamins in human milk. In: Handbook of milk composition. Ed
2413 Jensen RG. Academic Press, New York, USA, 189-194.

2414 Pinto J, Huang YP and Rivlin RS, 1987. Mechanisms underlying the differential effects of ethanol on
2415 the bioavailability of riboflavin and flavin adenine dinucleotide. Journal of Clinical Investigation,
2416 79, 1343-1348.

2417 Plough IC and Consolazio CF, 1959. The use of casual urine specimens in the evalution of the
2418 excretion rates of thiamine, riboflavin and N1-methylnicotinamide. Journal of Nutrition, 69, 365-
2419 370.

2420 Powers HJ, Bates CJ, Eccles M, Brown H and George E, 1987. Bicycling performance in Gambian
2421 children: effects of supplements of riboflavin or ascorbic acid. Human Nutrition: Clinical Nutrition,
2422 41C, 59-69.

2423 Powers HJ, 2003. Riboflavin (vitamin B-2) and health. American Journal of Clinical Nutrition, 77,
2424 1352-1360.

2425 Powers HJ, Hill MH, Mushtaq S, Dainty JR, Majsak-Newman G and Williams EA, 2011. Correcting a
2426 marginal riboflavin deficiency improves hematologic status in young women in the United
2427 Kingdom (RIBOFEM). American Journal of Clinical Nutrition, 93, 1274-1284.

2428 Prasad PA, Bamji MS, Lakshmi AV and Satyanarayana K, 1990. Functional impact of riboflavin
2429 supplementation in urban school children. Nutr Res., 10, 275-281.

2430 Qian X, Lu Z, Tan M, Liu H and Lu D, 2007. A meta-analysis of association between C677T
2431 polymorphism in the methylenetetrahydrofolate reductase gene and hypertension. European Journal
2432 of Human Genetics, 15, 1239-1245.

2433 Ramsay VP, Neumann C, Clark V and Swendseid ME, 1983. Vitamin cofactor saturation indices for
2434 riboflavin, thiamine, and pyridoxine in placental tissue of Kenyan women. American Journal of
2435 Clinical Nutrition, 37, 969-973.

2436 Rejnmark L, Vestergaard P, Hermann AP, Brot C, Eiken P and Mosekilde L, 2008. Dietary intake of
2437 folate, but not vitamin B2 or B12, is associated with increased bone mineral density 5 years after
2438 the menopause: results from a 10-year follow-up study in early postmenopausal women. Calcified
2439 Tissue International, 82, 1-11.

2440 Rivier DA, 1973. Kinetics and Na-dependence of riboflavin absorption by intestine in vivo.
2441 Experientia, 29, 1443-1446.

2442 Rivlin RS, 2010. Riboflavin. Informa Healthcare, London, UK and New York, USA. 691-699.

2443 Robitaille J, Carmichael SL, Shaw GM, Olney RS and National Birth Defects Prevention S, 2009.
2444 Maternal nutrient intake and risks for transverse and longitudinal limb deficiencies: data from the
2445 National Birth Defects Prevention Study, 1997-2003. Birth Defects Research. Part A, Clinical and
2446 Molecular Teratology, 85, 773-779.

2447

2448 Roe DA, Bogusz S, Sheu J and McCormick DB, 1982. Factors affecting riboflavin requirements of
2449 oral contraceptive users and nonusers. *American Journal of Clinical Nutrition*, 35, 495-501.

2450 Roe MA, Bell S, Oseredczuk M, Christensen T, Westenbrink S, Pakkala H, Presser K and Finglas PM,
2451 2013. Updated food composition database for nutrient intake. *EFSA Supporting Publications*
2452 2013:EN-355, 21 pp.

2453 Roughead ZK and McCormick DB, 1990. Flavin composition of human milk. *American Journal of*
2454 *Clinical Nutrition*, 52, 854-857.

2455 Roughead ZK and McCormick DB, 1991. Urinary riboflavin and its metabolites: effects of riboflavin
2456 supplementation in healthy residents of rural Georgia (USA). *European Journal of Clinical*
2457 *Nutrition*, 45, 299-307.

2458 Sadowski J.A., 1992. Riboflavin. In: *Nutrition in the Elderly*. The Boston Nutritional Status Survey.
2459 Eds Hartz SC, Russell RM and IH R. Smith-Gordon, London, UK, 119-125 pp.

2460 Said HM and Ma TY, 1994. Mechanism of riboflavine uptake by Caco-2 human intestinal epithelial
2461 cells. *American Journal of Physiology*, 266, G15-21.

2462 Said HM and Ross AC, 2012. Riboflavin. In: *Modern Nutrition in Health and Disease*. Lippincott
2463 Williams & Wilkins, Philadelphia, USA, 1616 pp.

2464 Sakurai T, Furukawa M, Asoh M, Kanno T, Kojima T and Yonekubo A, 2005. Fat-soluble and water-
2465 soluble vitamin contents of breast milk from Japanese women. *Journal of Nutritional Science and*
2466 *Vitaminology*, 51, 239-247.

2467 Sauberlich HE, Canham JE, Baker EM, Raica N, Jr. and Herman YF, 1973. Biochemical assessment
2468 of the nutritional status of vitamin B 6 in the human. *American Journal of Clinical Nutrition*, 25,
2469 629-642.

2470 Sauberlich HE, Skala JH and Dowdy RP, 1974. Laboratory tests for the assessment of nutritional
2471 status. CRC Press, Boca Raton, USA, 512 pp.

2472 Sauberlich HE, 1999. Laboratory tests for the assessment of nutritional status. CRC Press, Boca
2473 Raton, FL, USA, 55-69.

2474 SCF (Scientific Committee for Food), 1993. Nutrient and energy intakes for the European
2475 Community. Reports of the Scientific Committee for Food, 31st Series Food - Science and
2476 Technique, European Commission, Luxembourg, 248 pp.

2477 SCF (Scientific Committee on Food), 2000. Opinion of the Scientific Committee on Food on the
2478 Tolerable Upper Intake Level of riboflavin. 6 pp.

2479 SCF (Scientific Committee on Food), 2003. Report of the Scientific Committee on Food on the
2480 revision of essential requirements of infant formulae and follow-on formulae. SCF/CS/NUT/IF/65
2481 Final, 211 pp.

2482 Schiff M, Veauville-Merllie A, Su CH, Tzagoloff A, Rak M, Ogier de Baulny H, Boutron A, Smedts-
2483 Walters H, Romero NB, Rigal O, Rustin P, Vianey-Saban C and Acquaviva-Bourdain C, 2016.
2484 SLC25A32 Mutations and Riboflavin-Responsive Exercise Intolerance. *New England Journal of*
2485 *Medicine*, 374, 795-797.

2486 Schoenen J, Jacquy J and Lenaerts M, 1998. Effectiveness of high-dose riboflavin in migraine
2487 prophylaxis. A randomized controlled trial. *Neurology*, 50, 466-470.

2488 Sebrell WHJ, Butler RE, Wooley JG and Isbell H, 1941. Human riboflavin requirement estimated by
2489 urinary excretion of subjects on controlled intake. *Public Health Reports*, 56, 510-519.

2490 Sharp L, Little J, Brockton NT, Cotton SC, Masson LF, Hailes NE and Cassidy J, 2008.
2491 Polymorphisms in the methylenetetrahydrofolate reductase (MTHFR) gene, intakes of folate and
2492 related B vitamins and colorectal cancer: a case-control study in a population with relatively low
2493 folate intake. *British Journal of Nutrition*, 99, 379-389.

2494 Shrubsole MJ, Yang G, Gao YT, Chow WH, Shu XO, Cai Q, Rothman N, Gao J, Wagner C and
2495 Zheng W, 2009. Dietary B vitamin and methionine intakes and plasma folate are not associated
2496 with colorectal cancer risk in Chinese women. *Cancer Epidemiology, Biomarkers and Prevention*,
2497 18, 1003-1006.

2498 Siassi F, Pouransari Z and Ghadirian P, 2000. Nutrient intake and esophageal cancer in the Caspian
2499 littoral of Iran: a case-control study. *Cancer Detection and Prevention*, 24, 295-303.

2500 Singer TP and Kenney WC, 1974. Biochemistry of covalently bound flavins. *Vitamins and Hormones*,
2501 32, 1-45.

2502 Smedts HP, Rakhshandehroo M, Verkleij-Hagoort AC, de Vries JH, Ottenkamp J, Steegers EA and
2503 Steegers-Theunissen RP, 2008. Maternal intake of fat, riboflavin and nicotinamide and the risk of
2504 having offspring with congenital heart defects. *European Journal of Nutrition*, 47, 357-365.

2505 Smith MD, 1980. Rapid method for determination of riboflavin in urine by high-performance liquid
2506 chromatography. *Journal of Chromatography*, 182, 285-291.

2507 Snyderman SE, Ketron KC and et al., 1949. The minimum riboflavin requirement of the infant.
2508 *Journal of Nutrition*, 39, 219-232.

2509 Soares MJ, Satyanarayana K, Bamji MS, Jacob CM, Ramana YV and Rao SS, 1993. The effect of
2510 exercise on the riboflavin status of adult men. *British Journal of Nutrition*, 69, 541-551.

2511 Sorrell MF, Frank O, Thompson A.D., Aquino H and Baker H, 1971. Absorption of vitamins from the
2512 large intestine in vivo. *Nutr Rep Int*, 3, 143-148.

2513 Subramanian VS, Ghosal A, Kapadia R, Nabokina SM and Said HM, 2015. Molecular Mechanisms
2514 Mediating the Adaptive Regulation of Intestinal Riboflavin Uptake Process. *PLoS ONE*, 10,
2515 e0131698.

2516 Tan KL, Chow MT and Karim SM, 1978. Effect of phototherapy on neonatal riboflavin status. *Journal*
2517 *of Pediatrics*, 93, 494-497.

2518 Thomas MR, Snead SM, Wei C, Nail PA, Wilson M and Sprinkle EE, 3rd, 1980. The effects of
2519 vitamin C, vitamin B6, vitamin B12, folic acid, riboflavin, and thiamin on the breast milk and
2520 maternal status of well-nourished women at 6 months postpartum. *American Journal of Clinical*
2521 *Nutrition*, 33, 2151-2156.

2522 Thurnham DI, Migasena P and Pavapootanon N, 1970. The ultramicro red-cell glutathione reductase
2523 assay for riboflavin status: its use in field studies in Thailand. *Mikrochimica Acta*, 988-993.

2524 Thurnham DI, 1972. Influence of glucose-6-phosphate dehydrogenase deficiency on the glutathione
2525 reductase test for arboflavinosis. *Annals of Tropical Medicine and Parasitology*, 66, 505-508.

2526 Toh SY, Thompson GW and Basu TK, 1994. Riboflavin status of the elderly: dietary intake and FAD-
2527 stimulating effect on erythrocyte glutathione reductase coefficients. *European Journal of Clinical*
2528 *Nutrition*, 48, 654-659.

2529 Tremblay A, Boilard F, Breton MF, Bessette H and Roberge AG, 1984. The effects of a riboflavin
2530 supplementation on the nutritional status and performance of elite swimmers. *Nutrition Research*,
2531 4, 201-208.

2532 Tucker RG, Mickelsen O and Keys A, 1960. The influence of sleep, work, diuresis, heat, acute
2533 starvation, thiamine intake and bed rest on human riboflavin excretion. *Journal of Nutrition*, 72,
2534 251-261.

2535 Uccella S, Mariani A, Wang AH, Vierkant RA, Robien K, Anderson KE and Cerhan JR, 2011. Dietary
2536 and supplemental intake of one-carbon nutrients and the risk of type I and type II endometrial
2537 cancer: a prospective cohort study. *Annals of Oncology*, 22, 2129-2136.

2538 Ulvik A, Ebbing M, Hustad S, Midttun O, Nygard O, Vollset SE, Bonaa KH, Nordrehaug JE, Nilsen
2539 DW, Schirmer H and Ueland PM, 2010. Long- and short-term effects of tobacco smoking on
2540 circulating concentrations of B vitamins. *Clinical Chemistry*, 56, 755-763.

2541 van Buuren S, Schönbeck Y and van Dommelen P, 2012. Collection, collation and analysis of data in
2542 relation to reference heights and reference weights for female and male children and adolescents
2543 (0-18 years) in the EU, as well as in relation to the age of onset of puberty and the age at which
2544 different stages of puberty are reached in adolescents in the EU. Project developed on the
2545 procurement project CT/EFSA/NDA/2010/01. EFSA supporting publication 2012:EN-255, 59 pp.

2546 Van der Beek EJ, van Dokkum W, Schrijver J, Wedel M, Gaillard AWK, Wesstra A, van de Weerd H
2547 and Hermus RJJ, 1988. Thiamin, riboflavin and vitamins B6 and C:impact of combined restricted
2548 intake on functional performance in man. *American Journal of Clinical Nutrition*, 48, 14151-11462.

2549 van Lee L, Heyworth J, McNaughton S, Iacopetta B, Clayforth C and Fritschi L, 2011. Selected
2550 dietary micronutrients and the risk of right- and left-sided colorectal cancers: a case-control study
2551 in Western Australia. *Annals of Epidemiology*, 21, 170-177.

2552 Vasilaki AT, McMillan DC, Kinsella J, Duncan A, O'Reilly DS and Talwar D, 2010. Relation between
2553 riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red
2554 cells in patients' with critical illness. *Clinica Chimica Acta*, 411, 1750-1755.

2555 Veitch K, Draye JP, Van Hoof F and Sherratt HS, 1988. Effects of riboflavin deficiency and clofibrate
2556 treatment on the five acyl-CoA dehydrogenases in rat liver mitochondria. *Biochemical Journal*,
2557 254, 477-481.

2558 Venkataswamy G, 1967. Ocular manifestations of vitamin B-complex deficiency. *British Journal of
2559 Ophthalmology*, 51, 749-754.

2560 Vir SC, Love AH and Thompson W, 1981. Riboflavin status during pregnancy. *American Journal of
2561 Clinical Nutrition*, 34, 2699-2705.

2562 Visweswariah SS and Adiga PR, 1987. Isolation of riboflavin carrier proteins from pregnant human
2563 and umbilical cord serum: similarities with chicken egg riboflavin carrier protein. *Bioscience
2564 Reports*, 7, 563-571.

2565 Wark PA, Van der Kuil W, Ploemacher J, Van Muijen GN, Mulder CJ, Weijenberg MP, Kok FJ and
2566 Kampman E, 2006. Diet, lifestyle and risk of K-ras mutation-positive and -negative colorectal
2567 adenomas. *International Journal of Cancer*, 119, 398-405.

2568 Weight LM, Noakes TD, Labadarios D, Graves J, Jacobs P and Berman PA, 1988. Vitamin and
2569 mineral status of trained athletes including the effects of supplementation. *American Journal of
2570 Clinical Nutrition*, 47, 186-191.

2571 White HB, 3rd and Merrill AH, Jr., 1988. Riboflavin-binding proteins. *Annual Review of Nutrition*, 8,
2572 279-299.

2573 WHO (World Health Organisation), 1965. Nutrition in Pregnancy and Lactation. Report of a WHO
2574 Expert Committee. Technical Report Series No. 302. 54 pp.

2575 WHO Multicentre Growth Reference Study Group (World Health Organization), 2006. WHO Child
2576 Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and
2577 body mass index-for-age: Methods and development. 312 pp.

2578 WHO Working Group, 1989. Glucose-6-phosphate dehydrogenase deficiency. *Bulletin of the World
2579 Health Organization*, 67, 601-611.

2580 WHO/FAO (World Health Organization/Food and Agriculture Organization of the United Nations),
2581 2004. Vitamin and mineral requirements in human nutrition: report of a joint FAO/WHO expert
2582 consultation, Bangkok, Thailand, 21-30 September 1998. 341 pp.

2583 Williams RD, Mason HL, Cusick PL and Wilder RM, 1943. Observations on induced riboflavin
2584 deficiency and the riboflavin requirement of man. *Journal of Nutrition*, 25, 361-377.

2585 Wilson CP, Ward M, McNulty H, Strain JJ, Trouton TG, Horigan G, Purvis J and Scott JM, 2012.
2586 Riboflavin offers a targeted strategy for managing hypertension in patients with the MTHFR
2587 677TT genotype: a 4-y follow-up. *American Journal of Clinical Nutrition*, 95, 766-772.

2588 Wilson CP, McNulty H, Ward M, Strain JJ, Trouton TG, Hoeft BA, Weber P, Roos FF, Horigan G,
2589 McAnena L and Scott JM, 2013. Blood pressure in treated hypertensive individuals with the
2590 MTHFR 677TT genotype is responsive to intervention with riboflavin: findings of a targeted
2591 randomized trial. *Hypertension*, 61, 1302-1308.

2592 Winters LR, Yoon JS, Kalkwarf HJ, Davies JC, Berkowitz MG, Haas J and Roe DA, 1992. Riboflavin
2593 requirements and exercise adaptation in older women. *American Journal of Clinical Nutrition*, 56,
2594 526-532.

2595 Wu YL, Hu CY, Lu SS, Gong FF, Feng F, Qian ZZ, Ding XX, Yang HY and Sun YH, 2014.
2596 Association between methylenetetrahydrofolate reductase (MTHFR) C677T/A1298C
2597 polymorphisms and essential hypertension: a systematic review and meta-analysis. *Metabolism: Clinical and Experimental*, 63, 1503-1511.

2599 Xu WH, Shrubsole MJ, Xiang YB, Cai Q, Zhao GM, Ruan ZX, Cheng JR, Zheng W and Shu XO,
2600 2007a. Dietary folate intake, MTHFR genetic polymorphisms, and the risk of endometrial cancer
2601 among Chinese women. *Cancer Epidemiology, Biomarkers and Prevention*, 16, 281-287.

2602 Xu WH, Dai Q, Xiang YB, Zhao GM, Ruan ZX, Cheng JR, Zheng W and Shu XO, 2007b. Nutritional
2603 factors in relation to endometrial cancer: a report from a population-based case-control study in
2604 Shanghai, China. *International Journal of Cancer*, 120, 1776-1781.

2605 Yamada K, Chen Z, Rozen R and Matthews RG, 2001. Effects of common polymorphisms on the
2606 properties of recombinant human methylenetetrahydrofolate reductase. *Proceedings of the National
2607 Academy of Sciences of the United States of America*, 98, 14853-14858.

2608 Yamada Y, Merrill AH, Jr. and McCormick DB, 1990. Probable reaction mechanisms of flavokinase
2609 and FAD synthetase from rat liver. *Archives of Biochemistry and Biophysics*, 278, 125-130.

2610 Yang KM, Jia J, Mao LN, Men C, Tang KT, Li YY, Ding HX and Zhan YY, 2014.
2611 Methylenetetrahydrofolate reductase C677T gene polymorphism and essential hypertension: A
2612 meta-analysis of 10,415 subjects. *Biomedical Reports*, 2, 699-708.

2613 Yoon YS, Jung S, Zhang X, Ogino S, Giovannucci EL and Cho E, 2016. Vitamin B2 intake and
2614 colorectal cancer risk; results from the Nurses' Health Study and the Health Professionals Follow-
2615 Up Study cohort. *International Journal of Cancer*, 139, 996-1008.

2616 Yuasa H, Hirobe M, Tomei S and Watanabe J, 2000. Carrier-mediated transport of riboflavin in the rat
2617 colon. *Biopharmaceutics and Drug Disposition*, 21, 77-82.

2618 Zanette D, Monaco HL, Zanotti G and Spadon P, 1984. Crystallization of hen eggwhite riboflavin-
2619 binding protein. *Journal of Molecular Biology*, 180, 1185-1187.

2620 Zee RY, Mora S, Cheng S, Erlich HA, Lindpaintner K, Rifai N, Buring JE and Ridker PM, 2007.
2621 Homocysteine, 5,10-methylenetetrahydrofolate reductase 677C>T polymorphism, nutrient intake,
2622 and incident cardiovascular disease in 24,968 initially healthy women. *Clinical Chemistry*, 53, 845-
2623 851.

2624 Zempleni J, Link G and Bitsch I, 1995. Intrauterine vitamin B2 uptake of preterm and full-term
2625 infants. *Pediatric Research*, 38, 585-591.

2626 Zempleni J, Galloway JR and McCormick DB, 1996. Pharmacokinetics of orally and intravenously
2627 administered riboflavin in healthy humans. *American Journal of Clinical Nutrition*, 63, 54-66.

2628 Zschabitz S, Cheng TY, Neuhausen ML, Zheng Y, Ray RM, Miller JW, Song X, Maneval DR,
2629 Beresford SA, Lane D, Shikany JM and Ulrich CM, 2013. B vitamin intakes and incidence of
2630 colorectal cancer: results from the Women's Health Initiative Observational Study cohort.
2631 *American Journal of Clinical Nutrition*, 97, 332-343.

2632

2633

2634

2635 APPENDICES

2636 Appendix A. Concentrations of total flavin, or free or total riboflavin in breast milk of healthy mothers

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
Kodentsova and Vrzhesinskaya (2006)	n = 78 (preterm + normal delivery) including: normal delivery = 35	Russia	Intake recorded but not reported. Dietary intake recorded only for 25 breastfeeding women with normal delivery, including 15 not supplemented.	Urine: not reported/not measured. Plasma: spectrophotometry, by the method of titration with riboflavin-binding apoprotein. Measured but not reported.	3–10 days post-partum	Mean ± SD (range) <u>Not supplemented</u> 266 ± 40 (81–358) <u>Supplemented</u> 330 ± 41 (152–600)	Spectrophotometry, by the method of titration with riboflavin-binding apoprotein.	Volume of milk determined by weighing infants before and after breastfeeding. 24-hours milk samples (a single sample of breast milk from fasting women was taken).
Sakurai et al. (2005)	n = 691 samples Number of women not reported (only values from Group A reported (n = 114). Lower number of samples analysed than planned due to problems in the analytical procedure (e.g. insufficient sample volume)	Japan	Intake not reported – Unsupplemented women.	Status not reported	Various stages of lactation: 1–365 days	Total riboflavin Mean ± SD 6–10 days 11–20 days 21–89 days 90–180 days 181–365 days 377 ± 156 340 ± 97 380 ± 126 397 ± 126 385 ± 133	HPLC (absorbance was monitored at 530 nm using a fluorescence detector).	No explicit information on whether the infants were born at term or preterm. However, mean birth weight in group A was 3142 ± 425 g). Concentrations reported in this table for breast milk are the sum of riboflavin, FMN and FAD. The concentrations of each individual

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
Ortega et al. (1999) ^(a)	n = 57	Spain	Five-day food record + food frequency intake questionnaire. Measured during their third trimester of gestation (between weeks 32 and 36). The authors said that maternal intake after giving birth did not change drastically (intake measured but not reported). Mean ± SD	Urine: not measured/not reported. Plasma: EGRAC Mean ± SD		Fluorometry	compound are also reported in the reference. Concentration of FAD is higher than FMN and riboflavin.	Prospective cohort study. Milk samples taken in the morning by manual expression of a 5 mL sample from each breast at the beginning and end of feeds. No explicit information on whether the infants were born at term or preterm. However, mean length of pregnancy: 39 weeks, average weight of newborns: 3.3 kg.

non-supplemented group = 25
(Group L:
riboflavin intake < RI)^(a)

1.37 ± 0.11

1.21 ± 0.35

Transitional milk:

13–14 days post-partum 216.39 ± 94.78

Mature milk:

40 days post- 273.04 ± 95.72

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
partum.								
	supplemented group = 32 (Group H: riboflavin intake > RI) ^(a)		Total intake (supplements + diet): 2.52 ± 1.00 From supplements: 0.13 ± 0.50	1.06 ± 0.16 ^(b)	<u>Transitional milk</u> : 13–14 days post-partum <u>Mature milk</u> : 40 days post-partum.	356.86 ± 263.51 374.06 ± 164.34		
Roughead and McCormick (1990)	n = 5	USA	24 hours dietary record for the day previous to milk collection on four out of the five subjects. Total flavin (range): 1.13–2.91 No information on supplementation.	Status not reported	Not reported	<u>Total flavin (mean ± SD of all measurements per subject):</u> Min.: 180 ± 3 (containing 35.6 % riboflavin, 60.5 % FAD) Max.: 799 ± 25 (containing 30.7 % riboflavin, 61.6 % FAD)	Fluorescence spectrophotometry. n ≥ 4 measurements per subject. Analytical HPLC was used to analyse types and quantities of all flavins (riboflavin, FAD and other compounds).	No information on whether the infants were born at term or preterm, or on the stage of lactation.
Dostálová et al. (1988)	n = 26 (number of samples)	Switzerland	Intake not reported. Not supplemented.	Urine: not reported EGRAC: measured but not reported.		<u>Total riboflavin</u> Mean ± SD (range) <u>Colostrum</u>	Fluorometry	Mothers of infants born at term (37 th -43 rd week of gestation).

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
	(12)				*3–5 days post partum <u>Transitional milk</u>	*307 ± 150 (91–629)		
	(4)				*6–10 days post partum <u>Mature milk</u>	*240 ± 110 (82–333)		
	(4)				*Two weeks	*471 ± 121 (323–605)		
	(18)				*Four months	*485 ± 149 (foremilk: 291–492, hindmilk: 539–681)		
Dostálová et al. (1988)	Number not reported	Finland	Supplemented with a multivitamin supplement containing 2 mg riboflavin	<u>Urine</u> : not measured/reported <u>Plasma</u> : EGRAC measured but not reported.		Total riboflavin Mean ± SD (range)	Fluorometry	Mothers of infants born at term.
	(55)				<u>Colostrum</u> *3 or 4 days post partum	*422 ± 85 (208–633)		Each of the mothers donated a complete milk sample on the 3 rd and 4 th day after delivery, and at 2, 4, 6 and 7.5 months of lactation.
	(55)				<u>Mature milk</u> *Eight weeks	*584 ± 144 (340–984)		
	(55)				*Four months	*573 ± 139 (274–984)		
	(55)				*Six months	*563 ± 176 (104–889)		
	(55)				*7.5 months	*601 ± 205 (142–1 111)		
Ford et al. (1983) ^(c)	n = 35	UK	Intake not reported. No information on supplementation.	Not reported		Mean (range)	Standard microbiological methods	Mothers of infants born at term (at the 39 th week or later).

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
	6 (17)			<u>Colostrum</u> 1–5 days post partum.		288 (120–500)		Composites of samples expressed manually over the day during the baby's feeding times. Mature milk samples were composite samples made up of milk taken in mid feed at four different times spread over the day on four successive days.
	10 (22)			<u>Transitional milk</u> 6–15 days post partum		279 (130–733)		
	24 (24)			<u>Mature milk</u> 16–244 days post partum		310 (200–440)		
Thomas et al. (1980)	n = 12	USA	4-days diet record.	Plasma: not reported.	Six months post partum		Spectrophotometric determination	No information on whether the infants were born at term or preterm. Fore milk samples (25 mL) were collected four times per day at four-hours intervals (0, 4, 8, 12 hours in the non-supplemented group, and at 4, 8, 12 hours in the supplemented
				<u>Urine (mg/day, mean ± SD)</u>		<u>Mean ± SD</u>		

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
	non-supplemented group = 6		1.87 ± 0.95 (mean \pm SD)	0.442 ± 0.231 Spectro-photometric determination 24-hours urinary collection on the 3rd day of milk collection.		243 ± 35		group) for three days.
	supplemented group = 6		Food: 3.31 ± 1.25 (mean \pm SD) Supplements: 2.0	0.450 ± 0.248		274 ± 46		

Reference	Number of women (number of samples)	Country	Maternal dietary riboflavin intake (diet and/or supplements) (mg/day)	Maternal status (riboflavin concentration in urine or in plasma)	Stage of lactation	Riboflavin concentration in milk (µg/L)	Analytical method for breast milk content	Comments
Nail et al. (1980)	n = 12	USA	<u>Intake (mg/day):</u> 24-h dietary recall before each milk collection period. 3-day diet record kept by the subjects during 3-day intervals of milk collection. Mean \pm SD	<u>Plasma:</u> not reported. <u>Urine excretion</u> urinary collection at day 7 and 45. Modification of the Standards methods of the Infant formula Council and spectrophotometric determination mg/day (mean \pm SD)			Modification of the Standards methods of the Infant formula Council and spectrophotometric determination	No information on whether the infants were born at term or preterm. Both supplemented and unsupplemented mothers had consumed the supplement during pregnancy. Milk samples (25 mL) were collected four times per day in the morning upon arising and at four-hours intervals (0, 4, 8, 12 hours after) for three days.
						<u>Mean \pm SD</u>		
	non-supplemented group = 5		2.57 \pm 1.34 2.63 \pm 0.91	0.73 \pm 0.32 0.74 \pm 0.49	<u>Colostrum</u> 5–7 days post partum <u>Mature milk</u> 43–45 days post partum	367 \pm 128 485 \pm 123		
	supplemented group = 7		4.44 \pm 0.59 (total) (diet: 2.44 \pm 0.59, supplements: 2.0)	2.16 \pm 1.78	<u>Colostrum</u> 5–7 days post partum <u>Mature milk</u> 43–45 days post partum	880 \pm 168 710 \pm 187		Milk was expressed after ingestion of the vitamin supplement.
			4.95 \pm 1.28 (total) (diet: 2.90 \pm 1.28, supplements: 2.0)	2.76 \pm 1.13				

2637 (a) "Recommended intake (RI) for the Spanish population, for women in the second half of pregnancy: 0.6 mg/1000 kcal + 0.2 mg, with a minimum provision of 1.6 mg/day". Given that no
2638 subject showed high energy intakes, a RI was established as 1.6 mg/day (Instituto de Nutrición (CSIC), 1994)

2639 (b): The difference between EGRAC of group H and L was not statistically significant.

2640 (c): cited in Dostálová et al. (1988).

2641

2642 For the concentration of riboflavin in breast milk, the molecular mass (MM) of 376.4 g/mol was used to convert the values reported in nmol/L to µg/L.

2643 Abbreviations: EGRAC: erythrocyte glutathione reductase activation coefficient, FAD: flavin adenine dinucleotide, FMN: flavin mononucleotide, HPLC: high-performance liquid
2644 chromatography, RI: Recommended Intake, SD: standard deviation

DRAFT

2645 **Appendix B. Dietary surveys in the EFSA Comprehensive European Food Consumption Database included in EFSA's nutrient intake calculation**
 2646 **for riboflavin**

Country	Dietary survey (Year)	Year	Method	Days	Age (years)	Number of subjects						
						Infants ^(a) < 1 year	Children 1-3 years	Children 3-10 years	Children 10-18 years	Adults 18-65 years	Adults 65-75 years	Adults ≥ 75 years
Finland/1	NWSSP	2007-2008	48-hour dietary recall ^(b)	2x2 ^(b)	13-15				306			
Finland/2	FINDIET2012	2012	48-hour dietary recall ^(b)	2 ^(b)	25-74					1,295	413	
Finland/3	DIPP	2000-2010	Dietary record	3	0.5-6	499	500		750			
France	INCA2	2006-2007	Dietary record	7	3-79			482	973	2,276	264	84
Germany/1	EsKiMo	2006	Dietary record	3	6-11			835	393			
Germany/2	VELS	2001-2002	Dietary record	6	< 1-4	158	348 ^(c)	296 ^(c)				
Ireland	NANS	2008-2010	Dietary record	4	18-90					1,274	149	77
Italy	INRAN-SCAI 2005-06	2005-2006	Dietary record	3	< 1-98	16 ^(d)	36 ^(d)	193	247	2,313	290	228
Latvia	FC_PREGNANT WOMEN 2011	2011	24-hour dietary recall	2	15-45				12 ^(d)	991 ^(c)		
Netherlands	DNFCS	2007- 2010	24-hour dietary recall	2	7-69			447	1,142	2,057	173	
Sweden	RIKSMATEN	2010-2011	Dietary records (Web) ^(e)	4	18-80					1,430	295	72
United Kingdom/1	DNSIYC-2011	2011	Dietary record	4	0.3-1.5	1,369	1,314					
United Kingdom/2	NDNS Rolling Programme (Years 1-3)	2008-2011	Dietary record	4	1-94		185	651	666	1,266	166	139

2647 DIPP, type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of Infants and Young Children; EsKiMo,
 2648 Ernährungsstudie als KIGGS-Modul; FC_PREGNANTWOMEN, food consumption of pregnant women in Latvia; FINDIET, the national dietary survey of Finland; INCA, étude Individuelle
 2649 Nationale des Consommations Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; NANS, National Adult
 2650 Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie zur Ermittlung der Lebensmittelzufuhr
 2651 von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln.

2652 (a): Infants 1-11 months of age.

2653 (b): A 48-hour dietary recall comprising two consecutive days.

2654 (c): Four subjects from the VELS study (one aged between 1 and < 3 years and 3 aged between 3 to < 10 years) and one subject from Latvian study (one adult) were not considered in the
 2655 assessment due to the fact that only one 24-hour dietary recall day was available

2656 (d): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these
 2657 dietary surveys/age classes, the 5th and 95th percentile estimates are not presented in the intake results.

2658 (e): The Swedish dietary records were introduced through the internet.

2659

Appendix C. Riboflavin intakes in males in different surveys, estimated by EFSA according to age class and country

Age class	Country	Survey	Intakes expressed in mg/day					Intakes expressed in mg/MJ				
			n ^(c)	Average	Median	P5	P95	n	Average	Median	P5	P95
< 1 year ^(a)	Germany	VELS	84	0.7	0.8	0.3	1.2	84	0.2	0.2	0.1	0.4
	Finland	DIPP_2001_2009	247	0.7	0.7	0.0	1.5	245	0.3	0.3	0.1	0.5
	United Kingdom	DNSIYC_2011	699	1.2	1.3	0.5	1.8	699	0.4	0.4	0.2	0.5
	Italy	INRAN_SCAI_2005_06	9	0.6	0.5	- ^(b)	- ^(b)	9	0.2	0.2	- ^(b)	- ^(b)
1 to < 3 years	Germany	VELS	174	1.0	0.9	0.4	1.5	174	0.2	0.2	0.1	0.3
	Finland	DIPP_2001_2009	245	1.3	1.3	0.5	2.1	245	0.4	0.4	0.2	0.5
	United Kingdom	NDNS Rolling Programme Years 1–3	107	1.4	1.4	0.6	2.4	107	0.3	0.3	0.2	0.4
	United Kingdom	DNSIYC_2011	663	1.4	1.4	0.7	2.1	663	0.3	0.3	0.2	0.5
	Italy	INRAN_SCAI_2005_06	20	1.2	1.1	0.7	2.1	20	0.2	0.2	0.2	0.4
3 to < 10 years	Germany	EsKiMo	426	1.4	1.3	0.8	2.4	426	0.2	0.2	0.1	0.3
	Germany	VELS	146	1.1	1.0	0.6	1.7	146	0.2	0.2	0.1	0.3
	Finland	DIPP_2001_2009	381	1.8	1.8	0.9	2.6	381	0.3	0.3	0.2	0.4
	France	INCA2	239	1.6	1.5	0.9	2.5	239	0.3	0.3	0.2	0.4
	United Kingdom	NDNS Rolling Programme Years 1–3	326	1.4	1.3	0.7	2.3	326	0.2	0.2	0.1	0.4
	Italy	INRAN_SCAI_2005_06	94	1.5	1.4	0.9	2.3	94	0.2	0.2	0.1	0.3
	Netherlands	DNFCS 2007-2010	231	1.3	1.3	0.6	2.3	231	0.2	0.2	0.1	0.2
10 to < 18 years	Germany	EsKiMo	197	1.5	1.4	0.8	2.3	197	0.2	0.2	0.1	0.3
	Finland	NWSSP07_08	136	2.2	2.2	1.1	3.7	136	0.3	0.3	0.2	0.4
	France	INCA2	449	1.7	1.7	0.9	2.8	449	0.2	0.2	0.1	0.3
	United Kingdom	NDNS Rolling Programme Years 1–3	340	1.5	1.4	0.7	2.7	340	0.2	0.2	0.1	0.3
	Italy	INRAN_SCAI_2005_06	108	1.7	1.7	1.0	2.6	108	0.2	0.2	0.1	0.2
	Netherlands	DNFCS 2007-2010	566	1.7	1.6	0.8	3.2	566	0.2	0.2	0.1	0.3
18 to < 65 years	Finland	FINDIET2012	585	2.0	1.9	0.9	3.8	585	0.2	0.2	0.1	0.3
	France	INCA2	936	1.9	1.8	0.9	2.9	936	0.2	0.2	0.1	0.3
	United Kingdom	NDNS Rolling Programme Years 1–3	560	1.8	1.7	0.8	3.2	560	0.2	0.2	0.1	0.3
	Ireland	NANS_2012	634	2.2	2.1	1.0	3.9	634	0.2	0.2	0.1	0.4

Age class	Country	Survey	Intakes expressed in mg/day					Intakes expressed in mg/MJ				
			n ^(c)	Average	Median	P5	P95	n	Average	Median	P5	P95
65 to < 75 years	Italy	INRAN_SCAI_2005_06	1,068	1.7	1.7	1.0	2.6	1068	0.2	0.2	0.1	0.3
	Netherlands	DNFCS 2007-2010	1,023	1.9	1.8	0.9	3.3	1023	0.2	0.2	0.1	0.3
	Sweden	Riksmaten 2010	623	1.8	1.7	0.9	2.9	623	0.2	0.2	0.1	0.3
≥ 75 years	Finland	FINDIET2012	210	1.7	1.6	0.7	2.9	210	0.2	0.2	0.1	0.3
	France	INCA2	111	1.9	1.8	0.9	2.9	111	0.2	0.2	0.2	0.3
	United Kingdom	NDNS Rolling Programme Years 1–3	75	1.9	1.9	0.8	3.0	75	0.2	0.2	0.1	0.3
	Ireland	NANS_2012	72	1.9	1.8	0.9	2.9	72	0.2	0.2	0.1	0.3
	Italy	INRAN_SCAI_2005_06	133	1.7	1.7	1.0	2.5	133	0.2	0.2	0.1	0.3
	Netherlands	DNFCS 2007-2010	91	1.6	1.6	0.8	2.4	91	0.2	0.2	0.1	0.3
	Sweden	Riksmaten 2010	127	1.6	1.6	0.8	2.4	127	0.2	0.2	0.1	0.3

2660 DIPP, type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of Infants and Young Children; EsKiMo,
 2661 Ernährungsstudie als KIGGS-Modul; FC_PREGNANTWOMEN, food consumption of pregnant women in Latvia; FINDIET, the national dietary survey of Finland; INCA, étude
 2662 Individuelle Nationale des Consommations Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; NANS,
 2663 National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie zur Ermittlung der
 2664 Lebensmittelzufuhr von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln.
 2665 (a): Infants between 1 and 11 months. The proportions of breastfed infants were 58% in the Finnish survey, 40% in the German survey, 44% in the Italian survey, and 21% in the UK survey.
 2666 Most infants were partially breastfed. The consumption of breast milk was taken into account if the consumption was reported as human milk (Italian survey) or if the number of breast milk
 2667 consumption events was reported (German and UK surveys). For the German study, the total amount of breast milk was calculated based on the observations by Paul et al. (1988) on breast
 2668 milk consumption during one eating occasion at different age groups: the amount of breast milk consumed on one eating occasion was set to 135 g/eating occasion for infants between 6-
 2669 7 months of age and to 100 g/eating occasion for infants between 8–12 months of age (Kersting and Clausen, 2003). For the UK survey, the amount of breast milk consumed was either
 2670 directly quantified by the mother (expressed breast milk) or extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events were reported in the
 2671 Finnish survey, breast milk intake was not taken into consideration in the intake estimates of Finnish infants.
 2672 (b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these
 2673 dietary surveys/age classes, the 5th and 95th percentile estimates are not presented in the intake results.
 2674 (c): n, number of subjects.
 2675
 2676

2677

Appendix D. Riboflavin intakes in females in different surveys, estimated by EFSA according to age class and country

Age class	Country	Survey	Intakes expressed in mg per day					Intakes expressed in mg per MJ				
			n ^(c)	Avera ge	Median	P5	P95	n	Avera ge	Median	P5	P95
< 1 year ^(a)	Germany	VELS	75	0.7	0.6	0.3	1.0	75	0.2	0.2	0.1	0.4
	Finland	DIPP_2001_2009	253	0.7	0.7	0.0	1.5	251	0.3	0.4	0.1	0.5
	United Kingdom	DNSIYC_2011	670	1.1	1.1	0.4	1.6	670	0.4	0.4	0.1	0.5
	Italy	INRAN_SCAI_2005_06	7	0.7	0.9	- ^(b)	- ^(b)	7	0.2	0.3	- ^(b)	- ^(b)
1 to < 3 years	Germany	VELS	174	0.9	0.9	0.5	1.4	174	0.2	0.2	0.1	0.3
	Finland	DIPP_2001_2009	255	1.3	1.3	0.4	2.1	255	0.4	0.4	0.2	0.6
	United Kingdom	NDNS Rolling Programme Years 1–3	78	1.2	1.2	0.5	1.9	78	0.3	0.3	0.2	0.4
	United Kingdom	DNSIYC_2011	651	1.3	1.3	0.6	2.0	651	0.3	0.3	0.2	0.5
	Italy	INRAN_SCAI_2005_06	16	1.1	1.0	- ^(b)	- ^(b)	16	0.2	0.2	- ^(b)	- ^(b)
3 to < 10 years	Germany	EsKiMo	409	1.2	1.2	0.7	2.0	409	0.2	0.2	0.1	0.3
	Germany	VELS	147	1.0	0.9	0.5	1.5	147	0.2	0.2	0.1	0.3
	Finland	DIPP_2001_2009	369	1.6	1.6	0.9	2.4	369	0.3	0.3	0.2	0.4
	France	INCA2	243	1.4	1.4	0.8	2.1	243	0.3	0.2	0.2	0.4
	United Kingdom	NDNS Rolling Programme Years 1–3	325	1.3	1.2	0.6	2.0	325	0.2	0.2	0.1	0.3
	Italy	INRAN_SCAI_2005_06	99	1.4	1.4	0.8	2.1	99	0.2	0.2	0.1	0.3
	Netherlands	DNFCS 2007-2010	216	1.3	1.3	0.6	2.4	216	0.2	0.2	0.1	0.3
10 to < 18 years	Germany	EsKiMo	196	1.3	1.3	0.7	2.2	196	0.2	0.2	0.1	0.3
	Finland	NWSSP07_08	170	1.7	1.7	0.8	2.9	170	0.3	0.3	0.1	0.4
	France	INCA2	524	1.4	1.4	0.7	2.3	524	0.2	0.2	0.1	0.3
	United Kingdom	NDNS Rolling Programme Years 1–3	326	1.2	1.1	0.6	2.2	326	0.2	0.2	0.1	0.3
	Italy	INRAN_SCAI_2005_06	139	1.4	1.4	0.9	2.1	139	0.2	0.2	0.1	0.3
	Latvia	FC_PREGNANTWOMEN_2011 ^(c)	12	1.9	1.5	- ^(b)	- ^(b)	12	0.2	0.2	- ^(b)	- ^(b)
	Netherlands	DNFCS 2007-2010	576	1.4	1.3	0.7	2.5	576	0.2	0.2	0.1	0.3
18 to < 65 years	Finland	FINDIET2012	710	1.6	1.5	0.8	2.8	710	0.2	0.2	0.1	0.4
	France	INCA2	1,340	1.5	1.5	0.8	2.4	1,340	0.2	0.2	0.1	0.4
	United Kingdom	NDNS Rolling Programme Years 1–3	706	1.4	1.3	0.7	2.3	706	0.2	0.2	0.1	0.4

Age class	Country	Survey	Intakes expressed in mg per day					Intakes expressed in mg per MJ				
			n ^(c)	Average	Median	P5	P95	n	Average	Median	P5	P95
	Ireland	NANS_2012	640	1.6	1.5	0.8	2.6	640	0.2	0.2	0.1	0.3
	Italy	INRAN_SCAI_2005_06	1,245	1.5	1.5	0.9	2.3	1,245	0.2	0.2	0.1	0.3
	Latvia	FC_PREGNANTWOMEN_2011 ^(d)	990	1.7	1.6	0.9	2.7	990	0.2	0.2	0.1	0.3
	Netherlands	DNFCS 2007-2010	1,034	1.5	1.4	0.7	2.6	1,034	0.2	0.2	0.1	0.3
	Sweden	Riksmaten 2010	807	1.4	1.4	0.8	2.3	807	0.2	0.2	0.1	0.3
65 to < 75 years	Finland	FINDIET2012	203	1.4	1.3	0.6	2.3	203	0.2	0.2	0.1	0.4
	France	INCA2	153	1.5	1.4	0.7	2.2	153	0.2	0.2	0.1	0.4
	United Kingdom	NDNS Rolling Programme Years 1–3	91	1.5	1.5	0.8	2.6	91	0.3	0.2	0.1	0.4
	Ireland	NANS_2012	77	1.6	1.6	0.8	3.1	77	0.2	0.2	0.1	0.4
	Italy	INRAN_SCAI_2005_06	157	1.5	1.5	0.8	2.3	157	0.2	0.2	0.1	0.3
	Netherlands	DNFCS 2007-2010	82	1.4	1.4	0.8	2.2	82	0.2	0.2	0.1	0.3
	Sweden	Riksmaten 2010	168	1.4	1.3	0.8	2.3	168	0.2	0.2	0.1	0.3
≥ 75 years	France	INCA2	44	1.5	1.4	– ^(b)	– ^(b)	44	0.3	0.2	– ^(b)	– ^(b)
	United Kingdom	NDNS Rolling Programme Years 1–3	83	1.6	1.5	0.9	2.7	83	0.3	0.3	0.2	0.4
	Ireland	NANS_2012	43	1.6	1.5	– ^(b)	– ^(b)	43	0.3	0.3	– ^(b)	– ^(b)
	Italy	INRAN_SCAI_2005_06	159	1.4	1.4	0.8	2.0	159	0.2	0.2	0.1	0.3
	Sweden	Riksmaten 2010	30	1.5	1.4	– ^(b)	– ^(b)	30	0.2	0.2	– ^(b)	– ^(b)

2678 DIPP, type 1 Diabetes Prediction and Prevention survey; DNFCS, Dutch National Food Consumption Survey; DNSIYC, Diet and Nutrition Survey of Infants and Young Children; EsKiMo,
 2679 Ernährungsstudie als KIGGS-Modul; FC_PREGNANTWOMEN, food consumption of pregnant women in Latvia; FINDIET, the national dietary survey of Finland; INCA, étude
 2680 Individuelle Nationale des Consommations Alimentaires; INRAN-SCAI, Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia; NANS,
 2681 National Adult Nutrition Survey; NDNS, National Diet and Nutrition Survey; NWSSP, Nutrition and Wellbeing of Secondary School Pupils; VELS, Verzehrsstudie zur Ermittlung der
 2682 Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln.

2683 (a): Infants between 1 and 11 months. The proportions of breastfed infants were 58% in the Finnish survey, 40% in the German survey, 44% in the Italian survey, and 21% in the UK survey.
 2684 Most infants were partially breastfed. The consumption of breast milk was taken into account if the consumption was reported as human milk (Italian survey) or if the number of breast milk
 2685 consumption events was reported (German and UK surveys). For the German study, the total amount of breast milk was calculated based on the observations by Paul et al. (1988) on breast
 2686 milk consumption during one eating occasion at different age groups: the amount of breast milk consumed on one eating occasion was set to 135 g/eating occasion for infants between 6–
 2687 7 months of age and to 100 g/eating occasion for infants between 8–12 months of age (Kersting and Clausen, 2003). For the UK survey, the amount of breast milk consumed was either
 2688 directly quantified by the mother (expressed breast milk) or extrapolated from the duration of each breastfeeding event. As no information on the breastfeeding events were reported in the
 2689 Finnish survey, breast milk intake was not taken into consideration in the intake estimates of Finnish infants.

2690 (b): 5th or 95th percentile intakes calculated from fewer than 60 subjects require cautious interpretation as the results may not be statistically robust (EFSA, 2011b) and, therefore, for these dietary
 2691 surveys/age classes, the 5th and 95th percentile estimates are not presented in the intake results.

2692 (c): n, number of subjects. (d): Pregnant women only.

2693 Appendix E. Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to riboflavin intake estimates in males

Food groups	Age						
	< 1 year	1 to < 3 years	3 to < 10 years	10 to < 18 years	18 to < 65 years	65 to < 75 years	≥ 75 years
Additives, flavours, baking and processing aids	< 1	< 1	0–2	0–3	0–1	0	0
Alcoholic beverages	< 1	< 1	< 1	< 1–1	2–8	1–5	2–4
Animal and vegetable fats and oils	0	< 1	< 1	< 1	< 1	< 1–1	< 1
Coffee, cocoa, tea and infusions	< 1	< 1–1	< 1–2	< 1–2	2–13	1–13	4–14
Composite dishes	< 1–2	< 1–5	< 1–7	< 1–11	< 1–12	1–11	< 1–12
Eggs and egg products	< 1–1	1–2	1–5	1–5	1–4	2–4	2–4
Fish, seafood, amphibians, reptiles and invertebrates	< 1	< 1–2	< 1–3	< 1–3	1–3	2–5	2–6
Food products for young population	46–68	4–24	< 1–2	< 1	< 1	–	–
Fruit and fruit products	1–4	2–4	2–3	1–3	1–4	2–5	2–5
Fruit and vegetable juices and nectars	< 1–1	< 1–4	1–5	1–5	1–3	< 1–1	< 1–1
Grains and grain-based products	1–5	3–14	4–22	5–22	10–19	9–20	11–19
Human milk	< 1 – 25 ^(a)	< 1–1	–	–	–	–	–
Legumes, nuts, oilseeds and spices	< 1	< 1–1	< 1–1	< 1–1	1	1	1
Meat and meat products	< 1–4	3–8	7–16	9–19	11–20	13–21	12–18
Milk and dairy products	16–27	53–63	38–69	32–63	24–48	22–47	29–34
Products for non-standard diets, food imitates and food supplements or fortifying agents	< 1	0–1	< 1–1	< 1–1	< 1–1	< 1	< 1–2
Seasoning, sauces and condiments	< 1–1	< 1–3	< 1–2	< 1–3	< 1–3	< 1–2	< 1–2
Starchy roots or tubers and products thereof, sugar plants	< 1–1	< 1–1	1–3	1–4	1–3	1–3	1–2
Sugar, confectionery and water-based sweet desserts	0	< 1–2	1–5	1–6	< 1–2	< 1–1	< 1–1
Vegetables and vegetable products	1–4	1–4	1–7	2–9	2–12	3–13	2–11
Water and water-based beverages	0	0	< 1–2	< 1–10	< 1–6	< 1–1	< 1–1

2694 ‘–’ means that there was no consumption event of the food group for the age and sex group considered, while ‘0’ means that there were some consumption events, but that the food group does

2695 not contribute to the intake of the nutrient considered, for the age and sex group considered.

2696 (a): The 25% refers to the Italian INRAN_SCAI_2005_06 study with only n = 9.

2697

2698

Appendix F. Minimum and maximum percentage contribution of different food groups (FoodEx2 level 1) to riboflavin intake estimates in females

Food groups	Age						
	< 1 year	1 to < 3 years	3 to < 10 years	10 to < 18 years	18 to < 65 years	65 to < 75 years	≥ 75 years
Additives, flavours, baking and processing aids	0	0	0–2	0–3	0	< 1	0
Alcoholic beverages	< 1	< 1	< 1	< 1	< 1–2	< 1–2	< 1–1
Animal and vegetable fats and oils	< 1	< 1	< 1	< 1	< 1	< 1	< 1
Coffee, cocoa, tea and infusions	< 1–3	< 1–6	< 1–1	1–3	2–14	2–13	6–14
Composite dishes	< 1–1	< 1–5	< 1–7	1–11	1–13	< 1–11	1–11
Eggs and egg products	< 1–1	1–3	1–5	1–5	2–4	2–4	2–4
Fish, seafood, amphibians, reptiles and invertebrates	< 1–1	< 1–2	< 1–2	< 1–4	1–3	1–5	2–4
Food products for young population	32–71	5–20	< 1–1	< 1	< 1	–	< 1
Fruit and fruit products	2–4	2–4	1–4	1–5	2–5	3–7	2–6
Fruit and vegetable juices and nectars	< 1–1	< 1–4	1–4	1–4	< 1–3	1–2	1–2
Grains and grain-based products	2–6	3–15	4–21	6–25	10–29	11–19	9–20
Human milk	< 1–10 ^(a)	< 1–1	–	–	–	–	–
Legumes, nuts, oilseeds and spices	< 1–1	< 1–1	1	1	1–2	1–2	1
Meat and meat products	1–3	3–7	7–16	8–17	10–18	9–18	10–16
Milk and dairy products	10–38	49–61	37–70	32–62	28–51	27–49	31–39
Products for non-standard diets, food imitates and food supplements or fortifying agents	< 1	< 1	0–2	< 1–1	< 1–3	< 1–2	< 1–1
Seasoning, sauces and condiments	< 1–1	< 1–2	< 1–3	< 1–4	< 1–3	< 1–1	< 1–1
Starchy roots or tubers and products thereof, sugar plants	< 1–1	1	1–3	1–4	1–3	1–2	1–2
Sugar, confectionery and water-based sweet desserts	0–1	< 1–2	1–5	< 1–6	< 1–2	< 1–1	< 1–2
Vegetables and vegetable products	1–4	1–4	2–7	2–10	3–13	3–14	3–13
Water and water-based beverages	0	0	< 1–1	0–8	< 1–4	< 1–1	< 1

‘-’ means that there was no consumption event of the food group for the age and sex group considered, while ‘0’ means that there were some consumption events, but that the food group does not contribute to the intake of the nutrient considered, for the age and sex group considered.

(a): The 10 % refers to the Italian INRAN_SCAI_2005_06 study with only n = 7.

2699

2700

2701

2702

2703

2704 **ABBREVIATIONS**

Afssa	Agence Française de Sécurité Sanitaire des Aliments
AI	adequate intake
AR	average requirement
ATP	adenosine triphosphate
BMD	bone mineral density
BMI	body mass index
CI	confidence interval
CoA	coenzyme A
COMA	Committee on Medical Aspects of Food Policy
CV	coefficient of variation
D-A-CH	Deutschland- Austria- Confoederatio Helvetica
DH	UK Department of Health
DIPP	Type 1 Diabetes Prediction and Prevention survey
DNFCS	Dutch National Food Consumption Survey
EsKiMo	Ernährungsstudie als KIGGS-Modul
DRV	dietary reference value
EAR	estimated average requirement
EGR	erythrocyte glutathione reductase
EGRAC	erythrocyte glutathione reductase activation coefficient
FAD	flavin adenine dinucleotide
FAO	Food and Agriculture Organization
FC_PREGNANTWOMEN	Food consumption of pregnant women in Latvia
FFQ	food frequency questionnaire
FLAD	flavin adenine dinucleotide synthetase
FMN	Flavin mononucleotide
FNB	US Food and Nutrition Board
G6PD	glucose-6-phosphate dehydrogenase

GSH	glutathione
GSSG	glutathione disulfide
G6PD	glucose-6-phosphate dehydrogenase
HR	hazard ratio
HPLC	high performance liquid chromatography
I ²	heterogeneity index
Ig	immunoglobulin
INCA	Étude Individuelle Nationale de Consommations Alimentaires
INRAN-SCAI	Istituto Nazionale di Ricerca per gli Alimenti e la Nutrizione – Studio sui Consumi Alimentari in Italia
IoM	US Institute of Medicine of the National Academy of Sciences
IUPAC	International Union of Pure and Applied Chemistry
LRNI	lower reference nutrient intake
LTI	lower threshold intake
MADD	multiple acyl-CoA dehydrogenase deficiency
MTHFR	methylenetetrahydrofolate reductase
NANS	National Adult Nutrition Survey
NDNS	National Diet and Nutrition Survey
NHANES	National Health And Nutrition Examination Survey
NNR	Nordic Nutrition Recommendations
OR	odds ratio
PPO	pyridoxamine phosphate oxidase
PPOAC	pyridoxamine phosphate oxidase activation coefficient
PRI	population reference intake
RCT	randomised controlled trial
RDA	recommended dietary allowances
RFT	riboflavin transporters
RI	recommended intake

RNI	recommended nutrient intake
RR	relative risk
SCF	Scientific Committee for Food
SD	standard deviation
SLC	solute carrier
TEE	total energy expenditure
UK	United Kingdom
UL	tolerable upper intake level
UNU	United Nations University
USA	United States of America
USDA	United States Department of Agriculture
VELS	Verzehrsstudie zur Ermittlung der Lebensmittelaufnahme von Säuglingen und Kleinkindern für die Abschätzung eines akuten Toxizitätsrisikos durch Rückstände von Pflanzenschutzmitteln
VERA	Verbundstudie Ernährungserhebung und Risikofaktoren Analytik
WHO	World Health Organization