

ADOPTED: dd mmmm yyyy

PUBLISHED: dd mmmm yyyy

doi:10.2903/j.efsa.20YY.NNNN

1 **Draft guidance on allergenicity assessment of 2 genetically modified plants**

3 **EFSA Panel on Genetically Modified Organisms (GMO)**

4 **Abstract**

5 This document provides supplementary guidance on specific topics for the allergenicity risk
6 assessment of genetically modified plants. The topics addressed are non-IgE-mediated immune
7 adverse reactions to foods, *in vitro* protein digestibility tests and endogenous allergenicity. New
8 scientific and regulatory developments on these three topics are described in this document and the
9 necessity for their implementation in the risk assessment of genetically modified plants is discussed
10 and recommended, when appropriate. This document will undergo a public consultation where
11 stakeholders and general public are encouraged to contribute to enhance its quality and clarity.
12 Following the public consultation process, the document will be revised accordingly.

13 © European Food Safety Authority, 2016

15 **Keywords:** guidance, allergenicity assessment, GMO

17 **Requestor:** EFSA

18 **Question number:** EFSA-Q-2014-00547

19 **Correspondence:** GMO@efsa.europa.eu

24

25 **Panel members:** Andrew Nicholas Birch, Josep Casacuberta, Adinda De Schrijver, Mikolaj Antoni
26 Gralak, Philippe Guerche, Huw Jones, Barbara Manachini, Antoine Messéan, Hanspeter Naegeli, Elsa
27 Ebbesen Nielsen, Fabien Nogué, Christophe Robaglia, Nils Rostoks, Jeremy Sweet, Christoph Tebbe,
28 Francesco Visioli and Jean-Michel Wal.

29 **Acknowledgements:** The Panel wishes to thank the members of the Working Group on the
30 allergenicity assessment of genetically modified plants: Philippe Eigenmann, Michelle Epstein, Karin
31 Hoffmann-Sommergruber, Frits Koning, Martinus Lovik, Clare Mills, F. Javier Moreno, Henk van
32 Loveren and Jean-Michel Wal for the preparatory work on this scientific opinion; the EFSA trainee
33 Regina Selb and the EFSA staff member Antonio Fernandez Dumont for the support provided to this
34 scientific opinion.

35 **Suggested citation:** EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms), 2016. Draft
36 guidance on allergenicity assessment of genetically modified plants. EFSA Journal
37 20YY;volume(issue):NNNN, 49 pp. doi:10.2903/j.efsa.20YY.NNNN

38 **ISSN:** 1831-4732

39 © European Food Safety Authority, 2016

40 Reproduction is authorised provided the source is acknowledged.

41

The EFSA Journal is a publication of the European Food
Safety Authority, an agency of the European Union.

42

43 **Summary**

44 A summary will be provided after the public consultation.

PUBLIC CONSULTATION

45 Table of contents

46	Abstract.....	1
47	Summary	3
48	1. Introduction.....	5
49	1.1. Background as provided by EFSA	5
50	1.2. Terms of reference as provided by EFSA	5
51	2. Assessment	5
52	2.1. Non-IgE-mediated immune adverse reactions to foods	6
53	2.1.1. Celiac Disease.....	6
54	2.1.2. Risk assessment considerations	8
55	2.2. <i>In vitro</i> protein digestibility	13
56	2.2.1. Background	13
57	2.2.2. Types of <i>in vitro</i> digestibility tests	14
58	2.2.3. Strategy for the allergenicity risk assessment.....	16
59	2.3. Endogenous allergenicity	18
60	2.3.1. Relevant crops for the analysis	18
61	2.3.2. Relevant allergens to be quantified	18
62	2.3.3. Methodology to be applied for the quantification.....	19
63	2.3.4. Data interpretation and risk assessment	19
64	3. Conclusions	22
65	Documentation provided to EFSA	23
66	References.....	24
67	Annex A – Non-IgE-mediated immune adverse reactions to food.....	30
68	Annex B – <i>In vitro</i> protein digestibility tests for risk assessment of GM plants.....	37
69	Annex C – Endogenous allergenicity.....	45
70		
71		
72		

73 **1. Introduction**

74 **1.1. Background as provided by EFSA**

75 Allergenicity assessment of GM plants is performed following the recommendations laid down in the
76 EFSA Guidance Document (2011). These recommendations are mainly based on considerations from
77 the EFSA (2010) scientific opinion on allergenicity assessment of GM plants and microorganisms.

78 In 2012, EFSA launched a procurement call entitled: "Literature reviews on: i) non-IgE-mediated
79 adverse reactions to foods, and ii) *in vitro* digestibility tests for allergenicity assessment". The aim of
80 the project was to obtain relevant information related to these two topics to be used as background
81 information for further discussion within the GMO Panel. The review on non-IgE-mediated immune
82 adverse reactions to food identified relevant methodology (i.e. *in silico* and *in vitro*) that could be
83 applied in the allergenicity assessment process (Mills et al., 2013a). The review dealing with *in vitro*
84 digestibility testing for allergenicity assessment highlighted the need for better standardisation and
85 harmonisation of the conditions used (e.g. pHs, ratios enzyme:substrate, controls) when performing *in*
86 *vitro* digestibility studies (Mills et al., 2013b).

87 In addition, the new Implementing Regulation IR503/2013¹) on applications for authorisation of GM
88 food and feed has been in place since December 2013. One of the novelties in this new regulation is
89 the inclusion of certain allergens (as defined in OECD Consensus documents) in the compositional
90 analysis and consequently, the quantitative measurement of individual allergens. The development of
91 supplementary guidelines on this topic would be very useful to assist both applicants as well as risk
92 assessors in the practical implementation of this new requirement.

93 Therefore, the EFSA GMO Panel is of the opinion that supplementary guidelines on allergenicity
94 assessment are needed to incorporate new developments in the area.

95 **1.2. Terms of reference as provided by EFSA**

96 The tasks of the Working Group of the GMO Panel are i) to develop supplementary guidelines for the
97 allergenicity assessment of GM plants; ii) to participate in a workshop with stakeholders organised by
98 EFSA; iii) to consult the public on the draft Scientific Opinion; and iv) to review and revise the draft
99 Scientific Opinion accordingly.

100 **2. Assessment**

101 Food allergies represent an important public health problem affecting approximately 2-4% of the
102 population. Essentially, the only way to avoid triggering of reactions in already allergic individuals is
103 avoidance of the relevant food(s). A prerequisite for avoidance is knowledge of the allergen content of
104 a food and corresponding labelling. Accordingly, EU regulatory measures are in place to ensure that
105 foods containing common allergenic components are appropriately labelled and that new foods placed
106 on the market are evaluated with regard to allergenicity. This applies to foods falling under the
107 category of 'novel foods' as well as to foods derived from genetically modified organisms (GMOs).
108 Controlling the introduction of new allergenic foods into the food supply has, in addition, the primary
109 prevention goal of reducing the risk of novel allergic sensitisations.

110 Concerning potential allergenicity of novel proteins in GMOs there is, however, in practice no way to
111 ensure full certainty, as there is no single test or parameter that on its own can provide sufficient
112 evidence to predict allergenicity of a protein or peptide. This is the case because it is only insufficiently
113 understood what causes a protein or peptide to be allergenic, and development of allergic disease
114 additionally depends on other factors like genetic predisposition of the individual or environmental
115 factors. Still, a high degree of confidence in the safety of GMOs can be reached using a weight-of-
116 evidence approach. At any time, this approach must be based on the best and most up-to-date
117 scientific knowledge and methodologies. The field of molecular biology is in rapid development, and

¹ Commission Implementing Regulation (EU) No. 503/2013 of 3 April 2013 on applications for authorisation of genetically modified food and feed in accordance with Regulation (EC) No. 1829/2003 of the European Parliament and of the Council and amending Commission Regulations (EC) No. 641/2004 and (EC) No. 1981/2006. Off. J. Eur. Union L157, 1-48.

118 regulations and guidance documents need to be updated frequently to take scientific advances on
119 board and to reduce remaining uncertainty after a weight-of-evidence evaluation.

120 To this end and following the outcome of an EFSA procurement call regarding literature reviews on i)
121 non-IgE-mediated immune adverse reactions to food and ii) *in vitro* digestibility tests for allergenicity
122 assessment of the newly expressed protein, the EFSA GMO Panel identified new scientific information
123 available to be considered further in supplementary guidance documents for allergenicity assessment
124 of GMOs. In addition, the more recent Implementing Regulation 503/2013 on applications for
125 authorisation of GM food and feed incorporated a new element - the mandatory inclusion of certain
126 allergens in the compositional analysis of genetically modified crops, as defined in OECD consensus
127 documents. The development of supplementary guidance documents on this topic was also
128 considered necessary to assist both applicants as well as risk assessors.

129 On this background, in 2014 a Working Group of the EFSA GMO Panel was established to develop a
130 supplementary guidance document on allergenicity assessment of GMOs focusing on three topics: i)
131 non-IgE-mediated adverse immune reactions to food ii) *in vitro* digestibility testing in the prediction of
132 potential allergenicity of the newly expressed protein, and iii) quantification of endogenous allergens
133 in the recipient plant. A stakeholder meeting to provide early input to the guidance development was
134 held in Brussels in June 2015². To further secure this input, a "Focus group" was established to give
135 feedback to the Working Group during the guidance development³. Additional engagement with the
136 stakeholders is foreseen since the aim of this document is to collect comments from the public.
137 Following the public consultation, an EFSA info session to further address those comments is also
138 envisioned. The final adoption of the document is foreseen in spring 2017.

139 **2.1. Non-IgE-mediated immune adverse reactions to foods**

140 Non-IgE-mediated adverse immune reactions to food antigens comprise a large group of diseases,
141 mostly occurring during childhood. Of these, the best characterised diseases include food-protein
142 induced enterocolitis (FPIES), as well as eosinophilic diseases of the gut, where food products play a
143 role in the pathogenesis (eosinophilic oesophagitis, proctocolitis). However, the exact pathogenic
144 mechanisms of these diseases are insufficiently understood, and the diagnosis mostly relies on
145 positive food challenges. Thus, insights about the food components involved on the molecular level
146 and knowledge on clearly recognised immune mechanisms for these diseases are currently lacking.

147 In contrast, celiac disease (CD) is a well characterised non-IgE mediated adverse immune reaction to
148 food, and the food proteins involved have been described (Koning et al. 2015; van Bergen et al,
149 2015). The involvement of the immune system through cellular inflammation as well as production of
150 various antibodies, including IgA against tissue transglutaminase, is well established. Gluten has been
151 identified as the environmental trigger initiating the immune reaction. CD diagnosis is based on
152 serological tests, with positive IgA against tissue transglutaminase being the most reliable. In addition,
153 endoscopic findings and histopathological changes in CD have been well defined. Thus, allergenicity
154 assessment of newly expressed proteins with regard to non-IgE mediated immune reactions should
155 focus on CD.

156 **2.1.1. Celiac Disease**

157 CD is a disease of the small intestine characterised by flattening of the intestinal surface, resulting in a
158 variety of clinical symptoms including malabsorption, failure to thrive, diarrhea and stomach ache. The
159 disease is caused by an uncontrolled intestinal CD4+ T cell response to gluten proteins in wheat
160 (*Triticum ssp*) and to the gluten-like hordeins and secalins in barley (*Hordeum vulgare*) and rye
161 (*Secale cereale*) (Green and Cellier 2007). Oat (*Avena sativa*) is generally considered safe for patients
162 (Garsed and Scott 2007), although exceptions have been reported (Lundin et al. 2003). The only
163 available treatment is a lifelong gluten-free diet implying the exclusion of all food products that
164 contain wheat, barley and rye or gluten and gluten-like proteins from these grains. Celiac disease
165 affects approximately 0.5 to 1% of the population in the industrialised countries and on-going
166 investigations indicate that a similar percentage may be affected in the Middle East and India.

² <http://www.efsa.europa.eu/en/supporting/pub/899e>

³ http://www.efsa.europa.eu/sites/default/files/assets/shp_dg_guidance_document_allergenicity.pdf

167 Since CD is caused by an immune response to a foreign protein and all symptoms disappear upon
168 withdrawal of gluten from the diet, the condition should not be regarded a true autoimmune disease.
169 Autoantibodies specific for tissue transglutaminase appear to be secondary to the T cell driven
170 immune response to gluten and disappear if gluten is eliminated from the diet (Rossjohn and Koning,
171 2016). Other conditions linked to wheat or gluten, summarized as "non celiac gluten sensitivity", are
172 not part of this document because there are no known definite underlying pathomechanisms and the
173 connection to gluten is unclear (Aziz et al. 2015).

174 CD has a strong genetic component. It is associated with particular immune response genes, i.e. of
175 the class II major histocompatibility complex (MHC) molecules, called HLA in humans. Most CD
176 patients express particular HLA-DQ-molecules. HLA-DQ molecules are dimers of an alpha- (DQA1) and
177 a beta- (DQB1) chain. Like all HLA-molecules, HLA-DQ molecules bind short peptides and present
178 these to T cells of the immune system. While T cells ignore HLA-bound peptides derived from
179 harmless ("self") proteins, HLA-bound peptides derived from pathogens are specifically detected and
180 this recognition leads to the generation of a protective T cell response and eradication of the
181 pathogen. The large majority of CD patients express HLA-DQ2.5 (DQA1*05:01, DQB1*02:01) (Sollid
182 et al. 2012) while the remainder are usually HLA-DQ8 positive (DQA1*03, DQB1*03:02). The few
183 patients that express neither DQ2.5 nor DQ8, often express HLA-DQ molecules that contain only one
184 of the DQ2.5-chains e.g., DQ2.2 (DQA1*02:01, DQB1*02:01) or DQ7.5 (DQA1*05, DQB1*03:01)
185 (Karell et al. 2003). In patients, but not in healthy individuals, pro-inflammatory gluten-specific CD4+
186 T cells are present in the lamina propria of the affected duodenum. Importantly, these CD4+ T cells
187 recognize gluten peptides only when presented by the disease associated HLA-DQ molecules (Lundin
188 et al. 1993, 1994; Tye-Din et al. 2010; Vader et al. 2002b; van de Wal et al. 1998b). In essence, in
189 patients with CD the immune system displays an aberrant response: the harmless gluten proteins in
190 the food are recognised as hazardous, leading to a pro-inflammatory response as long as gluten is
191 consumed. Elimination of gluten from the diet constitutes an effective treatment because the T cell
192 stimulatory gluten peptides are no longer present. Unfortunately, once a gluten-specific T cell
193 response has developed, this results in immunological memory. Therefore, every subsequent exposure
194 to gluten will reactivate the gluten-reactive T cells and consequently lead to inflammation. A lifelong
195 gluten-free diet is thus required.

196 Gluten is the cohesive mass that remains when starch has been removed from wheat dough (Shewry
197 et al. 1992). Gluten consists of gliadin and glutenin subcomponents. The gliadins are subdivided into
198 α -, γ - and ω -gliadins, and dozens of variants of each type are typically present in a single wheat
199 variety. The glutenins are subdivided into high molecular weight (HMW) and low molecular weight
200 (LMW) subunits. The most commonly used wheat varieties are bread wheats (*Triticum aestivum*),
201 which are hexaploid species, and pasta wheats (*Triticum durum*), which are tetraploid species. Thus,
202 in a single wheat variety up to a hundred different gluten proteins can be found, many of which are
203 highly similar and only differ by a few amino acids from each other.

204 T cell epitopes derived from the α -, γ - and ω -gliadins as well as from the HMW- and LMW-glutenins
205 have been reported (Arentz-Hansen et al. 2000; Shan et al. 2002; Sjöström et al. 1998; Vader et al.
206 2002b; van de Wal et al. 1998b, 1999). In addition, T-cell epitopes in both hordeins and secalins have
207 been identified that are highly homologous or even similar to those found in wheat (Tye-Din et al.
208 2010; Vader et al. 2003a). The gluten-like avenins of oat are more distinct; however, avenin-specific
209 as well as cross-reactive T cell responses have been described (Arentz-Hansen et al. 2004; Vader et
210 al. 2003a).

211 High affinity binding of peptides to either HLA-DQ2.5 or -DQ8 depends on the presence of one or
212 more negatively charged amino acids. As gluten proteins are virtually devoid of negatively charged
213 amino acids, native gluten-derived peptides bind poorly to these HLA-DQ molecules. Due to the
214 activity of the enzyme tissue transglutaminase 2 (TG2) in the gastrointestinal tract, the required
215 negative charge(s) are introduced when this enzyme converts glutamine residues within gluten
216 peptides into negatively charged glutamic acid (Molberg et al. 1998; Vader et al. 2002a; van de Wal et
217 al. 1998a). These deamidated gluten peptides then bind with increased affinity to HLA-DQ2.5 or -DQ8,
218 and this stronger binding enhances or causes immunogenicity (van de Wal et al. 1998; Arentz-Hansen
219 et al. 2000; Henderson et al. 2007; Kim et al. 2004; Moustakas et al. 2000; Quarsten et al. 1999).

220 The specificity of TG2 for particular target sequences in gluten proteins plays a crucial role in the
221 generation of a relatively large number of gluten-derived peptides that bind to HLA-DQ2.5. Glutamine
222 and proline are abundantly present in gluten proteins, together they comprise over 50% of the amino
223 acids in gluten. Therefore, Q-X-P and Q-P sequences (where Q is glutamine; P is proline; X is any
224 amino acid except P) are often found in gluten proteins and TG2 typically deamidates glutamine
225 residues in Q-X-P sequences, but not in QP sequences (Vader et al. 2002a). Therefore, immunogenic
226 gluten-derived peptides are typically found in the proline rich-regions of gluten proteins and usually
227 contain a Q-X-P motif. "Classic" examples of such peptides are the immunodominant T cell epitopes
228 present in the N-terminal part of the α -gliadins: PFPQPQLPY and PQPQLPYPQ. In fact, these
229 sequences have a 7-amino acid overlap and in both sequences only one Q-residue is a target for TG2,
230 the Q in the QLPY sequence which allows the introduction of a negative charge at either position 4 or
231 position 6, respectively. In both instances this generates a gluten peptide that binds with high affinity
232 to HLA-DQ2.5. The available crystal structures of HLA-DQ2.5-gliadin and the bound cognate T cell
233 receptor demonstrate that the negatively charged glutamic acid serves as an anchor residue for
234 peptide binding to HLA-DQ2.5 and does not contact the T cell receptor (Petersen et al. 2014).
235 Additionally, the proline-rich nature of gluten renders these proteins resistant to degradation by
236 enzymes in the gastrointestinal tract. Relatively long gluten fragments are, therefore, present in the
237 small intestine. This likely contributes to the immunogenic nature of these peptides (Shan et al. 2002).
238 Thus, at least three factors contribute to the immunogenicity of gluten: (a) resistance to proteolytic
239 degradation, (b) specific recognition by TG2, and (c) peptide binding properties of HLA-DQ2.5 and
240 HLA-DQ8.

241 The glutamic acid introduced by TG2 is usually in position 4 (p4) or p6 in HLA-DQ2.5 restricted
242 epitopes and at position p1 and/or p9 in HLA-DQ8 restricted epitopes (Sollid et al. 2012). As a
243 consequence, HLA-DQ2.5-restricted gluten epitopes carry a proline at either p6 or p8. This positioning
244 of proline residues is less strict in the case of the DQ8 epitopes. In all cases the glutamic acid residues
245 serve as anchors important for binding of the peptides to either HLA-DQ2.5 or -DQ8.

246 It is important to note that, while polyclonal T-cell responses to multiple T-cell epitopes are usually
247 detected in CD patients, responses to the DQ2.5-glia- α 1, DQ2.5-glia- α 2 epitopes and homologues
248 thereof in the ω -gliadins, hordeins and secalins are dominant in DQ2.5 positive patients (Arentz-
249 Hansen et al. 2000; Tollefse et al. 2006; Tye-Din et al. 2010). In DQ8-positive patients, responses to
250 the DQ8-glia- α 1 epitope are most frequently found (Tollefse et al. 2006; van de Wal et al. 1998b).

251 The following criteria were used to define CD reactive epitopes in Sollid et al. 2012:

- 252 • Reactivity against the epitope must have been defined by at least one specific T-cell clone;
- 253 • The HLA-restriction element involved must have been unequivocally defined;
- 254 • The nine-amino acid core of the epitope must have been defined either by an analysis with
255 truncated peptides and/or HLA-binding with lysine scan of the epitope, or a comparable
256 approach. In a lysine scan all amino acids in the sequence of interest are individually replaced
257 by a lysine and the impact of these single amino acids substitutions on HLA-binding is
258 determined, information which usually reveals which amino acids in the sequence are required
259 for binding to HLA.

260 Further details are listed in Annex A-1.

261 **2.1.2. Risk assessment considerations**

262 A large number of methods and tests can be used to determine potential detrimental properties of
263 proteins and peptides under assessment for patients with CD, but in practice it will not be necessary
264 to apply this full array to safeguard patients from undesired exposure to potential disease-inducing
265 proteins. Rather, a stepwise approach is proposed in which firstly, *in silico* approaches can be
266 employed, starting with identity searches. This includes database searches with known CD peptide
267 sequences and motif searches to identify potential hazardous sequences. In a second step, *in silico*
268 peptide modelling can be applied. When potentially hazardous sequences which cannot be
269 disregarded by *in silico* testing are identified, more laborious tests such as HLA-DQ-peptide binding
270 assays and/or testing with T cell clones derived from patients with CD (Fig.1, Fig.2) need to be
271 performed to determine the safety profile of the protein/peptide under assessment.

272 **A) *In silico* approaches**

273 As it is well established that members of the prolamins and closely related families of proteins harbour
274 the sequences that cause CD, the first step is to determine if the protein of interest belongs to this
275 class of proteins. If this is the case, a potential hazard has been identified.

276 *Identity search with known CD peptide sequences:*

277 An identity search with known CD peptide sequences should be performed, allowing one or more
278 amino acid mismatches. When this analysis results in hit(s) with only one amino acid mismatch,
279 potential immunogenic sequence(s) are present and additional tests are required (Fig.2). When this
280 analysis results in hit(s) with multiple amino acid mismatches, the position and nature of the
281 mismatched and identical amino acids determine if the peptide sequence has the potential to be an
282 immunogenic epitope. If concerns are raised, additional tests will be required.

283 Further details are listed in Annex A-1.

284 *Identity search with Q/E-X1-P-X2 motif (Fig.3):*

285 Examination of the list of epitopes currently identified (Annex A-1) reveals that a characteristic Q-X1-
286 P-X2 motif is present in the large majority of HLA-DQ2 epitopes. This is a target for TG2 which yields
287 E-X1-P-X2. Two options are possible:

- 288 • If not present, the probability of a T cell epitope is unlikely, given that no concern was raised
289 during the identity search with known CD peptide sequences stated above.
- 290 • If present, a potential T cell epitope is detected and further investigation is required (Fig.2).

291 Further details are listed in Annex A-2.

292 *HLA-DQ-peptide modelling:*

293 Several HLA-DQ2-gliadin and HLA-DQ8-gliadin structures are publicly available. These structures can
294 be used to model a peptide of interest into HLA-DQ2 or HLA-DQ8. This can then allow for a
295 comparison and can indicate the likely position and orientation of the T cell receptor contact residues
296 in the HLA-DQ-bound peptide. If a high degree of similarity is detected, this indicates potential cross-
297 reactivity of the investigated peptide. Consequently, the immunogenicity of the peptide should be
298 determined by additional *in vitro* approach(es) described below.

299 Further details are listed in Annex A-3.

300 **B) *In vitro* approaches**

301 *In vitro protein digestibility:*

302 Due to the proline-rich nature, gluten proteins are highly resistant to proteolytic degradation. This
303 results in relatively long peptides that harbour one or more T cell-stimulatory epitopes. Further details
304 are listed in Annex A-4 and in the chapter on *in vitro* protein digestibility testing (Section 2.2).

305 *HLA-DQ peptide binding assays:*

306 For peptides to evoke T cell responses, they must bind to HLA-molecules. HLA-DQ2- and HLA-DQ8-
307 specific peptide binding assays have been developed and can be exploited to determine the likelihood
308 that peptides under investigation might be immunogenic.

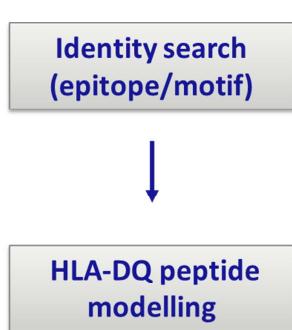
- 309 • When high affinity binding is detected, further testing is required.
- 310 • When no binding affinity is detected, the probability that the peptide is immunogenic is low.

311 Please see Annex A-5 for an overview of publications that have reported on HLA-DQ-peptide binding
312 assays.

313 *T cell testing:*

314 Recognition of gluten peptides by CD4+ T cells from one or more CD patients was a prerequisite for
315 defining toxic CD peptides (Sollid et al. 2012).

316 Such T cells have been isolated in a number of laboratories where the necessary expertise and
317 appropriate infrastructure are available. Hence, these T cells were used to provide conclusive evidence
318 on the capacity of a specific peptide sequence to stimulate CD-causative T cell responses.

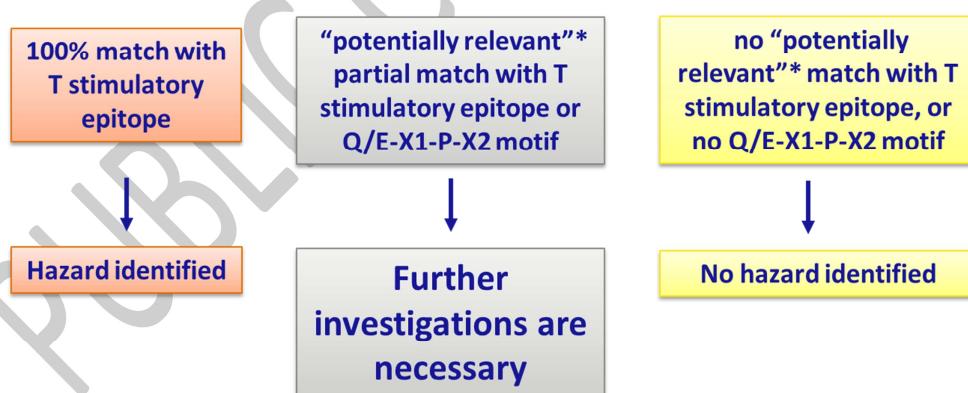

319 Please see Annex A-6 for an overview of publications that have reported on T cells specific for HLA-
320 DQ-gluten complexes.

321

PUBLIC CONSULTATION

Fig 1. Stepwise approach for risk assessment

in silico



in vitro

*for details, please see chapter on *in vitro* digestibility

322
323
324
325

Fig 2. Identity searches (epitope/motif)

**\"potentially relevant\" match: Match with a known T cell-stimulatory peptide which raises concern because of the position and nature of the identical amino acids.

326
327
328
329

330
331 **Fig. 3: Q/E-X1-P-X2 motif:** Possible combinations for the Q/E-X1-P-X2 motif found in the large majority of identified
332 immunogenic gluten-derived epitopes. It was noted that, while position 1 is always either glutamic acid (E) or glutamine (Q)
333 and position 3 always consists of a proline (P), also positions 2 (X1) and 4 (X2) are restricted to certain amino acids.

ELPY

QQ F

F A

S V

Q

334

335

336

PUBLIC CONSULTATION

337 **2.2. *In vitro* protein digestibility**338 **2.2.1. Background**

339 *In vitro* digestibility tests can provide useful data on the susceptibility of a protein to digestion which
340 may reflect its digestibility in the human gut and subsequent presentation to the host's immune
341 system (Foster et al. 2013). There is evidence that gastrointestinal digestion can affect the
342 immunogenicity of dietary proteins in relation to both IgE and non-IgE-mediated adverse reactions to
343 foods as discussed below. However, it should be noted that the ability of digestion-resistant dietary
344 proteins or derived fragments to initiate diseases, such as IgE-mediated allergies or celiac disease
345 (CD), also depends on the predisposition of the host. For CD, expression of certain HLA genotypes is a
346 well described risk factor for developing the condition (See Chapter 2.1). However, whilst a genetic
347 predisposition towards atopy is also thought to play a role in development of IgE-mediated allergies to
348 a variety of environmental agents including foods, specific genetic and other risk factors have yet to
349 be defined. This makes the risk assessment process less certain for IgE-mediated allergies compared
350 to CD.

351 *IgE-mediated adverse reactions to foods:* The events leading to the breakdown of oral tolerance,
352 allergic sensitisation, and development of food allergies in a subset of sensitised subjects are poorly
353 understood. It is likely that multiple pathways could ultimately lead to a failure to develop or loss of
354 oral tolerance (Chinthrajah et al., 2016). Notwithstanding, the role of route of exposure in
355 sensitisation, understanding how proteins are presented to the gut mucosal immune system may
356 provide insight into the mechanisms controlling the balance between tolerisation and sensitisation.
357 Furthermore, oral exposure is also central to non-IgE assessments where gastrointestinal digestion
358 has been demonstrated to be important in delivery of immunologically active fragments to gut
359 mucosal segments. Impaired gastric digestion of food allergens has been associated with both
360 development of IgE responses to foods (sensitisation) and modulating the severity of IgE-mediated
361 reactions to foods (elicitation). A recent study of patients undergoing gastric-bypass surgery, a
362 procedure known to reduce post-prandial gastric acidity and where the bulk of food ingested reaches
363 the small intestine without prior gastric digestion, resulted in a significant increase in sensitisation to
364 food (Shakeri-Leidenmuhler et al., 2015). Impaired digestion of cod fish proteins may also be a risk
365 factor for severe reactions in fish allergic individuals (Untersmayr et al., 2007). Studies on animal
366 models have shown that suppression of gastric acid secretion using widely-prescribed antacid
367 medication increases propensity to sensitisation to proteins from cod fish (Untersmayr et al., 2003),
368 celery (Untersmayr et al., 2008), hazelnut (Scholl et al. 2005) and egg (Diesner et al., 2008).
369 Furthermore, an association between the use of anti-ulcer drugs and the induction of IgE-mediated
370 allergy to a variety of foods such as milk, potato, celery, carrots, apple, orange, wheat, and rye flour
371 has been reported (Untersmayr et al., 2005). Such studies indicate that elevated gastric pH, and the
372 resulting reduction in peptic digestion, may enhance the potential of foods to cause allergies. Uptake
373 of allergens into the circulation may play an important role in eliciting allergic reactions (Strait et al.,
374 2011) but data in humans are sparse and conflicting as to the role of allergen uptake in triggering
375 reactions, although uptake appears much greater in allergic than healthy individuals, as indicated in
376 studies of wheat allergy (Brockow et al 2015; Matsuo et al 2005).

377 *Non-IgE-mediated adverse reactions to foods:* Studies seeking to define the structural basis of the
378 toxicity of gluten in CD have made extensive use of *in vitro* gastrointestinal digestion, including the
379 action of brush border proteases, to generate physiologically relevant fragments of gluten. These
380 studies notably identified a 33mer peptide that is especially resistant to digestion and which is likely to
381 persist in the brush border with a half-life estimated to be ~20h. This peptide is also an excellent
382 substrate for tissue transglutaminase TG2 and was a potent stimulator of T-cells from celiac patients
383 (Shan et al., 2002).

384 Such data support the premise that immunologically active fragments of food proteins persisting in the
385 gut lumen can play a role in driving immune-mediated adverse reactions to foods. Persistent, soluble
386 intact proteins and fragments are more likely to be sampled by the gut epithelium and are hence
387 exposed to cells of the immune system as potentially immunogenic fragments, with particulates being
388 sampled by M cells within the Peyer's patches. In animal models there is evidence that uptake of
389 particulate peanut protein bodies by M cells may promote sensitisation by virtue of their size, with
390 soluble material being taken up by the same route (Chambers et al 2004). Although the exact

391 mechanism(s) of antigen uptake in the intestine are still to be clearly elucidated (Pabst and Mowat,
392 2012), it is generally accepted that most food allergens should retain sufficient structural integrity
393 throughout their pass through the human gastrointestinal tract to sensitize/elicit an allergic response
394 (Metcalfe et al., 1996). After uptake by antigen presenting cells peptides generated through
395 endosomal proteolysis bind to MHC class II molecules (Rudensky et al., 1991; Chicz et al., 1993).
396 Peptides shorter than 9 amino acid residues are probably unable to bind to MHC class II molecules
397 and to activate T-cells since there is a minimum length requirement - the so called "peptide binding
398 register" (Mohan and Unanue, 2012). Thus, peptides shorter than 9 amino acid residues are not able
399 to stimulate an immune response. However, studies on the sensitising capacity of digested proteins
400 indicate larger peptide sizes are required for immunogenicity. Thus, for the allergen β -lactoglobulin,
401 digestion into fragments of less than 3,000 Da abolished the protein's immunogenicity (Bogh et al
402 2013), whilst for Ara h 1 pepsin digested peptides of less than 1,500 Da had markedly reduced
403 immunogenicity (Bogh et al 2012) which was completely lost when the digest was fractionated. This is
404 because of the propensity of B cell receptors to require multivalent antigens for binding, and it has
405 emerged that the way in which B cells encounter antigen *in vivo* depends on its properties, such as
406 size (Harwood et al 2010). With regards elicitation of reactions, synthetic antigens have been used to
407 investigate the mechanism of degranulation (Handlogten et al 2013). These studies have shown that a
408 minimum of two distinct epitopes is required to trigger degranulation, with the epitopes separated by
409 a maximum of 6.4 nm on the synthetic antigen. On this basis peptides of at least 3-5 kDa would be
410 required to cross-link IgE bound to the surface of effector cells, such as mast cells and basophils.
411 However, peptides as small as 791 Daltons resulting from the pepsinolysis of the avocado pear
412 allergen Prs s 1, have been found to elicit reactions *in vivo* using skin testing (Diaz-Perales et al 2003).
413 Such peptides are unlikely to carry multiple IgE epitopes, suggesting that peptide aggregation may
414 play a role in triggering degranulation.

415 To either sensitise or trigger an allergic reaction in an already sensitised individual, a food protein
416 needs to be "bioaccessible" by the hosts' immune system. "Bioaccessibility" describes the ability of a
417 chemical entity (such as a protein) to be released from food during the digestive process, which can
418 consequently interact with and/or be absorbed by the gut epithelium (Holst and Williamson, 2008).
419 The EFSA Guidance Document for risk assessment of food and feed from genetically modified plants
420 published in 2011 states that "the impact of the possible interaction between the protein and other
421 components of the matrix as well as the effects of the processing should be taken into account in *in*
422 *vitro* digestibility tests" (EFSA, 2011). *In vitro* digestibility tests have been applied to investigate the
423 effects of digestion on the food matrix, and how processing conditions (including thermal treatment)
424 may affect susceptibility to simulated gastrointestinal proteolysis (e.g. Minekus et al., 2014, Smith et
425 al., 2015). However, given the diversity of food matrices and food processing procedures, our
426 knowledge of their effects on susceptibility of proteins to digestion is limited. As a consequence, the
427 effects of processing and of the food matrix on the susceptibility of a particular protein to digestion
428 are difficult to predict. Because there is no effective animal model for food allergy, studies are often
429 limited to investigating the impact of the food matrix on elicitation of allergic reactions in allergic
430 human subjects while data on allergic sensitisation is very limited regarding this aspect (Ballmer-
431 Weber et al 2002; Bartnikas et al., 2012; Brenna et al 2000; Grimshaw et al 2003; Mackie et al 2012;
432 Netting et al., 2013; Worm et al 2009).

433 2.2.2. Types of *in vitro* digestibility tests

434 The pepsin resistance test, which is embedded in EFSA Guidance Document (EFSA 2011) and Codex
435 Alimentarius (2003, 2009), is currently used for allergenicity risk assessment to provide additional
436 information for the weight-of-evidence approach, as no single test is fully predictive of the allergenic
437 potential of a protein.

438 The pepsin resistance test has several limitations (EFSA, 2010) including:

439

- 440 • The pH value usually employed in the assay is extremely acidic. Since pepsin activity is pH
dependent, the pattern of proteolysis may not reflect the one likely to be found *in vivo*;
- 441 • Pepsin is added in a gross excess to the protein substrate, affecting the kinetics of the
digestion;

443 • The correlation with allergenicity of proteins has been questioned. Studies comparing the
444 digestibility of allergens with that of non-allergenic dietary proteins showed that food
445 allergens were not always inherently more stable to pepsin digestion than non-allergenic
446 proteins (Fu et al., 2002; Thomas et al., 2004; Herman et al., 2007).

447 Whilst this test may contribute to understanding the biochemical properties of newly expressed
448 proteins, it does not reflect how these proteins behave under the physiological conditions encountered
449 in the digestive tract. Furthermore, the test does not reflect changes in the digestive process that take
450 place across the life course (Rémond et al., 2015). These limitations have been previously highlighted
451 by EFSA (EFSA, 2010). In addition, the EFSA Guidance Document for risk assessment of food and feed
452 from genetically modified plants (EFSA, 2011) indicates that "the digestibility of the newly expressed
453 proteins in specific segments of the population such as infants and individuals with impaired digestive
454 functions may be assessed employing *in vitro* digestibility tests using different conditions". Given these
455 considerations, it is proposed to embed the pepsin resistance test within a suite of tests aimed to
456 characterise how a newly expressed protein may behave during the digestive process (see Annex B).

457 Gastrointestinal digestion assays usually aim to simulate "normal" digestive function with regards
458 to digestive enzymes and acid secretion (Macierzanka et al., 2009; Moreno, 2007; Minekus 2014).
459 However, alterations in the digestive milieu are often observed in patients with various gastrointestinal
460 conditions (Kay and Jorgensen, 1994), in young infants with underdeveloped digestive system
461 (Armand et al., 1996) and elderly with a weakened digestive function (Hosking et al., 1975). In an *in*
462 *vitro* study assessing the impact of digestion on celery allergenicity in an aged population, decreased
463 gastric proteolysis was identified (Untersmayr et al., 2008). Simulated infant digestion models (Dupont
464 et al., 2010; Ménard et al., 2014) have been used to study the gastrointestinal tolerance of casein and
465 α -lactalbumin and to optimize the milk processing and formula production. Experiments using
466 simulated gastric fluid where the pH was raised, were used to assess the stability of allergens in fish,
467 milk and hazelnut in patients taking antacids where intra-gastric pH is increased (Scholl et al., 2005;
468 Untersmayr et al., 2005; Untersmayr et al., 2007). Another study developed a gastrointestinal model
469 simulating the physicochemical conditions of the elderly's gastrointestinal tract which was applied to
470 investigate the fate of bovine whey proteins (Levi and Lesmes, 2014). Finally, the COST Infogest
471 network has recently proposed a standardised batch gastrointestinal digestion method based on
472 physiologically relevant conditions that could be applied for various endpoints (Minekus et al., 2014).

473 *In vitro* models simulating the physiological or pathological conditions of gastrointestinal digestion by
474 sequential addition of digestive enzymes, salts and fluids have been designed to understand the
475 degradation of proteins and other constituents during digestion. Some *in vitro* models have also
476 included biosurfactants such as phosphatidylcholine (PC), which can be found at low levels in gastric
477 juice and which is also a component of bile (Moreno et al. 2005a; Mandalari et al., 2009a).
478 Biosurfactants can have complex effects on the phase behaviour of lipid rich foods, since
479 emulsification is an important aspect of lipid digestion (Macierzanka et al. 2009), but they may also
480 have effects on digestion of proteins associated with lipids, and there is some evidence, although
481 equivocal, that bile salts may affect the activity of pancreatic proteases.

482 The time course of simulated digestion tests can be based on the residence time of food in the
483 stomach. This is dependent on the type of meal ingested. For example, liquid and solid meals display
484 different gastric emptying rates after ingestion (Rémond et al., 2015). The halftime (t_{1/2}), which
485 indicates when 50% of an ingested meal is emptied, ranges from 10 to 60 min for liquid meals,
486 whereas t_{1/2} values reported for solid foods ranges from 50 min to 115 min. Other factors, such as
487 other meal components, meal volume, caloric content, ratio between liquid and solid in the meal or
488 the type of dietary fibres also have an influence on the gastric emptying rate.

489 Digestibility studies using gastrointestinal conditions can provide useful data regarding persistency of
490 newly expressed proteins and/or of digestion derived immunologically-active fragments in the gut
491 lumen and hence pose a risk of causing an immune-mediated adverse reaction in a susceptible
492 individual. The presence of digestion resistant fragments only provides an indication of exposure of
493 the gut mucosal surface and is not on its own predictive of allergenicity, since this property is a
494 function of the way in which the fragments interact with the individual. Consequently, resistance to
495 gastrointestinal digestion of a newly expressed protein should be considered as part of the
496 assessment for its potential to cause allergic reactions via the oral route. However, it should also be

497 noted that other routes of exposure such as respiratory or cutaneous have to be considered (EFSA
498 2010).

499 There is no internationally accepted model/protocol available to perform gastrointestinal *in vitro*
500 digestibility tests for purified proteins although this has been developed for whole foods (Minekus
501 2014). This is a consensus model applied to several foods and based on available *in vivo* physiological
502 data resulting from the COST Infogest network. This batch *in vitro* digestion assay includes an oral
503 phase, as well as subsequent gastric and intestinal phases. Inter-laboratory trials have been
504 performed at the European level to assess digestion of skim milk powder (Egger et al., 2016). Such *in*
505 *vitro* digestibility methods will require adaptation to make them useful for analysis of purified proteins,
506 taking into account the need for further standardisation and validation.

507 There are only two validated (ring-trialled) studies of digestibility tests for purified proteins which have
508 been published up to date:

- 509 510 511 512 513 514 515 • Thomas et al. (2004). Modification of the seminal paper of Astwood et al. (1996) by lowering the pepsin:protein ratio and looking at the effect of very acidic pH values (1.2 and 2.0). *In vitro* pepsinolysis of 10 proteins (allergens and non-allergens) at pH 1.2 and 2.0 were evaluated by 9 laboratories. The authors observed that pH did not have an influence on the time of digestion of protein large-fragments but the detection by gel electrophoresis of low molecular weight proteolytic fragments was less consistent because the different fixation and staining methods used.
- 516 517 518 519 520 521 522 523 524 525 • Mandalari et al. (2009b). These authors evaluated the *in vitro* gastrointestinal digestibility of β -casein and β -lactoglobulin by using a low-protease assay with and without the addition of phospholipids (based on Moreno et al., 2005ab and Mandalari et al., 2009a) and the high-protease assay (based on Astwood et al., 1996 and Fu et al., 2002). Twelve laboratories tested the method without the addition of phospholipids and 5 labs studied the effect of the addition of surfactants. This study demonstrated that the low-protease assay was robust and reproducible although further validation should be undertaken using a more extensive panel of proteins. In addition, this inter-laboratory trial showed that the largest factor governing irreproducibility was the sampling and electrophoresis methods used to analyse digestion products.

526 2.2.3. Strategy for the allergenicity risk assessment

527 The proposed procedure for complementing the allergenicity risk assessment of newly expressed
528 proteins is as follows.

529 EFSA previously highlighted the limitations of the pepsin resistance test for allergenicity risk
530 assessment and recommended that resistance to digestion of novel proteins should be evaluated
531 using other *in vitro* digestibility methods designed to simulate more closely the conditions of the
532 human digestion process (EFSA, 2010). The current document proposes a novel strategy to reduce
533 the uncertainty of both the IgE and the non-IgE allergenicity assessment. This strategy is based on
534 state-of-the-art science, and foresees a refined *in vitro* digestion test that calibrates the conditions
535 currently used in the pepsin resistance test to better reflect physiological conditions. This includes
536 additional pH conditions that are more representative of the gastric environment and the addition of
537 an intestinal digestion phase. In addition, more informative read-outs of the test are required that
538 define the extent to which the intact protein or resistant fragments remain after *in vitro* digestion.

539 An interim phase is considered necessary to evaluate the efficacy of the proposed revisions to the *in*
540 *vitro* gastrointestinal digestion test. An outline proposal for such revision is provided in Annex B to this
541 document as a starting point to collect feedback from the public and stakeholders during the
542 consultation period and the next EFSA workshop. EFSA is exploring how to practically perform such
543 evaluation on the basis of data collected for such purpose, outside the regulated safety assessment
544 responsibility frame.

545 During such interim phase and until the evaluation of the new approach is completed, EFSA will
546 continue to follow the weight-of-evidence approach for allergenicity assessment as described by EFSA
547 Guidance Document (EFSA, 2011) and Codex Alimentarius (Codex, 2003, 2009). Because the pepsin
548 resistance test can provide information on the physicochemical stability of a protein (because

549 properties, such as the rigidity of the polypeptide backbone at low pH, determine susceptibility to
550 pepsinolysis), it may still provide useful data on the biochemical properties of newly expressed
551 proteins.

552

PUBLIC CONSULTATION

553 2.3. Endogenous allergenicity

554 According to the EFSA Guidance Document (EFSA, 2011) and in line with Codex Alimentarius (2003, 555 2009), the allergenicity assessment of GM plants includes two elements, the assessment of the newly 556 expressed protein(s) and the assessment of endogenous allergenicity. The purpose of the assessment 557 of endogenous allergenicity is to ensure that no unintended effect of the genetic modification affects 558 the levels of endogenous allergens in a manner that would adversely impact on the human and animal 559 health (EFSA, 2011, König et al., 2004; Metcalfe et al., 1996; Thomas et al., 2008). To this end, EFSA 560 (2011) and Codex Alimentarius (2003, 2009) foresee the assessment of endogenous allergenicity 561 when the plant receiving the new gene(s) is known to be allergenic. In these cases, any potential 562 change in the overall allergenicity of the GM plant compared with that of its non-GM comparator(s) is 563 foreseen to be analysed. Historically, this analysis was performed using sera from allergic individuals, 564 limitations of which have been previously described (Fernandez et al., 2013).

565 EFSA and other scientists have previously recommended the inclusion of relevant endogenous 566 allergens in the comparative compositional analysis as additional parameters to be measured and 567 analysed (EFSA, 2010, 2011, Fernandez et al., 2013).

568 The Implementing Regulation (EU) No 503/2013 (IR503/2013) on applications for authorisation of GM 569 food and feed has been in place since December 2013 (EC, 2013). Based on EFSA guidance document 570 recommendation (EFSA, 2011), European Regulation incorporated as a mandatory requirement the 571 inclusion of certain allergens in the compositional analysis and consequently, the quantitative 572 measurement of individual allergens.

573 To assist both applicants as well as risk assessors in the practical implementation of this new 574 mandatory requirement, this document provides further information on: i) the crops to analyse; ii) the 575 relevant allergens to be quantified; iii) the methodology to be applied for quantification; and iv) 576 interpretation of the resulting data.

577 2.3.1. Relevant crops for the analysis

578 According to IR503/2013 and in line with EFSA Guidance Document (EFSA 2011), an assessment of 579 endogenous allergenicity should be performed on a case-by-case basis. When the recipient plant is 580 known to be allergenic, the applicant should test any potential change in the allergenicity of the 581 genetically modified food or feed by comparison of the allergen repertoire with that of its appropriate 582 comparator(s).

583 To date, EFSA has performed endogenous allergenicity risk assessments based on experimental data 584 for foods recognised to be common food allergens and, in this context, of public health importance by 585 European Regulation for labelling purposes (EC, 2003, 2011). EFSA GMO Panel scientific opinions on 586 GM soybean applications, including an endogenous allergenicity assessment, have been published 587 previously (Annex C-1). To date, EFSA has not received any application involving recognised allergenic 588 food other than soybean. For any other application received, specific experimental data on 589 endogenous allergenicity are not requested by EFSA and the assessment is carried out using data on 590 potential effects of the genetic modification on the general composition and on the molecular 591 characteristics. However, this does not preclude that EFSA might request experimental data on 592 endogenous allergenicity if considered necessary e.g., if the allergenic status of these foods changes. 593 In addition, other plant-derived foods (e.g., fruits, nuts), which might be genetically engineered in the 594 future, should be subjected to such assessments if they are recognised to be allergenic. For such 595 decisions, risk assessors, risk managers, health professionals and stakeholders can provide valuable 596 input.

597 2.3.2. Relevant allergens to be quantified

598 Soybean

599 Soybean is recognised as a common allergenic food by European Regulation (EC, 2003, 2011), and 600 suggested as one of the foods accounting for approximately 90% of food allergies (FDA, 2004; OECD, 601 2012).

602 As described previously, the quantitative measurement of soybean allergens (as referred to in the
603 relevant OECD consensus document) as part of the compositional analysis is now a mandatory
604 requirement in the IR503/2013. Soybean proteins termed “potential allergens” are described in Table
605 20, Section III-C of the OECD consensus document on soybean (OECD, 2012). Nevertheless, in
606 accordance with Article 5(2) and 5(3) of the IR503/2013: i) EFSA may accept derogations of specific
607 requirements if they are demonstrated not to be scientifically necessary for food/feed safety
608 assessment or technically not possible to perform; and/or ii) EFSA may request data not foreseen in
609 OECD consensus documents anytime, if considered necessary based on new scientific findings.

610 In line with IR503/2013, the OECD allergen list should be taken as the starting point for the
611 identification of “potential allergens” (Fig.1). In addition, this list should be complemented with a
612 search in scientific and medical literature, and in various updated databases (see EFSA, 2010;
613 Appendix 3.13, Table I for a list of relevant databases to be used). It is noted that on the one hand
614 the OECD list of allergens might not be complete, e.g. it might be outdated and/or miss relevant
615 entries. On the other hand, not all “potential allergens” listed in this OECD consensus document can
616 currently be measured due to technical reasons (e.g. amino acid sequence not available) and/or their
617 clinical relevance might not have been demonstrated. Once a comprehensive search of “potential
618 allergens” in the literature and databases is conducted, the relevant allergens selected for
619 quantification should be justified. As a complementary and/or alternative approach, a systematic
620 review could be performed, aiming to identify clinically relevant allergens. A scientific rational,
621 explaining why an allergen is not considered relevant should be provided.

622 A possible approach how to identify proteins relevant for the endogenous allergenicity assessment of
623 soybean can be found in Annex C-2.

624 **Other GM plants**

625 For foods other than soybean which are recognised to be allergenic (risk assessors, risk managers,
626 health professionals and stakeholders can provide invaluable input in such respect), a similar
627 approach/strategy for the identification of relevant allergens as the one followed for soybean (see
628 Annex C-2) should be applied, whenever considered necessary. To date, EFSA has not received any
629 application involving a recognised allergenic food other than soybean.

630 **2.3.3. Methodology to be applied for the quantification**

631 Either ELISA or mass spectrometry (MS) approaches are appropriate methods for the quantification of
632 endogenous allergens. Individual allergens quantified by ELISA should be measured using purified
633 monoclonal or polyclonal antibodies raised against each purified allergen molecule together with
634 calibrated standards, which can provide adequate information on allergen quantities in a sample. It is
635 not recommended to use polyclonal antisera of animals raised against whole soy extract because of
636 the variability of animal immune responses. MS approaches may allow specific detection and
637 quantification of a single allergen. Further considerations on methodology are described in Annex C-3.

638 EFSA encourages the standardisation and harmonisation of the methods used to enhance
639 measurement comparability. This would help the future establishment of an allergen database,
640 including data on the natural variability, which would provide useful additional information to improve
641 the robustness of the safety assessment.

642 **2.3.4. Data interpretation and risk assessment**

643 As indicated in IR503/2013, conclusions of the allergenicity assessment should indicate whether the
644 GM food or feed is likely to be more allergenic than its appropriate comparator. The applicant should
645 assess any potential change in the allergenicity of the GM food or feed by comparison of the allergen
646 repertoire.

647 Allergens included in the compositional analysis should be measured and analysed according to the
648 principles of the comparative assessment like already performed for all other compositional
649 compounds (see Section 1.3.2 of IR503/2013). To this end, the starting point of the assessment
650 should be the identification of statistically significant differences between the GM and its conventional
651 counterpart. A further evaluation should investigate whether or not the differences observed fall

652 within or outside the range of natural variation – i.e. equivalent or not to non-GM reference varieties
653 (IR503/2013). In the case that the levels of a specific allergen in a GM plant differs significantly from
654 the levels observed in the appropriate comparator(s) and it falls outside the estimated range of
655 natural variation, the biological relevance in relation to human and animal health needs to be
656 assessed.

657 Additional considerations and/or experimental data might be needed on a case-by-case basis. As for
658 other compounds included in the compositional analysis, the nature of these additional considerations
659 and/or experimental data needed in the assessment might depend on the number and magnitude of
660 the changes identified, as well as on the clinical/safety relevance of the specific
661 allergen(s)/compound(s) involved.

662 Ultimately, when a potential increase in allergenicity due to the genetic modification cannot be
663 excluded, the GM food or feed should be further characterised in the light of its anticipated intake, as
664 requested by IR503/2013. Occupational allergy should also be considered with respect to inhalation or
665 contact with potential allergens. In all cases, an exposure assessment should focus on the European
666 population aiming at identifying particular groups at high risk which might be affected by a specific
667 change of the allergen content.

668 Possible approaches for data interpretation and risk assessment of soybean endogenous allergenicity
669 can be found in Annex C-4.

670

PUBLIC CONSULTATION

Fig. 1: Current requirements

OECD consensus soy 2012 Soy allergen list: “potential soybean allergens”

Table 20. Potential soybean allergens

IgE-binding proteins	Allergen nomenclature	Molecular weight (kDa)	Family
Hydrophobic proteins	Gly m 1 ¹	7.0-7.5	Lipid transfer protein
Defensin	Gly m 2 ¹	8.0	Storage protein
Profilin	Gly m 3 ¹	14	Profilin
SAM22	Gly m 4 ¹	16.6	Pathogenesis related protein PR-10
P34	Gly m Bd 30 K	34	Protease
Unknown Asn-linked glycoprotein	Gly m Bd 28 K	26	Unknown
β-Conglycan (vicilin, 7S globulin)	Gly m 5 ¹	140-170	Storage protein (with subunits)
Glycan (legumain, 11S globulin)	Gly m 6 ¹	320-360	Storage protein (with subunits)
2S albumin	Not assigned	12	Prolamin
Lectin	Not assigned	120	Lectin
Lipoxygenase	Not assigned	102	Enzyme
Kunitz trypsin inhibitor	Not assigned	21	Protease inhibitor
Unknown	Not assigned	39	Unknown
Unknown	Not assigned	50	Homology to chlorophyll A-B binding protein
P22-25	Not assigned	22-25	Unknown

Source: adapted from L'Hotme and Boye, (2007), updated with information from WHO IUIS (2011)

¹ WHO IUIS (2011) Allergen nomenclature recognized by WHO and IUIS

Evidence check

Evaluation of literature for all single allergens

and

Comparison and complementation with databases (EFSA, 2010)
and/or
Systematic Reviews

Clinical relevance shown

Relevance for GMO risk assessment

671
672
673

PUBLIC CONSULTATION

674 3. Conclusions

675 Dietary proteins or their derived fragments are able to initiate diseases, which include IgE-mediated
676 allergy as well as non-IgE-mediated adverse immune reactions. Onset of these diseases however
677 depends to a large extent on the predisposition of the individual; e.g., the expression of certain HLA
678 genotypes is a well-described risk factor for the development of celiac disease (CD). Also, a genetic
679 predisposition towards atopy is strongly suspected to play a role in the development of IgE-mediated
680 allergies. Nevertheless, also properties of food proteins or their derived fragments can be assessed to
681 predict possible adverse immune reactions. Moreover, levels of endogenous allergens in foods might
682 play a role for the onset and severity of IgE-mediated allergic disease.

683 CD is a well-characterised non-IgE mediated adverse immune reaction to specific food proteins. A
684 stepwise approach for analysis of proteins is proposed in this guidance document, which parallels the
685 classical weight-of-evidence approach conducted for the assessment of IgE-mediated allergenicity. In
686 a first instance, *in silico* approaches searching for potentially hazardous peptide sequences are
687 employed. Subsequently, *in vitro* tests may be necessary to determine the safety profile, such as HLA-
688 DQ-peptide binding assays and/or testing with T cell clones derived from CD patients.

689 *In vitro* digestibility tests can provide useful data on the susceptibility of a protein to gastrointestinal
690 digestion which may reflect its digestibility in the human gut and subsequently provide information on
691 its immunogenicity. The pepsin resistance test can provide useful data on the biochemical properties
692 of newly expressed proteins. Because of the limitations of this test for allergenicity risk assessment,
693 resistance to digestion of novel proteins should also be evaluated using other *in vitro* digestibility
694 methods designed to more closely simulate the conditions of the human digestion process. To further
695 elucidate these aspects, an interim phase is foreseen. To this end, EFSA is exploring possibilities
696 outside the regulated safety assessment responsibility frame.

697 The assessment of endogenous allergenicity ensures that a genetic modification does not significantly
698 affect the levels of endogenous allergens in comparison to appropriate comparator(s). This allows to
699 objectively establish *a priori* criteria for further assessment of the observed difference(s) with respect
700 to its relevance for human and animal health.

701 Additional conclusions will be elaborated after the public consultation.

702

703 **Documentation provided to EFSA**

704 1. Proposal for a self-task mandate of the EFSA GMO Panel to establish a Working Group to
705 develop supplementary guidelines for the allergenicity assessment of GM plants to incorporate
706 new developments. May 2014. Submitted by the Chair of the ESA GMO Panel.

707 2. Acceptance of the self-task mandate of the EFSA GMO Panel to establish a Working Group to
708 develop supplementary guidelines for the allergenicity assessment of GM plants to incorporate
709 new developments. July 2014. Submitted by EFSA Executive Director.

710

PUBLIC CONSULTATION

711 References

712 Arentz-Hansen H, Fleckenstein B, Molberg, Scott H, Koning F, Jung G, Roepstorff P, Lundin KE, Sollid
713 LM (2004) The molecular basis for oat intolerance in patients with celiac disease. *Plos Med.* 1:e1

714 Arentz-Hansen H, Körner R, Molberg, Quarsten H, Vader W, Kooy YM, Lundin KEA, Koning F,
715 Roepstorff P, Sollid LM, McAdam SN (2000) The intestinal T cell response to α -gliadin in adult
716 celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. *J. Exp. Med.* 191:603-612

717

718 Armand M, Hamosh M, Mehta NR, Angelus PA, Philpott JR, Henderson TR, Dwyer NK, Lairon D,
719 Hamosh P (1996) Effect of human milk or formula on gastric function and fat digestion in the
720 premature infant. *Pediatr Res.* 40:429-437.

721 Aziz I, Hadjivassilou M, Sanders DS (2015) The Spectrum of Noncoeliac Gluten Sensitivity. *Nat. Rev. Gastroenterol. Hepatol.* 12:516-26.

722

723 Astwood JD, Leach JN & Fuchs RL (1996) Stability of food allergens to digestion in vitro. *Nat Biotechnol* 14, 1269-1273.

724

725 Ballmer-Weber BK, Hoffmann A, Wüthrich B, Lüttkopf D, Pompei C, Wangorsch A, Kästner M, Vieths S
726 (2002) Influence of food processing on the allergenicity of celery: DBPCFC with celery spice and
727 cooked celery in patients with celery allergy. *Allergy* 57:228-235.

728 Bartnikas LM, Sheehan WJ, Hoffman EB, Permaul P, Dioun AF, Friedlander J, Baxi SN, Schneider LC,
729 Phipatanakul W (2012) Predicting food challenge outcomes for baked milk: role of specific IgE and
730 skin prick testing. *Ann Allergy Asthma Immunol* 109, 309-313.

731 Bogh KL, Barkholt V, Rigby NM, Mills EN, Madsen CB (2012) Digested Ara h 1 loses sensitizing
732 capacity when separated into fractions. *J. Agric. Food Chem.* 60:2934-2942.

733 Bogh KL, Barkholt V, Madsen CB (2013) The sensitising capacity of intact β -lactoglobulin is reduced by
734 co-administration with digested β -lactoglobulin. *Int. Arch. Allergy Immunol.* 161:21-36.

735 Brenna O, Pompei C, Ortolani C, Pravettoni V, Farioli L, Pastorello EA (2000) Technological processes
736 to decrease the allergenicity of peach juice and nectar. *J. Agric. Food Chem.* 48:493-497.

737 Brockow K, Kneissl D, Valentini L, Zelger O, Grosber M, Kugler C, Werich M, Darsow U, Matsuo H,
738 Morita E, Ring J (2015) Using a gluten oral food challenge protocol to improve diagnosis of wheat-
739 dependent exercise-induced anaphylaxis. *J Allergy Clin Immunol* 135, 977-984.

740 Chambers SJ, Wickham MS, Regoli M, Bertelli E, Gunning PA, Nicoletti C (2004) Rapid in vivo transport
741 of proteins from digested allergen across pre-sensitized gut. *Biochem. Biophys. Res. Commun.*
742 325:1258-1263.

743 Chicz RM, Urban RG, Gorga JC, Vignali DAA, Lane WS, Strominger JL (1993) Specificity and
744 promiscuity among naturally processed peptides bound to HLA-DR alleles. *J. Exp. Med.* 178, 27-47.

745 Chinthurajah RS, Hernandez JD, Boyd SD, Galli SJ, Nadeau KC (2016) Molecular and cellular
746 mechanisms of food allergy and food tolerance. *J. Allergy Clin. Immunol.* 137:984-997.

747 Codex Alimentarius, 2003. Foods Derived from Modern Biotechnology. Codex Alimentarius
748 Commission, Joint FAO/WHO Food Standards Programme, Rome.

749 Codex Alimentarius, 2009. Foods Derived from Modern Biotechnology. Codex Alimentarius
750 Commission, Joint FAO/WHO Food Standards Programme, Rome.

751 Díaz-Perales A, Blanco C, Sánchez-Monge R, Varela J, Carrillo T, Salcedo G (2003) Analysis of avocado
752 allergen (Prs a 1) IgE-binding peptides generated by simulated gastric fluid digestion. *J. Allergy Clin. Immunol.* 112:1002-1007.

753

754 Diesner SC, Knittelfelder R, Krishnamurthy D, Pali-Scholl I, Gajdzik L, Jensen-Jarolim E, Untersmayr E
755 (2008) Dose-dependent food allergy induction against ovalbumin under acid-suppression: a murine
756 food allergy model. *Immunol Lett* 121, 45-51.

757 Dupont D, Mandalari G, Mollé D, Jardin J, Rolet-Répécaud O, Duboz G, Léonil J, Mills ENC, Mackie AR
758 (2010) Food processing increases casein resistance to simulated infant digestion. *Mol Nutr Food*
759 *Res* 54, 1677-1689.

760 EC, 2003. Directive 2003/89/EC of the European Parliament and of the Council of 10 November 2003
761 amending Directive 2000/13/EC as regards indication of the ingredients present in foodstuffs.

762 EC, 2011. Regulation (EU) No 1169/2011 of the European Parliament and of the Council of 25 October
763 2011 on the provision of food information to consumers, amending Regulations (EC) No 1924/2006
764 and (EC) No 1925/2006 of the European Parliament and of the Council, and repealing Commission
765 Directive 87/250/EEC, Council Directive 90/496/EEC, Commission Directive 1999/10/EC, Directive
766 2000/13/EC of the European Parliament and of the Council, Commission Directives 2002/67/EC and
767 2008/5/EC and Commission Regulation (EC) No 608/2004.

768 EC, 2013. Commission Implementing Regulation (EU) No. 503/2013 of 3 April 2013 on applications for
769 authorisation of genetically modified food and feed in accordance with Regulation (EC) No.
770 1829/2003 of the European Parliament and of the Council and amending Commission Regulations
771 (EC) No. 641/2004 and (EC) No. 1981/2006. *Off. J. Eur. Union* L157, 1-48.

772 EFSA Panel on Genetically Modified Organisms (GMO), 2010. Scientific Opinion on the assessment of
773 allergenicity of GM plants and microorganisms and derived food and feed. *EFSA Journal* 2010;
774 8(7):1700. [168 pp.]. doi:10.2903/j.efsa.2010.1700.

775 EFSA Panel on Genetically Modified Organisms (GMO), 2011. Scientific Opinion on Guidance for risk
776 assessment of food and feed from genetically modified plants. *EFSA Journal* 2011; 9(5): 2150.
777 [37pp.] doi:10.2903/j.efsa.2011.2150.

778 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on
779 the evaluation of allergenic foods and food ingredients for labelling purposes. *EFSA Journal* 2014;12(11):3894, 286 pp. doi:10.2903/j.efsa.2014.3894

781 Egger L, Ménard O, Delgado-Andrade C, Alvito P, Assunção R, Balance S, Barberá R, Brodkorb A,
782 Catteneo T, Clemente A, Comi I, Dupont D, Garcia-Llatas G, Lagarda MJ, Le Feunteun S,
783 JanssenDuijghuijsen L, Karakaya S, Lesmes U, Mackie AR, Martins C, Meynier A, Miralles B, Murray
784 BS, Pihlanto A, Picariello G, Santos CN, Simsek S, Recio I, Rigby N, Rioux LE, Stoffers H, Tavares A,
785 Tavares L, Turgeon S, Ulleberg EK, Vedarud GE, Vergères G, Portmann R (2016) The harmonized
786 INFOGEST in vitro digestion method: From knowledge to action. *Food Res. Int.* (In Press)
787 doi:10.1016/j.foodres.2015.12.006.

788 FDA, 2004. Food allergen labeling and consumer protection act (FALCPA). Congressional record v.
789 150.
790 <http://www.fda.gov/downloads/Food/LabelingNutrition/FoodAllergensLabeling/GuidanceComplianc eRegulatoryInformation/UCM179394.pdf>

792 Fernandez A, Mills EN, Lovik M, Spoek A, Germini A, Mikalsen A, Wal JM (2013) Endogenous allergens
793 and compositional analysis in the allergenicity assessment of genetically modified plants. *Food and*
794 *Chemical Toxicology*, 62, 1-6.

795 Fu T-J, Abbott UR, Hatzos C (2002) Digestibility of food allergens and nonallergenic proteins in
796 simulated gastric fluid and simulated intestinal fluid. A comparative study. *J Agric Food Chem* 50,
797 7154-7160.

798 Foster ES, Kimber I, Dearman RJ (2013) Relationship between protein digestibility and allergenicity:
799 comparisons of pepsin and cathepsin. *Toxicology* 308:30-8.

800 Garsed K, Scott BB (2007) Can oats be taken in a gluten-free diet? A systematic review. *Scand J*
801 *Gastroenterol* 42:171-8

802 Green PH, Cellier C (2007) Celiac disease. *N Engl J Med* 357:1731-43

803 Grimshaw KE, King RM, Nordlee JA, Hefle SL, Warner JO, Hourihane JO (2003) Presentation of
804 allergen in different food preparations affects the nature of the allergic reaction--a case series.
805 *Clin. Exp. Allergy*, 33:1581-1585.

806 Harwood NE, Batista FD (2010) Early events in B cell activation. *Annu Rev Immunol.* 28: 185-210.

807 Handlogten MW, Kiziltepe T, Serezani AP, Kaplan MH, Bilgicer B (2013) Inhibition of weak-affinity
808 epitope-IgE interactions prevents mast cell degranulation. *Nat Chem Biol.* 9: 789-95.

809 Hebling CM, Ross MM, Callahan JH and McFarland MA (2012) Size-selective fractionation and visual
810 mapping of allergen protein chemistry in *Arachis hypogaea*. *Journal of Proteome Research*, 11,
811 5384-5395.

812 Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA, Beissbarth T, Tatham A, Mannerling SI, Purcell
813 AW, Dudek NL, van Heel DA, McCluskey J, Rossjohn J, Anderson RP (2007) A structural and
814 immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. *Immunity*.
815 27:23-34

816 Herman RA, Woolhiser MM, Ladics GS, Korjagin VA, Schafer BW, Storer NP, Green SB, Kan L (2007)
817 Stability of a set of allergens and non-allergens in simulated gastric fluid. *Int J Food Sci Nutr* 58,
818 125-141.

819 Holst B, Williamson G. (2008) Nutrients and phytochemicals: from bioavailability to bioefficacy beyond
820 antioxidants. *Curr Opin Biotechnol* 19, 73-82.

821 Hosking DJ, Moody F, Stewart IM, Atkinson M (1975) Vagal impairment of gastric secretion in diabetic
822 autonomic neuropathy. *Br Med J* 2, 588-590.

823 Karell K, Louka AS, Moodie SJ, Ascher H, Clot F, Greco L, Ciclitira PJ, Sollid LM, Partanen J (2003) HLA
824 types in celiac disease patients not carrying the DQA1*05-DQB1*02 (DQ2) heterodimer: results
825 from the European Genetics Cluster on Celiac Disease. *Hum Immunol* 64:469-477

826 Kay L, Jorgensen T. Epidemiology of upper dyspepsia in a random population (1994) Prevalence,
827 incidence, natural history, and risk factors. *Scand J Gastroenterol* 29, 2-6.

828 Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated
829 presentation of gluten epitopes in celiac disease. *Proc Natl Acad Sci U S A* 101:4175-4179

830 König A, Cockburn A, Crevel RWR, Debruyne E, Graftstrom R, Hammerling U, Kimber I, Knudsen I,
831 Kuiper HA, Peijnenburg AACM, Penninks AH, Poulsen M, Schauzu M, Wal JM (2004) Assessment of
832 the safety of foods derived from genetically modified (GM) crops. *Food and Chemical Toxicology*,
833 42, 1047-1088.

834 Koning F, Thomas R, Rossjohn J, Toes RE. (2015) Coeliac disease and rheumatoid arthritis: similar
835 mechanisms, different antigens. *Nat Rev Rheumatol.* 11: 450-61

836 Levi CS, Lesmes U (2014) Bi-compartmental elderly or adult dynamic digestion models applied to
837 interrogate protein digestibility. *Food Funct* 5, 2402-2409.

838 Lundin KEA, Nilsen EM, Scott HG, Løberg EM, Gjøen A, Bratlie J, Skar V, Mendez E, Løvik A, Kett K
839 (2003) Oats induced villous atrophy in coeliac disease. *Gut* 52 1649-1652

840 Lundin KEA, Scott H, Fausa O, Thorsby E, Sollid LM (1994) T cells from the small intestinal mucosa of
841 a DR4, DQ7/DR4, DQ8 celiac disease patient preferentially recognize gliadin when presented by
842 DQ8. *Hum. Immunol.* 41:285-291

843 Lundin KEA, Scott H, Hansen T, Paulsen G, Halstensen TS, Fausa O, Thorsby E, Sollid LM (1993)
844 Gliadin-specific, HLA-DQ(α*0501,β1*0201) restricted T cells isolated from the small intestinal
845 mucosa of celiac disease patients. *J. Exp. Med.* 178:187-196

846 Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR (2009) Emulsification alters simulated
847 gastrointestinal proteolysis of β-casein and β-lactoglobulin. *Soft Matter* 5, 538-550.

848 Mackie A, Knulst A, Le TM, Bures P, Salt L, Mills EN, Malcolm P, Andreou A, Ballmer-Weber BK. (2012)
849 High fat food increases gastric residence and thus thresholds for objective symptoms in allergic
850 patients. *Mol. Nutr. Food Res.* 56:1708-1714.

851 Mandalari G, Mackie AR, Rigby NM, Wickham MSJ, Mills ENC (2009a) Physiological phosphatidylcholine
852 protects bovine β -lactoglobulin from simulated gastrointestinal proteolysis. *Mol Nutr Food Res* 53,
853 S131–S139.

854 Mandalari G, Adel-Patient K, Barkholt V, Baro C, Bennett L, Bublin M, Gaier S, Graser G, Ladics GS,
855 Mierzejewska D, Vassilopoulou E, Vissers YM, Zuidmeer L, Rigby NM, Salt LJ, Defernez M,
856 Mulholland F, Mackie AR, Wickham MS, Mills ENC. (2009b) In vitro digestibility of β -casein and β -
857 lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory
858 evaluation. *Regul Toxicol Pharmacol* 55, 372-381.

859 Matsuo H, Morimoto K, Akaki T, Kaneko S, Kusatake K, Kuroda T, Niihara H, Hide M, Morita (2005)
860 Exercise and aspirin increase levels of circulating gliadin peptides in patients with wheat-dependent
861 exercise-induced anaphylaxis. *Clin Exp Allergy* 35, 461-466.

862 Ménard O, Cattenoz T, Guillemin H, Souchon I, Deglaire A, Dupont D, Picque D (2014) Validation of a
863 new in vitro dynamic system to simulate infant digestion. *Food Chem* 145, 1039-1045.

864 Metcalfe DD, Astwood JD, Townsend R, Sampson HS, Taylor SL, Fuchs RL (1996) Assessment of the
865 allergenic potential of foods derived from genetically engineered crop plants. *Crit Rev Food Sci Nutr*
866 36, S165-S186.

867 Mills ENC, Marsh JT, Boyle R, Hoffmann-Sommergruber K, DuPont D, Bartara J, Bakalis S, McLaughlin
868 J, Shewry PR. The University of Manchester, 2013a. Literature review: 'non-IgE-mediated immune
869 adverse reactions to foods'. EFSA supporting publication 2013:EN-527, 40 pp.

870 Mills ENC, Marsh JT, Johnson PE, Boyle R, Hoffmann-Sommergruber K, DuPont D, Bartras J, Bakalis S,
871 McLaughlin J, Shewry PR. The University of Manchester, 2013b. Literature review: 'in vitro
872 digestibility tests for allergenicity assessment'. EFSA supporting publication 2013:EN-529, 52 pp.

873 Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M,
874 Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U,
875 Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP,
876 Vegerud GE, Wickham MS, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion
877 method suitable for food - an international consensus. *Food Funct* 5, 1113-1124.

878 Mohan JF, Uhanue ER (2012) Unconventional recognition of peptides by T cells and the implications
879 for autoimmunity. *Nat. Rev. Immunol.* 12, 721-728.

880 Molberg, McAdam SN, Körner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Roepstorff P,
881 Lundin KEA, Sjöström H, Söllid LM (1998) Tissue transglutaminase selectively modifies gliadin
882 peptides that are recognized by gut-derived T cells. *Nat Med* 4:713-717

883 Moreno FJ, Mackie AR, Mills ENC (2005a) Phospholipid interactions protect the milk allergen alpha-
884 lactalbumin from proteolysis during in vitro digestion. *J Agric Food Chem* 53, 9810-9816.

885 Moreno FJ, Mellon FA, Wickham MS, Bottrill AR, Mills ENC (2005b) Stability of the major allergen Brazil
886 nut 2S albumin (Ber e 1) to physiologically relevant in vitro gastrointestinal digestion. *FEBS J* 272,
887 341-352.

888 Moreno FJ (2007) Gastrointestinal digestion of food allergens: effect on their allergenicity. *Biomed
889 Pharmacother* 61, 50-60.

890 Moustakas AK, van de WY, Routsias J, Kooy YM, Van VP, Drijfhout JW, Koning F, Papadopoulos GK
891 (2000) Structure of celiac disease-associated HLA-DQ8 and non-associated HLA-DQ9 alleles in
892 complex with two disease-specific epitopes. *Int. Immunol.* 12:1157-1166

893 Netting M, Makrides M, Gold M, Quinn P, Penttila I (2013) Heated allergens and induction of tolerance
894 in food allergic children. *Nutrients* 5, 2028-2046.

895 Pabst O, Mowat AM (2012) Oral tolerance to food protein. *Mucosal Immunol* 5, 232-239.

896 Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M, Thompson A, Mearin ML,
897 Schweizer J, Kooy-Winkelaar Y, van Bergen J, Drijfhout JW, Kan WT, La Gruta NL, Anderson RP,

898 Reid HH, Koning F, Rossjohn J. (2014) T-cell receptor recognition of HLA-DQ2-gliadin complexes
899 associated with celiac disease. *Nat Struct Mol Biol.* 21: 480-8.

900 OECD, 2012. Revised consensus document on compositional considerations for new 452 varieties of
901 soybean [Glycine max (L.) Merr.]: key food and feed nutrients, 453 antinutrients, toxicants and
902 allergens. Series on the Safety of Novel Foods and 454 Feeds No. 25.

903 Quarsten H, Molberg, Fugger L, McAdam SN, Sollid LM (1999) HLA binding and T cell recognition of a
904 tissue transglutaminase-modified gliadin epitope. *Eur. J. Immunol.* 29:2506-2514

905 Rémond D, Shahar DR, Gille D, Pinto P, Kachal J, Peyron MA, Dos Santos CN, Walther B, Bordoni A,
906 Dupont D, Tomás-Cobos L, Vergères G (2015) Understanding the gastrointestinal tract of the
907 elderly to develop dietary solutions that prevent malnutrition. *Oncotarget* 6, 13858-13898.

908 Rossjohn J, Koning F. (2016) A biased view toward celiac disease. *Mucosal Immunol.* 9: 583-6

909 Rudensky AY, Preston-Hurlburt P, Hong S-C, Barlow A, Janeway CA Jr (1991) Sequence analysis of
910 peptides bound to MHC class II molecules. *Nature* 353, 622-627.

911 Scholl L, Untersmayr E, Bakos N, Roth-Walter F, Gleiss A, Boltz-Nitulescu G, Scheiner O, Jensen-
912 Jarolim E (2005) Antiulcer drugs promote oral sensitization and hypersensitivity to hazelnut
913 allergens in BALB/c mice and humans. *Am J Clin Nutr* 81, 154-160.

914 Shakeri-Leidenmuhler S, Lukschal A, Schultz C, Bohdjalian A, Langer F, Birsan T, Diesner SC,
915 Greisenegger EK, Scheiner O, Kopp T, Jensen-Jarolim E, Prager G, Untersmayr E (2015) Surgical
916 Elimination of the Gastric Digestion by Roux-en-Y Gastric Bypass Impacts on Food Sensitisation-a
917 Pilot Study. *Obes Surg* 25, 2268-2275.

918 Shan L, Molberg, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for
919 gluten intolerance in celiac sprue. *Science* 297:2275-2279

920 Shewry PR, Tatham AS, Kasarda DD (1992) Cereal proteins and coeliac disease. In Marsh MN (ed.)
921 Coeliac disease. Blackwell Scientific Publications, Oxford

922 Sjöström H, Lundin KEA, Molberg, Körner R, McAdam SN, Anthonsen D, Quarsten H, Noren O,
923 Roepstorff P, Thorsby E, Sollid LM (1998) Identification of a gliadin T-cell epitope in coeliac
924 disease: general importance of gliadin deamidation for intestinal T-cell recognition. *Scand. J.
925 Immunol.* 48:111-115

926 Smith F, Pan X, Bellido V, Toole GA, Gates FK, Wickham MS, Shewry PR, Bakalis S, Padfield P, Mills
927 ENC (2015) Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.
928 *Mol Nutr Food Res* 59, 2034-2043.

929 Sollid LM, Qiao S, Anderson RP, Gianfrani C, Koning F (2012) Nomenclature and listing of celiac
930 disease relevant gluten T-cell-epitopes restricted by HLA-DQ molecules. *Immunogenetics* 64: 455-
931 460. Tollefsen S, Arentz-Hansen H, Fleckenstein B, Molberg, Raki M, Kwok WW, Jung G, Lundin KE,
932 Sollid LM (2006) HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. *J Clin
933 Invest* 116:2226-2236

934 Strait RT, Mahler A, Hogan S, Khodoun M, Shibuya A, Finkelman FD. (2011) Ingested allergens must
935 be absorbed systemically to induce systemic anaphylaxis. *J Allergy Clin Immunol* 127, 982-989.

936 Thomas K, Herouet-Guicheney C, Ladics G, McClain S, MacIntosh S, Privalle L, Woolhiser M (2008)
937 Current and future methods for evaluating the allergenic potential of proteins: international
938 workshop report 23–25 October 2007. *Food and Chemical Toxicology*, 46, 3219–3225.

939 Thomas K, Aalbers M, Bannon GA, Bartels M, Dearman RJ, Esdaile DJ, Fu TJ, Glatt CM, Hadfield N,
940 Hatzos C, Hefle SL, Heylings JR, Goodman RE, Henry B, Herouet C, Holsapple M, Ladics GS, Landry
941 TD, MacIntosh SC, Rice EA, Privalle LS, Steiner HY, Teshima R, Van Ree R, Woolhiser M, Zawodny
942 J (2004) A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in
943 assessing the safety of novel proteins. *Regul Toxicol Pharmacol* 39, 87-98.

944 Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Mannerling
945 SI, Gianfrani C, Jewell DP, Hill AV, McCluskey J, Rossjohn J, Anderson RP (2010) Comprehensive,
946 quantitative mapping of T cell epitopes in gluten in celiac disease. *Sci Transl Med* 2:41ra51

947 Untersmayr E, Scholl I, Swoboda I, Beil WJ, Forster-Waldl E, Walter F, Riemer A, Kraml G, Kinaciyan
948 T, Spitzauer S, Boltz-Nitulescu G, Scheiner O, Jensen-Jarolim E (2003) Antacid medication inhibits
949 digestion of dietary proteins and causes food allergy: A fish allergy model in Balb/c mice. *J Allergy*
950 *Clin Immunol* 112, 616-623.

951 Untersmayr E, Bakos N, Scholl I, Kundi M, Roth-Walter F, Szalai K, Riemer AB, Ankersmit HJ, Scheiner
952 O, Boltz-Nitulescu G, Jensen-Jarolim E (2005) Anti-ulcer drugs promote IgE formation toward
953 dietary antigens in adult patients. *FASEB J* 19, 656-658.

954 Untersmayr E, Vestergaard H, Malling HJ, Jensen LB, Platzer MH, Boltz-Nitulescu G, Scheiner O, Skov
955 PS, Jensen-Jarolim E, Poulsen LK (2007) Incomplete digestion of codfish represents a risk factor
956 for anaphylaxis in patients with allergy. *J Allergy Clin Immunol* 119, 711-717.

957 Untersmayr E, Diesner SC, Bramswig KH, Knittelfelder R, Bakos N, Gundacker C, Lukschal A,
958 Wallmann J, Szalai K, Pali-Scholl I, Boltz-Nitulescu G, Scheiner O, Duschl A, Jensen-Jarolim E
959 (2008) Characterization of intrinsic and extrinsic risk factors for celery allergy in
960 immunosenescence. *Mech Ageing Dev* 129, 120-128.

961 Vader LW, de Ru A, van Der WY, Kooy YM, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P,
962 Koning F (2002a) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. *J*
963 *Exp Med* 195:643-649

964 Vader LW, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, Drijfhout JW, van Veelen PA, Koning F
965 (2003) Characterization of cereal toxicity for celiac disease patients based on protein homology in
966 grains. *Gastroenterology* 125:1105-1113

967 Vader W, Kooy Y, van Veelen P, de Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW,
968 Koning F (2002b) The gluten response in children with celiac disease is directed toward multiple
969 gliadin and glutenin peptides. *Gastroenterology* 122:1729-1737

970 van Bergen J, Mulder CJ, Mearin ML, Koning F. (2015) Local communication among mucosal immune
971 cells in patients with celiac disease. *Gastroenterology* 148:1187-94

972 van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G, Koning F (1998a) Selective
973 deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. *J*
974 *Immunol* 161:1585-1588

975 van de Wal Y, Kooy YM, van Veelen P, Vader W, August SA, Drijfhout JW, Pena SA, Koning F (1999)
976 Glutenin is involved in the gluten-driven mucosal T cell response. *Eur. J. Immunol.* 29:3133-3139

977 van de Wal Y, Kooy YM, van Veelen PA, Pena SA, Mearin LM, Molberg, Lundin KEA, Sollid LM, Mutis T,
978 Benckhuijsen WE, Drijfhout JW, Koning F (1998b) Small intestinal T cells of celiac disease patients
979 recognize a natural pepsin fragment of gliadin. *Proc. Natl. Acad. Sci. U. S. A.* 95:10050-10054

980 Worm M, Hompes S, Fiedler EM, Illner AK, Zuberbier T, Vieths S (2009) Impact of native, heat-
981 processed and encapsulated hazelnuts on the allergic response in hazelnut-allergic patients. *Clin.*
982 *Exp. Allergy* 39:159-166.

983

984

985

986

987

988 Annex A – Non-IgE-mediated immune adverse reactions to food**989 Annex A-1. T cell epitopes known in celiac disease**

990 Several listings/databases of the known T cell stimulatory sequences identified in gluten, hordeins,
991 secalins and avenins are available. These include the <https://propepper.net> database and the
992 AllergenOnline database. Furthermore, an overview of the best characterized epitopes along with a
993 unified nomenclature is presented in Sollid et al. (2012). Table A1 lists the epitopes described in the
994 latter manuscript. This compilation lists both the HLA-DQ2 and HLA-DQ8 restricted epitopes and
995 includes the known immunodominant epitopes present in the α - and ω -gliadins as well as the less
996 commonly recognized epitopes in the γ -gliadins and the LMW- and HMW-glutenins.

997 The list contains a convenient overview of the most important and well defined epitopes. It is,
998 nevertheless, important to note that due to the extreme variability of the gluten and gluten-like
999 proteins in barley and rye, (single) amino acid variants of these epitopes do exist, some of which may
1000 also exhibit T cell stimulatory activity. Also, it cannot be fully excluded that additional
1001 immunodominant gluten epitopes may be identified in the future. This is however unlikely because
1002 large numbers of patients have already been extensively tested for gluten reactivity, including studies
1003 where gluten peptide libraries were employed. Thus, any protein containing one or more sequences
1004 that display high sequence identity to the epitope sequences present in this list will likely have the
1005 capacity to trigger gluten-specific T cells.

1006 Any 9 amino acid-residue peptide which shows identity to a known T cell epitope might be able to
1007 induce an immune response in celiac disease patients. However, the necessary number of amino acids
1008 identical in a peptide to trigger a response is challenging to define, since the ability to bind to CD
1009 specific MHC molecules and the interaction with T cells is highly dependent on the nature and position
1010 of certain amino acids. Therefore, a definite size cut-off in respect to identity to a known epitope
1011 indicating potential hazardous peptides, for which further assessment would be needed, is demanding.
1012 As an example, a major alpha gliadin peptide of wheat (glia- α 1a, Table A1) shares 5 out of 9 amino
1013 acids with a peptide in oat, which is highly suspected to induce immune responses in some celiac
1014 disease patients (Lundin et al 2003). However, single amino acids substitutions were described to
1015 abolish T cell reactivity in epitopes of α -2 gliadin (Ellis et al 2003, Mitea et al 2010). Following the
1016 public consultation process, further considerations will be elaborated.

1017 Ellis HJ, Pollock EL, Engel W, Fraser JS, Rosen-Bonson S, Wieser H, Ciclitira PJ 2003. Investigation of
1018 the putative immunodominant T cell epitopes in coeliac disease. Gut 52: 212-7.

1019 Lundin KE, Nilsen EM, Scott HG, Loberg EM, Gjoen A, Bratlie J, Skar V, Mendez E, Lovik A, Kett K
1020 (2003) Oats induced villous atrophy in coeliac disease. Gut 52: 1649-52.

1021 Mitea C, Salentijn EM, van Veelen P, Goryunova SV, van der Meer IM, van den Broeck HC, Mujico JR,
1022 Monserrat V, Gilissen LJ, Drijfhout JW, Dekking L, Koning F, Smulders MJ. A universal approach to
1023 eliminate antigenic properties of alpha-gliadin peptides in celiac disease. PLoS One. 2010. 5:
1024 e15637.

1025 Sollid LM, Qiao S, Anderson RP, Gianfrani C, Koning F (2012) Nomenclature and listing of celiac
1026 disease relevant gluten T-cell-epitopes restricted by HLA-DQ molecules. Immunogenetics 64> 455-
1027 460.

1028

1029 **Table A1.** List of celiac disease relevant DQ2 and DQ8 restricted T-cell epitopes recognized by CD4+ T cells (taken from Söllid
 1030 et al, 2012). The single letter code for amino acids is used. A characteristic Q-X1-P-X2 motif is present in the large majority of
 1031 HLA-DQ2 epitopes (in bold). This sequence is a target sequence for TG2, which yields E-X1-P-X2. Due to the introduction of the
 1032 negatively charged amino acid glutamate, the peptides become high affinity binders for HLA-DQ2. glia- α = α -gliadin; glia- γ = γ -
 1033 gliadin; hor = hordein; sec = secalin; ave = avenin; glut-L = LWM-glutenin, glut-H = HMW-glutenin.
 1034

1035	DQ2.5-glia- α 1a	P F P Q P Q L P Y	(Arentz-Hansen et al. 2000)
1036	DQ2.5-glia- α 1b	P Y P Q P Q L P Y	(Arentz-Hansen et al. 2002)
1037	DQ2.5-glia- α 2	P Q P Q L P Y P Q	(Arentz-Hansen et al. 2000)
1038	DQ2.5-glia- α 3	F R P Q Q P Y P Q	(Vader et al. 2002b)
1039	DQ2.5-glia- γ 1	P Q Q S F P E Q Q	(Sjöström et al. 1998)
1040	DQ2.5-glia- γ 2	I Q P Q Q P A Q L	(Qiao et al. 2005; Vader et al. 2002b)
1041	DQ2.5-glia- γ 3	Q Q P Q Q P Y P Q	(Arentz-Hansen et al. 2002)
1042	DQ2.5-glia- γ 4a	S Q P E Q Q F P Q	(Arentz-Hansen et al. 2002)
1043	DQ2.5-glia- γ 4b	P Q P E Q Q F P Q	(Qiao et al. 2005)
1044	DQ2.5-glia- γ 4c	Q Q P Q Q P F P Q	(Arentz-Hansen et al. 2002)
1045	DQ2.5-glia- γ 4d	P Q P Q Q P F C Q	(Qiao, unpublished)
1046	DQ2.5-glia- γ 5	Q Q P F P Q Q P Q	(Arentz-Hansen et al. 2002)
1047	DQ2.5-glia- ω 1	P F P Q P Q Q P F	(Tye-Din et al. 2010)
1048	DQ2.5-glia- ω 2	P Q P Q Q P F P W	(Tye-Din et al. 2010)
1049	DQ2.2-glut-L1	P F S E Q E Q P V	(Vader et al. 2002b)
1050	DQ2.5-glut-L2	F S Q Q Q Q S P F	(Stepniak et al. 2005; Vader et al. 2002b)
1051	DQ2.5-hor-1	P F P Q P Q Q P F	(Tye-Din et al. 2010; Vader et al. 2003a)
1052	DQ2.5-hor-2	P Q P Q Q P F P Q	(Vader et al. 2003a)
1053	DQ2.5-sec-1	P F P Q P Q Q P F	(Tye-Din et al. 2010; Vader et al. 2003a)
1054	DQ2.5-sec-2	P Q P Q Q P F P Q	(Vader et al. 2003a)
1055	DQ2.5-ave-1	P Y P E Q E E P F	(Arentz-Hansen et al. 2004; Vader et al. 2003a)
1056	DQ2.5-ave-1b	P Y P E Q Q Q P F	(Arentz-Hansen et al. 2004; Vader et al. 2003a)

1057
 1058 DQ8 restricted epitopes

1060	DQ8-glia- α 1	Q G S F Q P S Q Q	(van de Wal et al. 1998b)
1061	DQ8-glia- γ 1a	Q Q P Q Q P F P Q	(Tollefsen et al. 2006)
1062	DQ8-glia- γ 1b	Q Q P Q Q P Y P Q	(Tollefsen et al. 2006)
1063	DQ8-glut-H1	Q G Y Y P T S P Q	(van de Wal et al. 1999)

1064
 1065 *Annex A-2. Typical motives found in celiac disease epitopes*

1066 Closer inspection of the Q/E-X1-P-X2 sequences demonstrates that only a limited number of amino
 1067 acids are present at the X-positions: L, Q, F and S at position X1 and Y, F, A, V and Q at position X2
 1068 (Fig.3). Thus, a search motif that incorporates these amino acids should identify peptide sequences
 1069 with the potential to bind to HLA-DQ2.5 and stimulate gluten-specific T cells.

1070 *Annex A-3. Considerations for HLA-DQ peptide binding modelling*

1071 Recent studies have determined the T cell receptor repertoire used by CD4+ T cells specific for
 1072 immunodominant gluten epitopes and crystal structures of such T cell receptors bound to the HLA-
 1073 DQ-gluten complexes have been determined. As a consequence, detailed knowledge is available
 1074 indicating which amino acids in the gluten peptides are responsible for the high-affinity binding to

1075 HLA-DQ and which amino acids mediate the specific interaction with the T cell receptor. Several
1076 publications describing the binding of CD peptides to HLA-DQ molecules are available. The coordinates
1077 of all these structures are available through public databases (Broughton et al 2011; Hensdersen et al
1078 2007, Kim et al 2004; Petersen et al 2014; Petersen et al 2015). As an example, the x-ray coordinates
1079 of HLA-DQ8 bound to a gliadin peptide were deposited in the Protein Data Bank with the accession
1080 number 2NNA. This allows modelling studies in which the gluten peptide can be replaced by any
1081 peptide sequence of choice (Moustakis et al 2000; Wiesner et al 2008; van Heemst et al 2015). It can
1082 be anticipated that, if the selected peptide is likely to bind to HLA-DQ in a way that it resembles the
1083 known structure of gluten peptides bound to HLA-DQ, it might have the capacity to stimulate gluten-
1084 specific T cells (Fig. A1, Wiesner et al 2008). Thus, molecular modelling can be employed to aid the
1085 determination of potential T cell stimulatory properties of peptide sequences.

1086 A non-exhaustive list of selected publications that have reported on HLA-DQ-modelling assays:

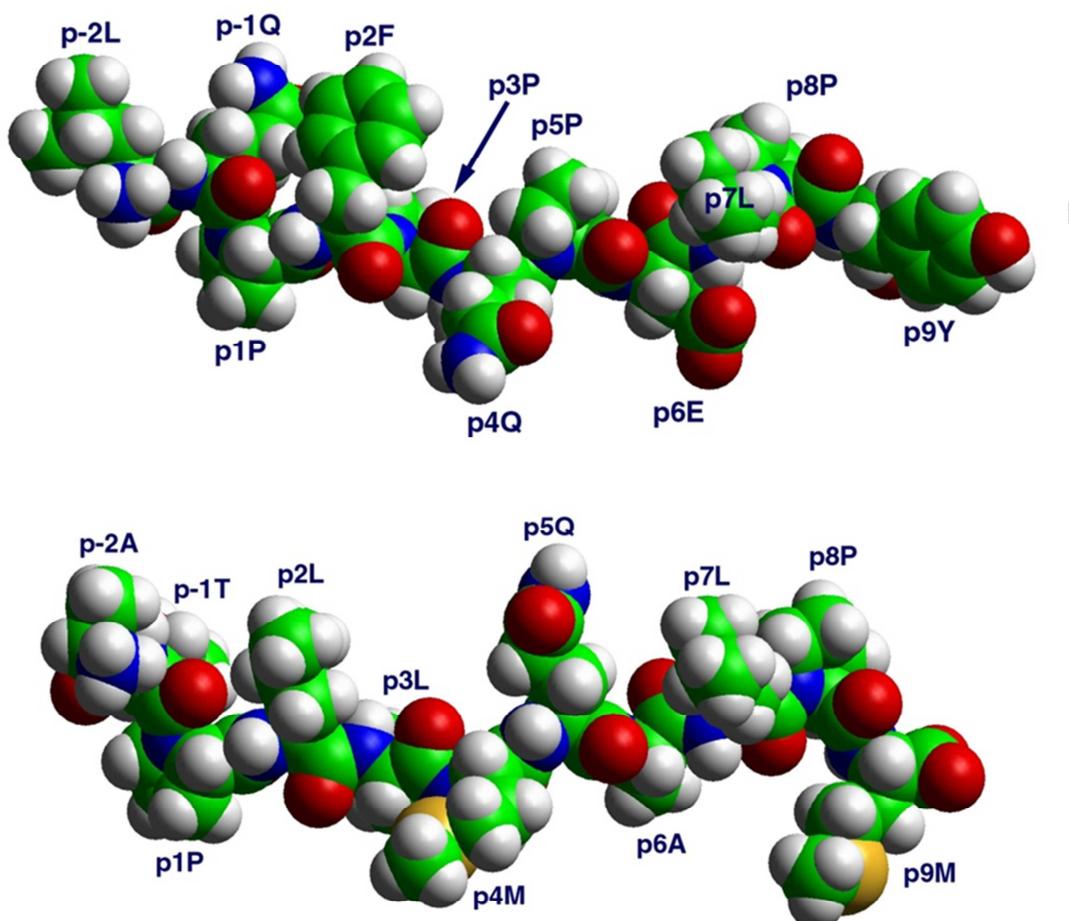
1087 Broughton SE, Petersen J, Theodossis A, Scally SW, Loh KL, Thompson A, van Bergen J, Kooy-
1088 Winkelaar Y, Henderson KN, Beddoe T, Tye-Din JA, Mannering SI, Purcell AW, McCluskey J,
1089 Anderson RP, Koning F, Reid H & Rossjohn J. (2012) Biased T cell receptor usage directed against
1090 human leukocyte antigen DQ8-restricted gliadin peptides is associated with Celiac Disease.
1091 *Immunity* 37: 611-21

1092 Henderson KN, Tye-Din JA, Reid HH, Chen Z, Borg NA, Beissbarth T, Tatham A, Mannering SI, Purcell
1093 AW, Dudek NL, van Heel DA, McCluskey J, Rossjohn J, Anderson RP (2007) A structural and
1094 immunological basis for the role of human leukocyte antigen DQ8 in celiac disease. *Immunity*.
1095 27:23-34

1096 Kim CY, Quarsten H, Bergseng E, Khosla C, Sollid LM (2004) Structural basis for HLA-DQ2-mediated
1097 presentation of gluten epitopes in celiac disease. *Proc Natl Acad Sci U S A* 101:4175-4179

1098 Moustakas AK, van de WY, Routsias J, Kooy YM, Van VP, Drijfhout JW, Koning F, Papadopoulos GK
1099 (2000) Structure of celiac disease-associated HLA-DQ8 and non-associated HLA-DQ9 alleles in
1100 complex with two disease-specific epitopes. *Int. Immunol.* 12:1157-1166

1101 Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M, Thompson A, Mearin ML,
1102 Schweizer J, Kooy-Winkelaar Y, van Bergen J, Drijfhout JW, Kan WT, La Gruta NL, Anderson RP,
1103 Reid HH, Koning F, Rossjohn J. (2014) T-cell receptor recognition of HLA-DQ2-gliadin complexes
1104 associated with celiac disease. *Nat Struct Mol Biol.* 21: 480-8


1105 Petersen J, van Bergen J, Loh K, Kooy-Winkelaar Y, Beringer DX, Thompson A, Bakker SF, Mulder CJ,
1106 Ladell K, McLaren JE, Price DA, Rossjohn J, Reid HH, & Koning F. Determinants of Gliadin-specific T
1107 Cell Selection in Celiac Disease. *J. Immunol* 2015; 194: 6112-22

1108 van Heemst J, Jansen DT, Polydorides S, Moustakas AK, Bax M, Feitsma AL, Bontrop-Elferink DG,
1109 Baarse M, van der Woude D, Wolbink GJ, Rispens T, Koning F, de Vries RR, Papadopoulos GK,
1110 Archontis G, Huizinga TW, Toes RE. Crossreactivity to vinculin and microbes provides a molecular
1111 basis for HLA-based protection against rheumatoid arthritis. *Nat Commun.* 2015 May 5;6:6681.
1112 doi: 10.1038/ncomms7681.

1113 Wiesner M, Stepniak D, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA and
1114 Koning F (2008). Dominance of an alternative CLIP-sequence in the celiac disease associated HLA-
1115 DQ2 molecule. *Immunogenetics* 60: 551-555

1116

1117
1118 Figure A1: Shown is a side view of two peptides, one a gliadin T cell epitope (top panel) while the other is a peptide derived
1119 from a self-antigen (lower panel). The side chains of the amino acids that point downwards anchor the peptide to the HLA-DQ-
1120 molecule, the upward-pointing amino acids can be contacted by the T cell receptor. Even though the peptide share some
1121 sequence similarity (P at p1, L at P7, P at p8, large amino acid at p2) there are several features that are predicted to prohibit a
1122 functional interaction between a gliadin specific T cell receptor and the self-peptide, like an overall different conformation and
1123 the presence of a large amino acids at p5 (Q) instead of the much smaller proline (P) in the gliadin peptide.
1124 (taken from Wiesner et al 2008).

1125
1126

1127 *Annex A-4. Considerations for in vitro digestibility tests*

1128 As specified above and because a nine amino acid core is almost invariably required for efficient
1129 peptide binding to HLA-DQ, proteins that are easily degraded into fragments shorter than 9 amino
1130 acids are unlikely to harbour T cell stimulatory epitopes. Thus, determination of proteolytic resistance
1131 of proteins can aid in the identification of proteins with potential harmful potential. For more details
1132 please see chapter on *in vitro* protein digestibility in this document.

1133 *Annex A-5. Considerations for HLA-DQ peptide binding assays - Non-exhaustive list of publications
1134 that have reported on HLA-DQ-peptide binding assays.*

1135 Ettinger RA, Kwok WW. A peptide binding motif for HLA-DQA1*0102/DQB1*0602, the class II MHC
1136 molecule associated with dominant protection in insulin-dependent diabetes mellitus. *J Immunol.*
1137 1998 Mar 1;160(5):2365-73.

1138 Johansen BH, Gjertsen HA, Vartdal F, Buus S, Thorsby E, Lundin KE, Sollid LM. Binding of peptides
1139 from the N-terminal region of alpha-gliadin to the celiac disease-associated HLA-DQ2 molecule
1140 assessed in biochemical and T cell assays. *Clin Immunol Immunopathol.* 1996 Jun;79(3):288-93.

1141 Johansen BH, Vartdal F, Eriksen JA, Thorsby E, Sollid LM. Identification of a putative motif for binding
1142 of peptides to HLA-DQ2. *Int Immunol.* 1996 Feb;8(2):177-82.

1143 Johansen BH, Jensen T, Thorpe CJ, Vartdal F, Thorsby E, Sollid LM. Both alpha and beta chain
1144 polymorphisms determine the specificity of the disease-associated HLA-DQ2 molecules, with beta
1145 chain residues being most influential. *Immunogenetics.* 1996;45(2):142-50.

1146 Kwok WW, Nepom GT, Raymond FC. HLA-DQ polymorphisms are highly selective for peptide binding
1147 interactions. *J Immunol.* 1995 Sep 1;155(5):2468-76.

1148 Nepom BS, Nepom GT, Coleman M, Kwok WW. Critical contribution of beta chain residue 57 in peptide
1149 binding ability of both HLA-DR and -DQ molecules. *Proc Natl Acad Sci U S A.* 1996 Jul
1150 93(14):7202-6.

1151 Stepniak D, Wiesner M, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA,
1152 Koning F. Large-scale characterization of natural ligands explains the unique gluten-binding
1153 properties of HLA-DQ2. *J Immunol.* 2008 Mar 1;180(5):3268-78.

1154 Straumfors A, Johansen BH, Vartdal F, Sollid LM, Thorsby E, Buus S. A peptide-binding assay for the
1155 disease-associated HLA-DQ8 molecule. *Scand J Immunol.* 1998 Jun;47(6):561-7.

1156 Terreaux C, Walk T, van de Wal Y, Koning F, Jung G, Fleckenstein B. Increased HLA-DQ2-affinity of a
1157 synthetic gliadin peptide by acid-induced deamidation of glutamine residues. *Bioorg Med Chem
1158 Lett.* 1998 Aug 4;8(15):2039-44.

1159 van de Wal Y, Kooy YM, Drijfhout JW, Amons R, Papadopoulos GK, Koning F. Unique peptide binding
1160 characteristics of the disease-associated DQ(alpha 1*0501, beta 1*0201) vs the non-disease-
1161 associated DQ(alpha 1*0201, beta 1*0202) molecule. *Immunogenetics.* 1997;46(6):484-92.

1162 van de Wal Y, Kooy YM, Drijfhout JW, Amons R, Koning F. Peptide binding characteristics of the
1163 coeliac disease-associated DQ(alpha1*0501, beta1*0201) molecule. *Immunogenetics.*
1164 1996;44(4):246-53.

1165 van de Wal Y, Amons R, Koning F. Characterization of HLA-DQ-Specific Peptide-Binding Motifs.
1166 *Methods Mol Med.* 2000;41:97-103.

1167 Vartdal F, Johansen BH, Friede T, Thorpe CJ, Stevanović S, Eriksen JE, Sletten K, Thorsby E,
1168 Rammensee HG, Sollid LM. The peptide binding motif of the disease associated HLA-DQ (alpha 1*
1169 0501, beta 1* 0201) molecule. *Eur J Immunol.* 1996 Nov;26(11):2764-72.

1170 Wiesner M, Stepniak D, de Ru AH, Moustakas AK, Drijfhout JW, Papadopoulos GK, van Veelen PA,
1171 Koning F. Dominance of an alternative CLIP sequence in the celiac disease associated HLA-DQ2
1172 molecule. *Immunogenetics.* 2008 Sep;60(9):551-5.

1173

1174 *Annex A-6. Non-exhaustive list of publications that have reported on gluten-specific T cells*

1175 Anderson RP, Degano P, Godkin AJ, Jewell DP, Hill AV. (2000) In vivo antigen challenge in celiac
1176 disease identifies a single transglutaminase-modified peptide as the dominant A-gliadin T-cell
1177 epitope. *Nat Med.* 2000 6: 337-42

1178 Arentz-Hansen H, Fleckenstein B, Molberg, Scott H, Koning F, Jung G, Roepstorff P, Lundin KE, Sollid
1179 LM (2004) The molecular basis for oat intolerance in patients with celiac disease. *Plos Med.* 1:e1

1180 Arentz-Hansen H, Körner R, Molberg, Quarsten H, Vader W, Kooy YM, Lundin KEA, Koning F,
1181 Roepstorff P, Sollid LM, McAdam SN (2000) The intestinal T cell response to α -gliadin in adult
1182 celiac disease is focused on a single deamidated glutamine targeted by tissue transglutaminase. *J.*
1183 *Exp. Med.* 191:603-612

1184 Molberg, McAdam SN, Körner R, Quarsten H, Kristiansen C, Madsen L, Fugger L, Scott H, Roepstorff P,
1185 Lundin KEA, Sjöström H, Sollid LM (1998) Tissue transglutaminase selectively modifies gliadin
1186 peptides that are recognized by gut-derived T cells. *Nat Med* 4:713-717

1187 Moustakas AK, van de WY, Routsias J, Kooy YM, Van VP, Drijfhout JW, Koning F, Papadopoulos GK
1188 (2000) Structure of celiac disease-associated HLA-DQ8 and non-associated HLA-DQ9 alleles in
1189 complex with two disease-specific epitopes. *Int. Immunol.* 12:1157-1166

1190 Petersen J, Montserrat V, Mujico JR, Loh KL, Beringer DX, van Lummel M, Thompson A, Mearin ML,
1191 Schweizer J, Kooy-Winkelaar Y, van Bergen J, Drijfhout JW, Kan WT, La Gruta NL, Anderson RP,
1192 Reid HH, Koning F, Rossjohn J. (2014) T-cell receptor recognition of HLA-DQ2-gliadin complexes
1193 associated with celiac disease. *Nat Struct Mol Biol.* 21: 480-8.

1194 Quarsten H, Molberg, Fugger L, McAdam SN, Sollid LM (1999) HLA binding and T cell recognition of a
1195 tissue transglutaminase-modified gliadin epitope. *Eur. J. Immunol.* 29:2506-2514

1196 Shan L, Molberg, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for
1197 gluten intolerance in celiac sprue. *Science* 297:2275-2279

1198 Sjöström H, Lundin KEA, Molberg, Körner R, McAdam SN, Anthonsen D, Quarsten H, Noren O,
1199 Roepstorff P, Thorsby E, Sollid LM (1998) Identification of a gliadin T-cell epitope in coeliac
1200 disease: general importance of gliadin deamidation for intestinal T-cell recognition. *Scand. J.*
1201 *Immunol.* 48:111-115

1202 Tollefsen S, Arentz-Hansen H, Fleckenstein B, Molberg, Raki M, Kwok WW, Jung G, Lundin KE, Sollid
1203 LM (2006) HLA-DQ2 and -DQ8 signatures of gluten T cell epitopes in celiac disease. *J Clin Invest*
1204 116:2226-2236

1205 Tye-Din JA, Stewart JA, Dromey JA, Beissbarth T, van Heel DA, Tatham A, Henderson K, Manning
1206 SI, Gianfrani C, Jewell DP, Hill AV, McCluskey J, Rossjohn J, Anderson RP (2010) Comprehensive,
1207 quantitative mapping of T cell epitopes in gluten in celiac disease. *Sci Transl Med* 2:41ra51

1208 Vader LW, de Ru A, van Der WY, Kooy YM, Benckhuijsen W, Mearin ML, Drijfhout JW, van Veelen P,
1209 Koning F (2002a) Specificity of tissue transglutaminase explains cereal toxicity in celiac disease. *J*
1210 *Exp Med* 195:643-649

1211 Vader LW, Stepniak DT, Bunnik EM, Kooy YM, de Haan W, Drijfhout JW, van Veelen PA, Koning F
1212 (2003) Characterization of cereal toxicity for celiac disease patients based on protein homology in
1213 grains. *Gastroenterology* 125:1105-1113

1214 Vader W, Kooy Y, van Veelen P, de Ru A, Harris D, Benckhuijsen W, Pena S, Mearin L, Drijfhout JW,
1215 Koning F (2002b) The gluten response in children with celiac disease is directed toward multiple
1216 gliadin and glutenin peptides. *Gastroenterology* 122:1729-1737

1217 van de Wal Y, Kooy Y, van Veelen P, Pena S, Mearin L, Papadopoulos G, Koning F (1998a) Selective
1218 deamidation by tissue transglutaminase strongly enhances gliadin-specific T cell reactivity. *J*
1219 *Immunol* 161:1585-1588

1220 van de Wal Y, Kooy YM, van Veelen P, Vader W, August SA, Drijfhout JW, Pena SA, Koning F (1999)
1221 Glutenin is involved in the gluten-driven mucosal T cell response. *Eur. J. Immunol.* 29:3133-3139

1222 van de Wal Y, Kooy YM, van Veelen PA, Pena SA, Mearin LM, Molberg, Lundin KEA, Sollid LM, Mutis T,
1223 Benckhuijsen WE, Drijfhout JW, Koning F (1998b) Small intestinal T cells of celiac disease patients
1224 recognize a natural pepsin fragment of gliadin. Proc. Natl. Acad. Sci. U. S. A. 95:10050-10054
1225

PUBLIC CONSULTATION

1226 **Annex B – *In vitro* protein digestibility tests for risk assessment of GM**
1227 **plants**

1228 As specified in Section 2.2 of this document, an interim phase (~2 years duration), with a review
1229 undertaken in the final year is proposed. During this phase the involved laboratories will define and
1230 apply the refined digestion test methodology. After that period, EFSA will discuss whether the test
1231 adds value and, if so, what further steps are needed for its final implementation.

1232 **Principles of *in vitro* protein digestibility tests for risk assessment**

1233 *A) Test conditions:*

1234 i) Material to be used:

1235 With regard to the test protein to be used for the revised/refined *in vitro* digestibility assays, it is
1236 considered important that the test protein comes from the parts of the plant commonly considered as
1237 edible, at present mostly the seeds/grain, since this material will be consumed.

- 1238 • The testing of the newly expressed proteins purified from the edible raw plant material is a
1239 more realistic scenario.
- 1240 • Should strong evidence be provided that the protein cannot be purified from plant material,
1241 use of recombinant protein may be justified. Such recombinant protein should be produced
1242 which displays the same structural, biochemical and functional properties – e.g. post-
1243 translational modifications (glycosylation, phosphorylation, hydroxylation, carboxylation,
1244 disulphide bond formation) as the protein expressed in a plant tissue.

1245 ii) Digestion conditions:

1246 Digestion conditions should be selected based on the range of conditions found *in vivo* and which
1247 encompass the needs of special groups and those receiving medication, such as antacids. The current
1248 document does not specify a set protocol but rather requests that the conditions employed in the
1249 models reflect the different conditions experienced *in vivo*.

1250 Different situations combining low and high pepsin concentrations with low and high pH values could
1251 be performed to potentially cover the range found physiologically (Fig. B1). One set of these
1252 conditions could be the current pepsin test. Different concentrations for proteolytic enzymes and/or
1253 biosurfactants have also been described (Dupont et al., 2010; Mandalari et al., 2009b; Minekus et al.,
1254 2014; Thomas et al., 2004) and they could be considered to be varied in the gastric and intestinal
1255 phases according to the specific situations.

1256 *B) Data interpretation:*

1257 Criteria such as length and persistence of peptides derived from *in vitro* gastrointestinal digestion of
1258 newly expressed proteins will play key roles in identifying potential hazards within the weight-of-
1259 evidence approach for the allergenicity assessment. Using concepts such as “half-life” is a possible
1260 principle to define “transient” and “persistent” peptides. This has been used in other assessments of
1261 the allergenic risk of novel proteins, such as the ice structuring protein (Baderschneider et al 2002).
1262 However, further evidence to support this concept needs to be provided. Figure B2 displays different
1263 example scenarios and possible subsequent data interpretation:

- 1264 • If a protein digest is composed of peptides < 9 amino acid residues in length, the allergenic
1265 potential is low;
- 1266 • If a protein digest is composed of peptides \geq 9 amino acids residues in length but transient,
1267 the allergenic potential can be assumed to be low;
- 1268 • If digestion fragments of \geq 9 amino acids or longer are identified and are persistent, further
1269 considerations are required. In that case, the proportion of the stable peptides \geq 9 amino
1270 acids in length within the whole protein digesta should be considered in the risk assessment
1271 process. If the proportion of the stable peptides \geq 9 amino acids in length is considered to be

1272 significant, further assessment may be requested on a case-by-case basis. This may include
1273 information on the potential of such digestion resistant fragments to interact with the immune
1274 system. For non-IgE-mediated allergic reactions (celiac disease), specific HLA-DQ-peptide
1275 modelling and binding assays, as well as T cell testing are proposed in this document (see
1276 section 2.1 describing *Non-IgE-mediated adverse immune reactions to foods*). For IgE-
1277 mediated allergic reactions, IgE reactivity and formation of immune complexes may depend
1278 on the proximity and number of IgE epitopes (Huby et al., 2000; Gieras et al., 2016).
1279 Therefore, in contrast to T-cell epitopes, the minimum size of peptides which might act as B-
1280 cell receptor epitopes and cause IgE cross-linking is less clear, and will require the presence
1281 of multiple epitopes (at least two) which can only be accommodated in peptides greater than
1282 9 amino acids in length (Harwood et al 2010; Handlogten et al 2013).

1283 Finally, an appropriate exposure assessment, on a case by case basis, is envisaged to allow a more
1284 reliable and accurate allergenicity assessment

1285 **Interim phase for refining the conditions of *in vitro* digestion tests**

1286 *General considerations:*

1287 During the interim phase, an objective measurement of the extent of digestion should provide more
1288 comparable results. This includes the definition of transient and persistent digestion fragments
1289 together with (at least) semi-quantitative assessment of the proportion of such fragments in a digest.
1290 The determination of persistent peptide fragments which are \geq 9 amino acids in length is critical,
1291 since these may indicate that further assessment is required.

1292 *Specific and key considerations:*

1293 A) Digestion model conditions: Since the physiological process of digestion is inherently dynamic,
1294 *in vitro* batch models of digestion inevitably restrict the range of conditions that exist *in vivo*.
1295 To better reflect the range of conditions found *in vivo*, without overly increasing the
1296 complexity of the test, it is proposed that a minimum of two gastrointestinal test conditions
1297 should be used to reflect the range found *in vivo*. The classical pepsin-resistance test could
1298 form one part of this testing scenario, having the added value of providing a comparative data
1299 on digestion resistance of newly expressed proteins. The pH conditions employed in the *in*
1300 *vitro* digestibility tests range from 1.2-4.2 with many using pH conditions of 1.2 or 2.0, the
1301 former based on the simulated gastric fluid conditions detailed in the US Pharmacopeia (1995)
1302 and used for drug dissolution tests. However, intragastric pH conditions found *in vivo* tend
1303 only to go down to around pH 2 towards the end of gastric emptying, and are generally much
1304 higher because of the buffering capacity of many foods (Kalantzi et al., 2006). Concerning
1305 pepsin:protein ratio, many reports only describe it on a (w:w) basis and do not take
1306 differences in enzyme activity into account. However, the two available ring-trialled studies of
1307 digestibility tests for purified proteins used a ratio of 10 U (Thomas et al., 2004) and 0.165 U
1308 (Mandalari et al., 2009b) of pepsin per μ g of tested protein, respectively. With regards the
1309 duration, test material is typically exposed to gastric digestion for 60 min followed by
1310 intestinal digestion for 30-60 min with corresponding intermediate sampling time points
1311 (Mandalari et al., 2009b; Dupont et al., 2010). Different durations of digestion have been
1312 proposed, based on digestion of whole foods (Minekus et al., 2014). Adaptation and
1313 integration of these approaches could be undertaken to provide the conditions to be used in a
1314 refined *in vitro* digestion test.

1315 Although a flexible framework for performing the digestion tests is considered in line with the current
1316 considerations, the following recommendations should ensure consistency between the different
1317 laboratories undertaking the tests:

1318 i) Specification of digestive enzymes (e.g., pepsin and intestinal endoproteases). Source,
1319 purity and specific activities should be determined using standardised protocols. Individual
1320 intestinal enzymes (i.e., trypsin and chymotrypsin) should be prioritised over the use of
1321 pancreatin. In the case of using pancreatin, proteolytic, lipolytic and amylolytic activity of

1322 the extract should be determined and the amount of pancreatin added should be based
1323 on the trypsin activity. The use of brush border enzymes such as
1324 amino/carboxypeptidases could also be considered;

1325 ii) Enzyme concentrations used in digestion tests should be specified and could be based on
1326 those previously used interlaboratory studies performed with purified proteins (Thomas et
1327 al., 2004; Mandalari et al., 2009b);

1328 iii) Different gastric pH values should be specified which reflect those found in infants, adults,
1329 elderly or people with impaired digestive functions;

1330 iv) The addition of bile salts and biosurfactants (phospholipids) at physiologically relevant
1331 levels should be considered.

1332 It is proposed that, at a minimum, two gastrointestinal digestion test conditions should be considered.
1333 These should encompass the most extensive (including the current pepsin test conditions) and the
1334 less extensive digestion conditions, reflective of those found in children or individuals taking antacid
1335 medication.

1336 1.- Low pH / High [pepsin] (these conditions could include those used in the classical pepsin
1337 resistance test) followed by intestinal conditions.

1338 2.- High pH / Low [pepsin] followed by intestinal conditions.

1339 Replication of the *in vitro* digestion experiments should also be implemented to obtain more reliable
1340 and statistically significant results.

1341 B) Control proteins: Digestion studies should be performed including control proteins to
1342 demonstrate the effectiveness of the digestion system employed and allow benchmarking of
1343 different digestion models. The control proteins are not to provide an indication of
1344 allergenicity, but rather reflect the different susceptibilities of proteins to gastrointestinal
1345 digestion.

1346 For proteins to act as appropriate controls in the *in vitro* digestion tests they must be:

1347 1.- Either commercially available, and/or purified in reasonable quantities using published
1348 methods and made available for use by the community (e.g., either as quality control (QC) or
1349 reference materials).

1350 2.- Well characterised with regards their primary sequence, post-translational modifications (if
1351 any) and physicochemical state (e.g. size, oligomerisation, pI, hydrophobicity, ligand
1352 binding/prosthetic group).

1353 3.- Previously subjected to *in vitro* digestion tests allowing their susceptibility to digestion to
1354 be classified as either highly resistant, moderately resistant or labile to the action of digestive
1355 enzymes.

1356 One protein which meets these criteria, has been extensively tested in digestion tests and was found
1357 to be extremely resistant to gastric digestion is bovine β -lactoglobulin (Reddy et al., 1988; Schmidt et
1358 al., 1995; Astwood et al., 1996; Yagami et al., 2000; Fu et al., 2002; Takagi et al., 2003; Thomas et
1359 al., 2004; Sanz et al., 2007; Herman et al., 2007; Lucas et al., 2008; Ofori-Anti et al., 2008;
1360 Macierzanka et al., 2009; Mandalari et al. 2009a, 2009b; Misra et al., 2009; Dupont et al., 2010;
1361 Zheng et al., 2010; Bogh et al., 2013). β -lactoglobulin has also been reported to be relatively stable
1362 under gastrointestinal digestion conditions (Mandalari et al. 2009a, 2009b; Dupont et al., 2010; Borgh
1363 et al., 2013). On the other hand, phosphofructokinase and/or sucrose synthetase could also be
1364 recommended as control proteins because both enzymes have been described to be rapidly digested
1365 under simulated gastric (Astwood et al., 1996; Fu et al., 2002) and intestinal conditions (Fu et al.,
1366 2002).

1367 C) Digestion end-points and read-out considerations: The terms "persistent" and "transient" are
1368 used for classification of proteins and peptides with different kinetic behaviour and for
1369 fragments in relation to their rate of formation as well as their rate of further degradation.

1370 Kinetic studies are funded on following the time course of a reaction or process and hence
1371 there is a necessity for the digestion tests to take the form of time-course experiments.
1372 Consequently, sampling should be undertaken at various time points during the gastric and
1373 intestinal digestion steps, to allow the evolution of peptide fragments to be monitored.
1374 Sampling time points should be selected which are appropriate and will allow transient and
1375 persistent peptides to be distinguished based on kinetic parameters.

1376 Standardised methodology for monitoring protein digestion needs to be used which is suitable for
1377 profiling of both large resistant fragments and lower molecular weight peptides of ~1,000 Da (the
1378 average mass of a 9 residue peptide fragment). Techniques should also allow at least semi-
1379 quantitative profiling of residual intact protein and digestion products. Traditionally, protein
1380 digestibility has been measured using SDS-PAGE. However, whilst providing valuable data especially
1381 for intact proteins and large resistant fragments, this technique is essentially qualitative in nature, can
1382 provide inconsistent results between laboratories and is not an appropriate technique to carry out
1383 reliable quantification of peptide fragments. Tandem mass spectrometry, even with caveats with
1384 regards peptide ionisation efficiency, is a more effective tool to carry out a comprehensive peptide
1385 mapping of digesta and identify stable digestion fragments ≥ 9 amino acids in length. Since at present
1386 no single methodology can readily characterise the digestion of both proteins and peptides effectively,
1387 a combination of the best available methodology, such as SDS-PAGE and mass spectrometry, should
1388 be used. These techniques can provide at least a semi-quantitative output of digestion following
1389 disappearance of the intact protein and appearance of digestion resistant fragments.

1390 Replicate analysis should be undertaken using two biological replicates (i.e. digestion tests) being
1391 analysed in duplicate, which is considered the minimum. Best laboratory practice should be addressed
1392 for any methodology such as use of standards, use of appropriate protein stains able to provide a
1393 broad dynamic range and stain many proteins, molecular weight markers (SDS-PAGE) or internal
1394 peptide standards spanning range of masses (mass spectrometry).

1395 Special attention should be paid to the pre-treatment of the digesta before analysis (e.g., avoidance of
1396 reducing conditions or derivatization of the sulphydryl groups of cysteine residues, if possible) to
1397 remain as close as possible to physiological conditions. It is necessary to not only take the presence of
1398 covalent linkages (such as disulphide bridges) into account, but also non-covalent interactions, which
1399 may lead to smaller peptides assembling to complexes of higher molecular weight and size.

1400 D) Classification of digestion resistant proteins/peptides: A consensus definition of transient and
1401 persistent proteins and peptides is required that can apply to the different *in vitro* digestion
1402 test conditions. Control proteins accepted to be highly resistant, moderately resistant and
1403 highly digestible could be used to support development of such a definition. To do that, two
1404 approaches (individually or in combination) based on the objective measurement of the extent
1405 of digestion could be explored:

1406 - The half-life of the intact protein and resulting peptide fragments could be determined
1407 and used to establish definitions of transient and resistant peptides (Shan et al., 2002;
1408 Baderschneider et al., 2002, Herman et al., 2007; Ofori-Anti et al., 2008; Macierzanka et
1409 al., 2009; Defernez et al., 2010; Yao et al., 2013; Smith et al., 2015).
1410 and/or

1411 - Based on the mass spectrometric/gel electrophoresis detection/visualisation of any
1412 peptide generated throughout the digestion monitoring (performed at every sample
1413 point). In this case, there is no need of peptide quantification (only its constant detection
1414 and/or visualisation). Factors to be considered for persistence: i) detection/visualisation of
1415 the target peptide(s) in at least two sampling points (that is, constant mass/band) and ii)
1416 detection/visualisation of the target peptide(s) in the intestinal phase.

1418 References

1419 Astwood JD, Leach JN & Fuchs RL (1996) Stability of food allergens to digestion in vitro. *Nat*
1420 *Biotechnol* 14, 1269–1273.

1421 Baderschneider B, Crevel RW, Earl LK, Lalljie A, Sanders DJ, Sanders IJ (2002) Sequence analysis and
1422 resistance to pepsin hydrolysis as part of an assessment of the potential allergenicity of ice
1423 structuring protein type II HPLC 12. *Food Chem Toxicol.* 40: 965-78.

1424 Blanquet S, Marol-Bonnin S, Beyssac E, Pompon D, Renaud M, Alric M (2001) The 'biodrug' concept:
1425 an innovative approach to therapy. *Trends Biotechnol* 19, 393-400.

1426 Bogh KL, Barkholt V, Madsen CB (2013) The sensitising capacity of intact β -lactoglobulin is reduced by
1427 co-administration with digested β -lactoglobulin. *Int. Arch. Allergy Immunol.* 161:21-36.

1428 Defernez M, Mandalari G, Mills ENC (2010) Quantitative assessment of multi-laboratory reproducibility
1429 of SDS-PAGE assays: Digestion pattern of beta-casein and beta-lactoglobulin under simulated
1430 conditions. *Electrophoresis* 31:2838-2848.

1431 Dupont D, Mandalari G, Mollé D, Jardin J, Rolet-Répécaud O, Duboz G, Léonil J, Mills ENC, Mackie AR
1432 (2010) Food processing increases casein resistance to simulated infant digestion. *Mol Nutr Food*
1433 *Res* 54, 1677-1689.

1434 Fu T-J, Abbott UR, Hatzos C (2002) Digestibility of food allergens and nonallergenic proteins in
1435 simulated gastric fluid and simulated intestinal fluid. A comparative study. *J Agric Food Chem* 50,
1436 7154-7160.

1437 Gieras A, Linhart B, Roux KH, Dutta M, Khodoun M, Zafred D, Cabauatan CR, Lupinek C, Weber M,
1438 Focke-Tejkl M, Keller W, Finkelman FD, Valenta R (2016) IgE epitope proximity determines
1439 immune complex shape and effector cell activation capacity. *J Allergy Clin Immunol.* 137: 1557-65.

1440 Harwood NE, Batista FD (2010) Early events in B cell activation. *Annu Rev Immunol.* 28: 185-210.

1441 Handlogten MW, Kiziltepe T, Serezani AP, Kaplan MH, Bilgicer B (2013) Inhibition of weak-affinity
1442 epitope-IgE interactions prevents mast cell degranulation. *Nat Chem Biol.* 9: 789-95.

1443 Herman RA, Woolhiser MM, Ladics GS, Korjagin VA, Schafer BW, Storer NP, Green SB, Kan L (2007)
1444 Stability of a set of allergens and non-allergens in simulated gastric fluid. *Int J Food Sci Nutr* 58,
1445 125-141.

1446 Huby RD, Dearman RJ, Kimber I (2000) Why are some proteins allergens? *Toxicol Sci.* 55: 235-46.

1447 Kalantzi L, Goumas K, Kalioras V, Abrahamsson B, Dressman JB, Reppas C (2006) Characterization of
1448 the human upper gastrointestinal contents under conditions simulating
1449 bioavailability/bioequivalence studies. *Pharm Res.* 23, 165-76.

1450 Lucas JS, Cochrane SA, Warner JO, Hourihane JO (2008) The effect of digestion and pH on the
1451 allergenicity of kiwifruit proteins. *Pediatr. Allergy Immunol.* 19:392-398.

1452 Macierzanka A, Sancho AI, Mills ENC, Rigby NM, Mackie AR (2009) Emulsification alters simulated
1453 gastrointestinal proteolysis of β -casein and β -lactoglobulin. *Soft Matter* 5, 538-550.

1454 Mandalari G, Mackie AR, Rigby NM, Wickham MSJ, Mills ENC (2009a) Physiological phosphatidylcholine
1455 protects bovine β -lactoglobulin from simulated gastrointestinal proteolysis. *Mol Nutr Food Res* 53,
1456 S131-S139.

1457 Mandalari G, Adel-Patient K, Barkholt V, Baro C, Bennett L, Bublin M, Gaier S, Graser G, Ladics GS,
1458 Mierzejewska D, Vassilopoulou E, Vissers YM, Zuidmeer L, Rigby NM, Salt LJ, Defernez M,
1459 Mulholland F, Mackie AR, Wickham MS, Mills ENC. (2009b) In vitro digestibility of β -casein and β -
1460 lactoglobulin under simulated human gastric and duodenal conditions: a multi-laboratory
1461 evaluation. *Regul Toxicol Pharmacol* 55, 372-381.

1462 Mercuri A, Passalacqua A, Wickham MS, Faulks RM, Craig DQ, Barker SA (2011) The effect of
1463 composition and gastric conditions on the self-emulsification process of ibuprofen-loaded self-

1464 emulsifying drug delivery systems: a microscopic and dynamic gastric model study. *Pharm Res* 28,
1465 1540-1551.

1466 Minekus M, Alminger M, Alvito P, Ballance S, Bohn T, Bourlieu C, Carrière F, Boutrou R, Corredig M,
1467 Dupont D, Dufour C, Egger L, Golding M, Karakaya S, Kirkhus B, Le Feunteun S, Lesmes U,
1468 Macierzanka A, Mackie A, Marze S, McClements DJ, Ménard O, Recio I, Santos CN, Singh RP,
1469 Vegerud GE, Wickham MS, Weitschies W, Brodkorb A (2014) A standardised static in vitro digestion
1470 method suitable for food - an international consensus. *Food Funct* 5, 1113-1124.

1471 Misra A, Prasad R, Das M, Dwivedi PD (2009) Probing novel allergenic proteins of commonly
1472 consumed legumes. *Immunopharmacol. Immunotoxicol.* 31:186-194.

1473 Ofori-Anti AO, Ariyarthra H, Chen L, Lee HL, Pramod SN, Goodman RE (2008) Establishing objective
1474 detection limits for the pepsin digestion assay used in the assessment of genetically modified
1475 foods. *Regul. Toxicol. Pharmacol.* 52: 94-103.

1476 Reddy IM, Kella NKD, Kinsella JE (1988) Structural and conformational basis of the resistance of beta-
1477 lactoglobulin to peptic and chymotrypsin digestion. *J. Agric. Food Chem.* 36:737-741.

1478 Sanz ML, Corzo-Martinez M, Rastall RA, Olano A, Moreno FJ (2007) Characterization and in vitro
1479 digestibility of bovine β -lactoglobulin glycated with galactooligosaccharides. *J. Agric. Food Chem.*
1480 55:7916-7925.

1481 Schmidt DG, Meijer RJ, Slangen CJ, van Beresteijn EC (1995) Raising the pH of the pepsin-catalysed
1482 hydrolysis of bovine whey proteins increases the antigenicity of the hydrolysates. *Clin. Exp. Allergy*
1483 25:1007-1017.

1484 Shan L, Molberg O, Parrot I, Hausch F, Filiz F, Gray GM, Sollid LM, Khosla C (2002) Structural basis for
1485 gluten intolerance in celiac sprue. *Science* 297, 2275-2279.

1486 Smith F, Pan X, Bellido V, Toole GA, Gates FK, Wickham MS, Shewry PR, Bakalis S, Padfield P, Mills
1487 ENC (2015) Digestibility of gluten proteins is reduced by baking and enhanced by starch digestion.
1488 *Mol Nutr Food Res* 59, 2034-2043.

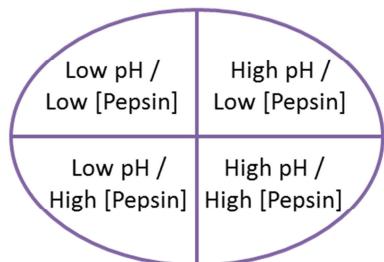
1489 Takagi K, Teshima R, Okunuki H, Sawada J (2003) Comparative study of in vitro digestibility of food
1490 proteins and effect of preheating on the digestion. *Biol. Pharm. Bull.* 26:969-973.

1491 Thomas K, Aalbers M, Bannon GA, Bartels M, Dearman RJ, Esdaile DJ, Fu TJ, Glatt CM, Hadfield N,
1492 Hatzos C, Hefle SL, Heylings JR, Goodman RE, Henry B, Herouet C, Holsapple M, Ladics GS, Landry
1493 TD, MacIntosh SC, Rice EA, Privalle LS, Steiner HY, Teshima R, Van Ree R, Woolhiser M, Zawodny
1494 J (2004) A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in
1495 assessing the safety of novel proteins. *Regul Toxicol Pharmacol* 39, 87-98.

1496 USP (1995). Simulated gastric fluid and simulated intestinal fluid. In: The United States Pharmacopeia
1497 23, The National Formulary 18. Rockville, MD: United States Pharmacopeial Convention, Inc.;
1498 1995. p. 2053.

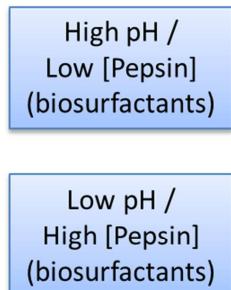
1499 Yagami T, Haishima Y, Nakamura A, Osuna H, Ikezawa Z (2000) Digestibility of allergens extracted
1500 from natural rubber latex and vegetable foods. *J. Allergy Clin. Immunol.* 106:752-762.

1501 Yao X, Bunt C, Cornish J, Quek SY, Wen J (2013) Improved RP-HPLC method for determination of
1502 bovine lactoferrin and its proteolytic degradation in simulated gastrointestinal fluids. *Biomed.*
1503 *Chromatogr.* 27:197-202.


1504 Zheng C, Liu Y, Zhou Q, Di X (2010) Capillary electrophoresis with noncovalently bilayer-coated
1505 capillaries for stability study of allergenic proteins in simulated gastrointestinal fluids. *J.*
1506 *Chromatogr. B Analyt. Technol. Biomed. Life Sci.* 878:2933-2936.

1507

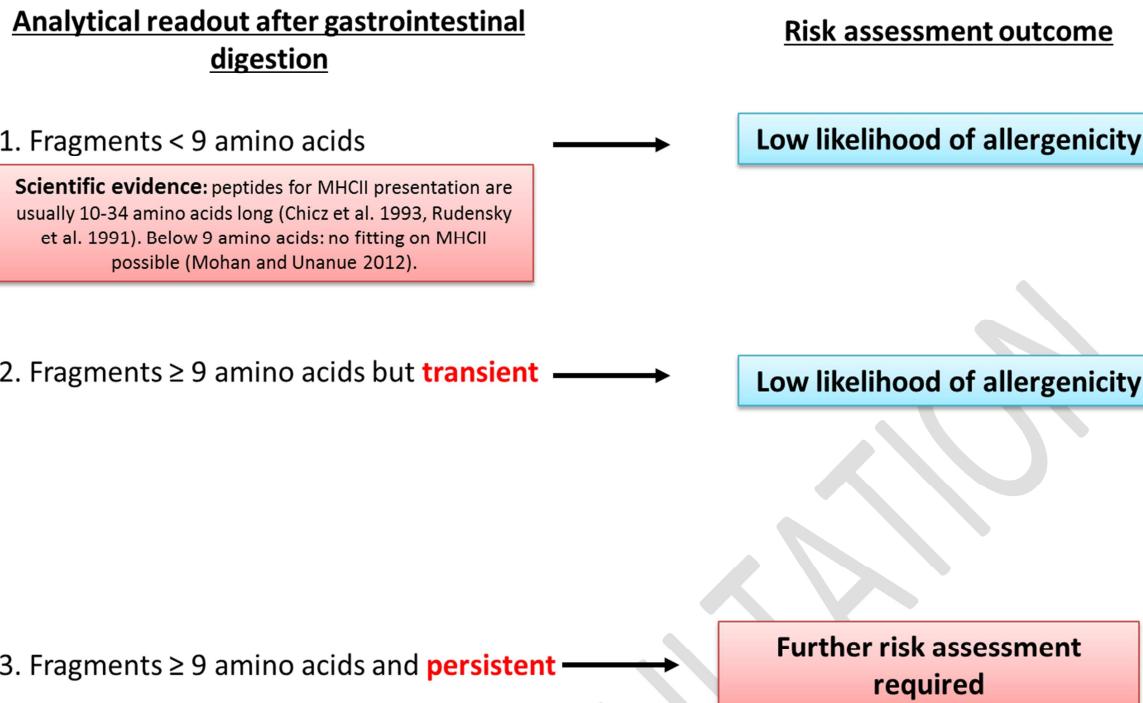
1508
1509**Figure B1.** Illustrative examples of *in vitro* gastrointestinal test conditions and proposed gastric conditions.


Examples for test conditions – digestion conditions

Possible gastric conditions:

Elderly/adults in fasted state
Elderly/adults in fed state
People with impaired gastric function
People taking antacids
Infants

Proposed gastric conditions:



Examples: Blanquet et al. 2001, Dupont et al. 2010, Moreno et al. 2005, Mandalari et al. 2008, Mandalari et al. 2009b, Mercuri et al. 2011, Minekus et al. 2014

1510

1511

1512

1513
1514**Figure B2.** Example of possible scenarios resulting from the *in vitro* digestibility tests and subsequent data interpretation.

1515

1516

1517 Annex C – Endogenous allergenicity**1518 Annex C-1. History of endogenous allergenicity assessments**

1519 Scientific Opinions including an assessment of endogenous allergenicity have been published by the
1520 EFSA GMO panel (e.g. EFSA, 2007, 2011, 2015). Historically, the assessment was carried out using
1521 sera from allergic individuals, e.g. using 2D gel electrophoresis (immunoblot) in combination with spot
1522 quantification. More recently however, novel absolute quantification methods have been developed
1523 and applicants employed those in the latest applications submitted to EFSA. Until now and considering
1524 the EFSA GMO Panel Scientific Opinions published, no significant qualitative or quantitative change in
1525 the allergen repertoire has been observed in the GM plants assessed. So far it was concluded that
1526 there was no evidence that the genetic modification might significantly change the overall allergenicity
1527 of the GM plant when compared with that of its conventional counterpart.

1528 Annex C-2. Possible approach for selection of soybean allergens to be analysed

1529 The OECD list of "potential allergens" (Table 20 of OECD, 2012) which is based on allergens listed in
1530 the WHO/IUIS database (2011 www.allergen.org) and a review (L'Hocine and Boyne 2007) was taken
1531 as a basis, and further complemented with the updated WHO/IUIS-, as well as other allergen
1532 databases, including the FAARP allergen database of the University of Nebraska-Lincoln
1533 (www.allergenonline.org) and Allergome (<http://allergome.org/>). Sequence information was
1534 additionally reviewed using the NCBI and Uniprot databases. Other allergen databases, listed in EFSA
1535 2010 scientific opinion (EFSA, 2010), were considered, but not screened in detail since they did not
1536 provide any additional information or were no longer available.

1537 Using these sources, data on individual "potential allergens" and on the allergic individuals tested
1538 were retrieved. Furthermore, evidence was collected connecting clinical reactivity to total soy
1539 preparations with data on specific allergens, as well as possible clinical reactions to single purified
1540 allergens (either isolated from the plant or produced as recombinant allergens). To date, clinical data
1541 for soy allergy have been obtained by double blind placebo controlled food challenge (DBPCFC) using
1542 whole soybean protein extract or soy flour (Ballmer-Weber et al. 2007), while only little clinical
1543 research is available for single proteins and it is mostly restricted to component resolved diagnostics
1544 (Tuano and Davis 2015). The available information retrieved on the soybean "potential allergens" can
1545 be found in Table C1.

1546 It is challenging to unequivocally connect clinical data obtained on soy extracts by DBPCFC with
1547 reactivity to single proteins. In this particular example, taking the information collected for Table C1 as
1548 starting point and following the strategy proposed above, defined criteria were applied for a possible
1549 selection of relevant allergens. WHO/IUIS defines criteria that a protein should meet to be included in
1550 the allergen list. Primary criteria to include a protein among the allergens in the WHO/IUIS database
1551 are i) a minimum of 5 sera from allergic individuals (allergic to the allergen source in question) have
1552 to contain IgE which binds to the protein in question, or ii) at least 5% of the allergic individuals' sera
1553 tested react with the allergen in question by IgE binding. It is noteworthy that WHO/IUIS was the
1554 main basis for listing allergens in the OECD document on soybean. WHO/IUIS is also mentioned as a
1555 key reference for listing allergens in the EFSA NDA Panel opinion on food allergens (See section 8 of
1556 EFSA NDA Panel opinion 2014). WHO/IUIS committee meetings deciding on the inclusion of a new
1557 allergen are held in the frame of EAACI and AAAAI international allergy meetings. It is noted that
1558 since an application has to be filed in order to include a protein into the WHO/IUIS database, not all
1559 proteins potentially fulfilling the requirements are included in the current database. In our example
1560 approach following the current WHO/IUIS criteria, the following allergens listed in Table C1 are also
1561 part of the WHO/IUIS database and should be measured accordingly: Gly m 1, Gly m 2, Gly m 3, Gly
1562 m 4, Gly m 5, Gly m 6, Gly m 7 and Gly m 8. Out of these, Gly m 2 can currently not be measured
1563 since the sequence is unknown. The following potential allergens fulfil the primary WHO/IUIS criteria
1564 of required tested allergic individuals, but did not undergo an expert peer-review by the committee of
1565 WHO/IUIS: Gly m Bd 28 K, Gly m Bd 30 K, soybean lectin, lipoxygenase, Kunitz trypsin inhibitor and
1566 Gly m 50 KD. Out of these proteins, for Gly m Bd 28 K, Gly m Bd 30 K and Kunitz trypsin inhibitor
1567 considerable peer-reviewed literature is available and endogenous allergenicity measurement was

1568 previously suggested by other scientists (Ladics et al. 2014). In contrast, for soybean lectin and
1569 lipoxygenase, evidence for involvement in soy allergy is more scarce and further revision by an
1570 independent expert panel is suggested. Gly m 50KD is currently not measurable since the sequence is
1571 unknown. The other listed proteins, Gly m 39KD, P22-25, Gly m CPI, Gly m EAP and the “unknown
1572 possible allergen” currently do not fulfil the primary WHO/IUIS criteria and measurement would
1573 therefore not be performed at the current time. However, more evidence might be available in the
1574 future. It should be noted that the above stated considerations i) might be incomplete and ii) cannot
1575 exclude a revision of the progress in science at any time in the future, which might considerably
1576 change the potential allergens suitable for assessment.

1577 Even though food allergy to soybean is known in animals (Suto 2015, Kang 2014) it is noted that only
1578 little data is available on relevant individual soybean allergens in animals. However, certain proteins
1579 known to cause soybean allergy in humans (e.g. Gly m 5, Gly m 6) were also causing reactions in
1580 calves, piglets, dogs and other animals (Taliercio 2014, Lalles 1996, Dreau 1994).

1581 *Annex C-3. Methodology*

1582 As described, it is not recommended to use polyclonal antisera of animals raised against whole soy
1583 extract. It should be considered that limited immunogenicity of some allergens as well as restricted
1584 specificity, affinity and concentration of the antibodies present in serum samples might lead to over-
1585 or underrepresentation of some allergens, and some might not even be detected at all.

1586 Helpful mass spectrometry protocols for the assessment of endogenous allergenicity of soybean have
1587 been developed for some potential allergen molecules (Kuppannan 2014, Stevenson 2012, Houston
1588 2011). Further development and standardisation of protocols is encouraged, including analysis of all
1589 allergens posing a potential risk.

1590 *Annex C-4. Data interpretation and risk assessment considerations*

1591 According to IR503/2013, after comparison to a conventional counterpart within the comparative
1592 analysis, natural variability is currently considered the main tool to identify significant and potential
1593 relevant changes in allergen content. The European Commission clarified this issue further⁴.

1594 Currently, the experimental field design of an application for comparative compositional analysis
1595 requires at least six non-GM reference commercial varieties - the selection of which should be justified
1596 according to defined criteria (see Section 1.3.2 of IR503/2013). These varieties are used to estimate
1597 the overall natural variability to which consumers are routinely exposed. The application of such an
1598 approach allows an objective comparative evaluation independently of the absolute content of
1599 endogenous allergens ensuring a high degree of protection for consumers.

1600 It is recognised that the natural variability of any given endogenous allergen content estimated from
1601 the reference commercial varieties, even if appropriately selected, may not capture the full range of
1602 its variability, which is currently unknown. Further efforts in such respect are encouraged, as
1603 described in Section 2.3.3.

1604 Finally, specific considerations associated with the particular allergenic risk have to be taken into
1605 account. As an example, it could be considered:

- 1606 • Exposure considerations to a certain allergen might be taken into account as a last step in the
1607 risk assessment process with particular interest in understanding levels of allergens in foods
1608 derived from soybean varieties consumed in Europe by humans and animals at a given time;
- 1609 • Efforts to reduce the uncertainty could be anticipated according to considerations based on
1610 the single allergen in question for which enhanced allergen content has been encountered and
1611 for which there is a potential increase in allergenicity to be communicated to risk managers.
1612 The relevance of increase might be evaluated with the help of clinicians, concerning a) the

⁴ Letter from European Commission to EuropaBio (Ref. SANCO/EI/SP/mb sanco.ddg2.e.l(2014)l 140685) where it was clarified that “allergens included in the compositional analysis should be treated as any other compound meaning that allergens in the reference varieties included in the assessment should also be analysed (so that an equivalence test as well as a different test can be performed)”.

1613 magnitude of the increase, b) the potency of the increased potential allergen in question, c)
1614 the overall percentage of the allergen in the non-GM crop and the consequent possible impact
1615 of an increase, d) the route how the allergen is encountered by the allergic individual, e) how
1616 frequent the potential allergen in question is present in various products;

1617 • Depending on the level of uncertainties identified and, in the case of need, an allergenicity
1618 comparison of a GM plant versus its appropriate comparator might be carried out by DBPCFC.
1619 This would imply to perform a clinical study comparing the reactivity of selected allergic
1620 individuals to the varieties under assessment. Therefore, well-characterised allergic individuals
1621 reacting with the allergen in question would have to be challenged;

1622 • As a future perspective, the probability of elicitation of an allergic reaction might be further
1623 investigated with the help of dose-distribution curves (Ballmer-Weber 2015) obtained by
1624 DBPCFC to single allergens (Kinaciyan 2016) and with reference values (e.g., threshold of
1625 elicitation) more precisely evaluated.

PUBLIC CONSULTATION

1626

References

1627 Ballmer-Weber BK, Holzhauser T, Scibilia J, Mittag D, Zisa G, Ortolani C, Oesterballe M, Poulsen LK,
1628 Vieths S, Bindslev-Jensen C, 2007. Clinical characteristics of soybean allergy in Europe: a double-
1629 blind, placebo-controlled food challenge study. *Journal of Allergy and Clinical Immunology*, 119,
1630 1489-96.

1631 Ballmer-Weber, B.K., Fernandez-Rivas, M., Beyer, K., Defernez, M., Sperrin, M., Mackie, A.R., Salt,
1632 L.J., Hourihane, J.O., Asero, R., Belohlavkova, S., Kowalski, M., de Blay, F., Papadopoulos, N.G.,
1633 Clausen, M., Knulst, A.C., Roberts, G., Popov, T., Sprikkelman, A.B., Dubakiene, R., Vieths, S., van
1634 Ree, R., Crevel, R., Mills, E.N., 2015. How much is too much? Threshold dose distributions for 5
1635 food allergens. *Journal of Allergy and Clinical Immunology* 135, 964-971.

1636 Dreau D, Lalles JP, Philouze-Rome V, Toullec R and Salmon H, 1994. Local and systemic immune
1637 responses to soybean protein ingestion in early-weaned pigs. *Journal of Animal Science*, 72, 2090-
1638 8.

1639 EC, 2013. Commission Implementing Regulation (EU) No. 503/2013 of 3 April 2013 on applications for
1640 authorisation of genetically modified food and feed in accordance with Regulation (EC) No.
1641 1829/2003 of the European Parliament and of the Council and amending Commission Regulations
1642 (EC) No. 641/2004 and (EC) No. 1981/2006. *Off. J. Eur. Union* L157, 1-48.

1643 EFSA Panel on Genetically Modified Organisms (GMO), 2010. Scientific Opinion on the assessment of
1644 allergenicity of GM plants and microorganisms and derived food and feed. *EFSA Journal* 2010;
1645 8(7):1700. [168 pp.]. doi:10.2903/j.efsa.2010.1700.

1646 EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms), 2007. Opinion of the Scientific
1647 Panel on genetically modified organisms (GMO) on an application (Reference EFSA-GMO-NL-2005-
1648 18) for the placing on the market of the glufosinate tolerant soybean A2704-12, for food and feed
1649 uses, import and processing under Regulation (EC) No 1829/2003 from Bayer CropScience.
1650 doi:10.2903/j.efsa.2007.524.

1651 EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms), 2011. Scientific Opinion on
1652 application (EFSA-GMO-UK-2007-43) for the placing on the market of herbicide tolerant genetically
1653 modified soybean 356043 for food and feed uses, import and processing under Regulation (EC) No
1654 1829/2003 from Pioneer. *EFSA Journal* 2011;9(7):2310, 40 pp. doi:10.2903/j.efsa.2011.2310.

1655 EFSA GMO Panel (EFSA Panel on Genetically Modified Organisms), 2015. Scientific Opinion on
1656 application (EFSA-GMO-NL-2012-108) for the placing on the market of the herbicide-tolerant
1657 genetically modified soybean MON 87708 × MON 89788 for food and feed uses, import and
1658 processing under Regulation (EC) No 1829/2003 from. *EFSA Journal* 2015;13(6):4136, 26 pp.
1659 doi:10.2903/j.efsa.2015.4136.

1660 EFSA NDA Panel (EFSA Panel on Dietetic Products, Nutrition and Allergies), 2014. Scientific Opinion on
1661 the evaluation of allergenic foods and food ingredients for labelling purposes. *EFSA Journal*
1662 2014;12(11):3894, 286 pp. doi:10.2903/j.efsa.2014.3894

1663 Houston, N.L., Lee, D., Stevenson, S.E., Ladics, G.S., Bannon, G.A., McClain, S., Privalle,L., Stagg, N.,
1664 Herouet-Guicheney, C., MacIntosh, S.D., Thelen, J.J., 2011. Quantitation of soybean allergens
1665 using tandem mass spectrometry. *Journal of Proteome Research* 10, 763-773.

1666 Kang M.H., Kim H.J., Jang H.J., Park H.M., 2014. Sensitization rates of causative allergens for dogs
1667 with atopic dermatitis: detection of canine allergen-specific IgE. *Journal of Veterinary Sciences* 15,
1668 545-550.

1669 Kinaciyan, T., Nagl, B., Faustmann, S., Kopp, S., Wolkersdorfer, M., Bohle, B., 2016. Recombinant Mal
1670 d 1 facilitates sublingual challenge tests of birch pollen-allergic patients with apple allergy. *Allergy*
1671 71, 272-274.

1672 Kuppannan, K., Julka, S., Karnoup, A., Dielman, D., Schafer, B., 2014. 2DLC-UV/MS assay for the
1673 simultaneous quantification of intact soybean allergens Gly m 4 and hydrophobic protein from
1674 soybean (HPS). *Journal of Agricultural and Food Chemistry* 62, 4884-4892.

1675 Ladics, G.S., Budziszewski, G.J., Herman, R.A., Herouet-Guicheney, C., Joshi, S., Lipscomb, E.A.,
1676 McClain, S., Ward, J.M., 2014. Measurement of endogenous allergens in genetically modified
1677 soybeans--short communication. *Regulatory Toxicology and Pharmacology* 70, 75-79.

1678 Lalle JP and Peltre G, 1996. Biochemical features of grain legume allergens in humans and animals.
1679 Nutrition Reviews, 54, 101-107.L'Hocine L and Boye JI, 2007. Allergenicity of soybean: new
1680 developments in identification of allergenic proteins, cross-reactivities and hypoallergenization
1681 technologies. *Critical Reviews in Food Science and Nutrition*, 47, 127-143.

1682 OECD, 2012. Revised consensus document on compositional considerations for new 452 varieties of
1683 soybean [Glycine max (L.) Merr.]: key food and feed nutrients, 453 antinutrients, toxicants and
1684 allergens. Series on the Safety of Novel Foods and 454 Feeds No. 25.

1685 Suto A, Suto Y, Onahara N, Tomizawa Y, Yamamoto-Sugawara Y, Okayama T, Masuda K, 2015. Food
1686 allergens inducing a lymphocyte-mediated immunological reaction in canine atopic-like dermatitis.
1687 *The Journal of Veterinary Medical Science*. 77, 251-254.

1688 Stevenson, S.E., Woods, C.A., Hong, B., Kong, X., Thelen, J.J., Ladics, G.S., 2012. Environmental
1689 effects on allergen levels in commercially grown non-genetically modified soybeans> assessing
1690 variation across North America. *Frontiers in Plant Science* 3, 1-13.

1691 Taliercio E, Loveless TM, Turano MJ Kim SW, 2014. Identification of epitopes of the beta subunit of
1692 soybean beta-conglycinin that are antigenic in pigs, dogs, rabbits and fish. *Journal of the Science
1693 of Food and Agriculture*, 94, 2289-2294.

1694 Tuano KS and Davis CM, 2015. Utility of Component-Resolved Diagnostics in Food Allergy. *Current
1695 Allergy and Asthma Reports*, 15, 32.