

SCIENTIFIC OPINION

Guidance on the establishment of the residue definition for dietary risk assessment¹

EFSA Panel on Plant Protection Products and their Residues (PPR)^{2, 3}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

This guidance is intended to harmonise the process for the establishment of the residue definition for dietary risk assessment by inclusion/exclusion of residues on the basis of their toxicity and the potential for exposure in the diet. The guidance provides a practical instrument including a combination of scientific tools ((Q)SAR, read across, TTC) and criteria for identification of residues for which hazard identification and characterisation is needed, to characterise pesticide metabolites and to define compounds that should be included in the residue definition for dietary risk assessment. It is proposed to make use of all information available, including mechanistic understanding, in order to support the decision process and to enable the risk assessors to provide the risk manager with detailed information on toxicity and exposure of every single metabolite as well as on the uncertainties connected to the proposal. The guidance document is complemented by three practical case studies which are intended to demonstrate the applicability of the proposed decision scheme.

© European Food Safety Authority, 2016

KEY WORDS

Pesticide, residue definition, dietary risk assessment, (Q)SAR, read across, TTC, metabolite

¹ On request from EFSA, Question No EFSA-Q-2013-01001, adopted on DD Month YYYY

² Panel members: Paulien Adriaanse, Theodorus Brock, Philippe Berny, Sabine Duquesne, Sandro Grilli, Antonio F. Hernandez-Jerez, Susanne Hougaard Bennekou, Michael Klein, Thomas Kuhl, Ryszard Laskowski Kyriaki Macheria, Colin Ockleford, Olavi Pelkonen, Silvia Pieper, Rob Smith, Michael Stemmer, Ingvar Sundh, Ivana Teodorovic, Tiktak Aaldrik, Chris J. Topping and Gerrit Wolterink. Correspondence: PRAS@efsa.europa.eu

³ Acknowledgement: The Panel wishes to thank the members of the Working Group on preparation of a guidance on the establishment of the residue definition for dietary risk assessment: Susanne Hougaard Bennekou, Metka Filipic (until June 2015), Alberto Mantovani (until June 2015), Thomas Kuhl, Bernadette Ossendorp (until October 2015) and Gerrit Wolterink for the preparatory work on this scientific opinion and, the hearing experts: Bruno Urbain and Andrew Worth, and EFSA staff: Anja Friel, Juan Parra Morte, Rositsa Serafimova, Andrea Terron and Gabriele Zancanaro for the support provided to this scientific opinion.

Suggested citation: EFSA PPR Panel, 2015. Guidance on the establishment of the residue definition for dietary risk assessment. EFSA Journal 2016;14(issue):NNNN, 180 pp. doi:10.2903/j.efsa.2016.NNNN

Available online: www.efsa.europa.eu/efsajournal

SUMMARY

The European Food Safety Authority (EFSA) asked the Panel on Plant Protection Products and their Residues (PPR Panel) to prepare Guidance on the establishment of the residue definition to be used for dietary risk assessment.

This guidance should consist of a stepwise method helping the risk assessor, on the basis of factual information (derived from toxicological data, metabolism data) and non-testing methods, by weight of evidence, to:

- conclude for which of the terminal residues⁴ of a pesticide on food and feed commodities a hazard identification and characterisation is needed;
- perform such a hazard identification and characterisation
- define the compounds present as terminal residues that should be included in the residue definition for risk assessment.

This guidance document aims at satisfying the needs of modern residue assessments and at harmonising the setting of residue definitions between active substances. It is the intention to guide the assessment per se rather than providing a simple decision scheme. Specifically it is proposed to make use of and apply weighing of all information available, including mechanistic evidence, in order to support an informed and transparent decision process and to enable the risk assessors to provide the risk manager with detailed information on toxicity and exposure of every single metabolite as well as on the uncertainties connected to a proposed residue definition.

The procedure of derivation of the residue definition for dietary risk assessment is a screening exercise, where the relevance of all individual metabolites or groups thereof is thoroughly assessed in a stepwise approach, starting with the compilation of an inventory of metabolites and the assessment of their genotoxicity endpoints (Module 1), followed by the assessment of other regulatory endpoints of toxicity (termed general toxicity; Module 2). For every single metabolite, this screening generates an inventory of toxicity and dietary exposure information for consumers and livestock. The exposure information includes sources and types of exposure, relevance of a particular exposure path and exposure from groundwater used as drinking water. All together the hazard and exposure information forms the basis to estimate the contribution of each metabolite to the total toxicological burden for consumers and the final proposal of the residue definition (Module 3). The scenario-specific information is completed by a list of uncertainties identified that were considered in the final proposal and that are deemed relevant for decision making (risk management).

The guidance document is complemented by three practical case studies which are intended to demonstrate the applicability of the proposed decision scheme. Although the guidance document -and the examples- describe EFSA's current thinking on this topic, this has to be viewed as recommendation only. Thus, in the context of this guidance, the word "should" is used for something suggested or recommended rather than required.

⁴ Terminal residues: Residues to which humans and livestock will be exposed, i.e. in crops at harvest, or in stored commodities at the time of out-loading, or in commodities upon processing, or in food of animal origin at collection/slaughter, respectively.

1 TABLE OF CONTENTS

2 Abstract	1
3 Summary	2
4 Table of contents	3
5 Background as provided by EFSA	4
6 Terms of reference as provided by EFSA	5
7 Assessment	5
8 1. Introduction	5
9 2. Module 1: Exclusion of genotoxicity (steps 1-9).....	7
10 2.1. Identification of metabolites characterised by the toxicological studies conducted with the parent compound (step 4).....	8
11 2.2. Application of (Q)SAR and read across for the exclusion of genotoxicity (steps 5-6).....	9
12 2.2.1. Quality criteria for the application of (Q)SAR analysis for genotoxicity assessment	9
13 2.2.2. Quality criteria for the application of “read across” analysis for genotoxicity assessment	11
14 2.3. TTC assessment for evaluation of genotoxicity (step 7).....	14
15 2.4. Testing battery for assessment of genotoxicity (step 8).....	14
16 2.5. Genotoxicity concern (Step 9)	15
17 3. Module 2: General Toxicity Assessment (steps 10 – 19)	15
18 3.1. Identification of metabolites characterised by the toxicological studies conducted with the parent (step 10).....	17
19 3.2. TTC assessment for general toxicity (step 11).....	17
20 3.3. Potency considerations for metabolites (step 12).....	17
21 3.4. Toxicological assessment of plant metabolites in food and feed (steps 13-15)	18
22 3.5. Livestock Dietary burden calculation (steps 16 and 17).....	18
23 3.6. Testing Strategy (step 18)	19
24 3.7. Assessment of the toxicological burden and relevance of metabolites (step 19)	21
25 4. Module 3: Decision making for residue definition for risk assessment (step 20).....	21
26 5. Exposure assessments	24
27 5.1. General aspects	24
28 5.2. Metabolite residue input levels for exposure calculation.....	25
29 6. Assessment of stereoisomers (enantiomers and diastereoisomers) for the parent and metabolites	27
30 6.1. Exclusion of genotoxicity for isomers or changed isomeric compositions.....	28
31 6.2. Isomer assessment step 1 Exposure profile.....	28
32 6.3. Isomer assessment step 2: Hazard evaluation	29
33 6.4. Isomer assessment step 3: Consumer risk assessment	30
34 7. Uncertainties	30
35 References	32
36 Appendices	36
37 Appendix A. ADI and ARfD distribution for pesticide active substances.....	36
38 Appendix B. Case study – Isopoturon (RAR Germany 2014).....	43
39 Appendix C. Case study – Spiroxamine (DE, 2009)	69
40 Appendix D. Case study – Epoxiconazole (DE, 2009)	110
41 Abbreviations	179

45 **BACKGROUND AS PROVIDED BY EFSA**

46 Commission Regulation (EU) No 283/2013 setting out the data requirements for active substances, in
47 accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council
48 concerning the placing of plant protection products on the market, provides that the following
49 elements shall be considered when judging which compounds are to be included in the residue
50 definition for risk assessment:

51 • The toxicological significance of the compounds;
52 • The amounts likely to be present.

53
54 The general principles for the establishment of the residue definition to be used for dietary risk
55 assessment are covered by the OECD guidance document on the residue definition (OECD, 2009a).
56 The OECD guidance is considering the actual toxicological burden for consumers by
57 inclusion/exclusion of not only the active substance but any residue such as metabolites, degradates,
58 transformation products (herein after referred to only as metabolites) on the basis of their toxicity
59 compared to that of the parent active substance and the potential for exposure in the diet.

60 In 2008, the Panel on Plant Protection Products and their Residues (PPR) has received a mandate to
61 develop a scientific opinion on the assessment of the toxicological relevance of pesticide metabolites.
62 This mandate also stated that a guidance document on the establishment of residue definition for
63 dietary risk assessment would later be developed by using the opinion as a scientific basis for such a
64 future guidance.

65 After adoption of the scientific opinion on the evaluation of the toxicological relevance of pesticide
66 metabolites in 2012 (EFSA PPR Panel, 2012), it is now desirable that the PPR Panel prepares
67 guidance on the residue definition for dietary risk assessment. This guidance should be a practical
68 instrument, aimed at helping risk assessors to adopt such definitions based on a combination of
69 scientific tools as described in the opinion. The guidance should also be used for identifying cases
70 where further toxicological data are needed to characterise pesticide metabolites.

71 A public consultation of stakeholders on a draft of the guidance will be launched before finalising the
72 guidance.

73 Any relevant opinions and guidance documents elaborated by the Scientific Committee of EFSA will
74 be duly considered, as will on going work on mixture toxicity and cumulative risk assessments. Along
75 the steps of progress in developing the guidance, the suggested approach will be validated using data
76 on previously evaluated compounds. In case needed, the European Commission and Member States
77 will be consulted on particular risk management elements contained in the guidance.

78

79

⁵ Commission Regulation (EU) No 283/2013 setting out the data requirements for active substances, in accordance with Regulation (EC) No 1107/2009 of the European Parliament and of the Council concerning the placing of plant protection products on the market.

⁶ Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 concerning the placing of plant protection products on the market and repealing Council Directives 79/117/EC and 91/414/EEC. Official Journal L 309, 1-50. 24 November 2009

80 **TERMS OF REFERENCE AS PROVIDED BY EFSA**

81 In application of Article 29 1(b) of Regulation (EC) No 178/2002⁷, the Panel on Plant Protection
82 Products and their Residues (PPR Panel) is requested to prepare Guidance on the establishment of the
83 residue definition to be used for dietary risk assessment.

84
85 This guidance should consist of a stepwise method helping the risk assessor, on the basis of factual
86 information (derived from toxicological data, metabolism data) and non-testing methods, by weight of
87 evidence, to:

- 88 • conclude for which of the terminal residues⁸ of a pesticide on food and feed commodities a
89 hazard identification and characterisation is needed;
- 90 • perform such a hazard identification and characterisation
- 91 • define the compounds present as terminal residues that should be included in the residue
92 definition for risk assessment.

93
94 In carrying out this mandate, the panel should consider that the components of the terminal residues of
95 pesticide active substances will have been duly identified following the requirements of Commission
96 Regulation (EU) No 283/2013 and in the context of this Regulation referred OECD test guidelines. As
97 provided under point 1.11 of the introduction of the annex of the aforementioned Regulation, this
98 includes information on the possible metabolic conversion of isomers for active substances consisting
99 in a mixture of isomers.

100
101 A case study should be included in an appendix to the guidance document to demonstrate the practical
102 application of the developed methodology.

103 **ASSESSMENT**

104 **1. Introduction**

105 This guidance document applies to chemical active substances (“pesticides”) and their residues as
106 defined in Regulation EC (No) 1107/2009.

107 The need for new guidance on how to establish the residue definition for risk assessment of pesticides
108 has arisen as current regulatory requirements in this regards are not completely and explicitly
109 addressed in available guidance documents like EC, 1997; FAO, 2009 or OECD, 2009a. In particular,
110 Regulation (EC) 283/2013 states that “the risk assessment has to take into account the residue
111 definition established for risk assessment”, which requires considerations on the relevance of
112 metabolites for the consumer risk assessment as to whether or not they can cause potential risks to the
113 consumer. This, in turn, means that for all compounds not included in the residue definition a
114 justification for their non-inclusion should be made.

115 In addition, the implications of recent scientific developments in the regulatory area, such as the issue
116 of mixture toxicity and the agreement to apply the dose addition concept for compounds that produce
117 common adverse outcomes on the same target organ / system (phenomenological effect (EFSA PPR
118 Panel, 2013, 2014)) or the relevance of potential non-thresholded effects, are not discussed in the
119 framework of setting the residue definition for risk assessment in the above mentioned guidance
120 documents. Available guidance does also not consider the application of tools such as the TTC
121 approach, (Q)SAR and read across (EFSA PPR Panel, 2012). Furthermore, improved analytical
122 performance and the development of new analytical methods have led to an increase in number of

⁷ Regulation (EC) No 178/2002 of the European Parliament and of the Council of 28 January 2002 laying down the general principles and requirements of food law, establishing the European Food Safety Authority and laying down procedures in matters of food safety. OJ L 31, 01.02.2002, p.1-24.

⁸ Terminal residues: Residues to which humans and livestock will be exposed, i.e. in crops at harvest, or in stored commodities at the time of out-loading, or in commodities upon processing, or in food of animal origin at collection/slaughter, respectively.

123 identified metabolites, including isomers, and thereby an increased demand for addressing their
124 potential concern for consumers. This guidance document therefore aims at satisfying the needs of
125 modern residue assessments and at harmonising the setting of residue definitions between the active
126 substances. It had been the intention to guide the assessment *per se* rather than providing a simple
127 decision scheme. Specifically it is proposed to make use of and apply careful weighing to all
128 information available, including mechanistic understanding, in order to support a highly informed
129 decision process and to enable the risk assessors to provide the risk manager with detailed information
130 on toxicity and exposure of every single metabolite as well as on the uncertainties connected to the
131 proposal.

132 The fate of pesticides after application onto the crop or soil may be affected by numerous
133 biophysicochemical degradation processes resulting in a change of the chemical entity of the pesticide
134 and occurrence of a mixture of compounds in harvestable commodities and the environment – parent
135 substance, metabolites and degradates (in the following termed “metabolites”). The residue pattern in
136 food and feed items is modulated by a set of different criteria like the substance properties, application
137 scheme, crop, cultivation practices, harvesting or environmental factors, resulting in a divergent
138 composition of residues over time and in different commodities of the harvested crop. For many
139 pesticides, the soil acts as a sink and source for residues and the transfer between soil sphere and
140 plants may play an important role in the formation of the residue profile in crops.

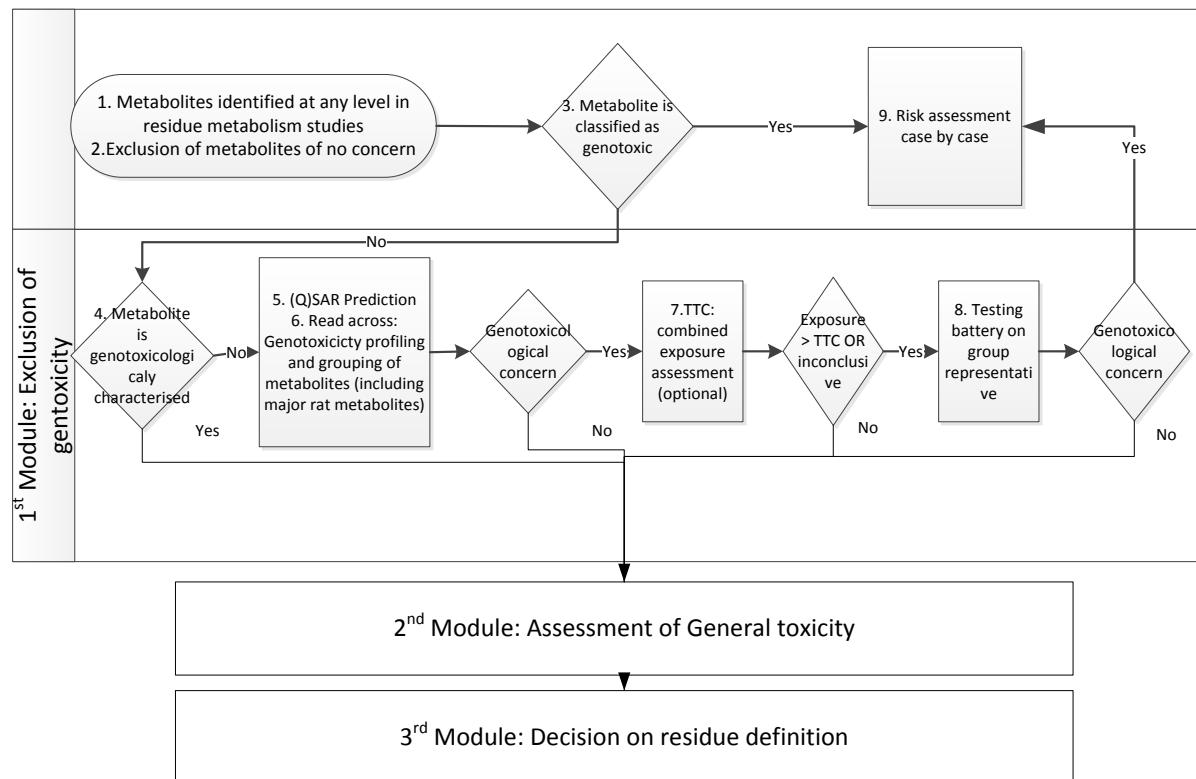
141 Metabolism studies are in general performed with the radiolabelled parent compound. Such studies in
142 plants and livestock as well as studies simulating food processing practices, aim at identifying the
143 nature and, to a certain extent, the quantity of individual residue compounds in commodities at stages
144 of intermediate and commercial harvest, and in by-products. Metabolism studies form the basis for the
145 proposal of the residue definitions while field studies with the non-radiolabelled active substance
146 support quantitative metabolite assessments.

147 The residue definition for risk assessment is used by risk assessors to evaluate the potential risk of
148 dietary intake of pesticide residues resulting from the application of a pesticide. The residue definition
149 should consider all compounds that are of toxicological significance for human and livestock, taking
150 into account the amounts likely to be present in food and feed. It is therefore necessary to consider
151 aspects of both, toxicity and dietary exposure to residues and to account for the use specific residue
152 pattern in food commodities of plant origin as well as in animal commodities that result from livestock
153 exposure via feed.

154 The approach chosen in this guidance document recommends the combined use of relative exposures
155 (in percentage of the total residues) and absolute exposures (in mg/kg bw/d) where necessary for a
156 decision. In the context of this guidance it is possible to apply TTC triggers. However, potential
157 simultaneous dietary exposure to multiple metabolites should be taken account of, and the possibility
158 that all or part of the metabolites will cause the same adverse outcome should be considered. In such
159 case, dose addition should be used, in consistency with earlier Scientific Opinions of the PPR Panel
160 (EFSA PPR Panel, 2012, 2013, 2014), and consequently exposure should be calculated as the sum of
161 the single metabolites. Where an exposure assessment is performed in the framework of setting the
162 residue definition, the variety of potential exposure situations has to be considered by setting up a
163 reasonable worst case scenario that takes into account the complexity of the temporal and spatial
164 changes that can occur with the residues. The necessary robustness of a residue definition against
165 future regulatory changes (e.g. extension of authorisations and increase of exposure) therefore depends
166 on the completeness of the underlying data set in terms of the uses intended. It should be noted that a
167 proposal of the residue definition for risk assessment made under a premise not reflecting critical
168 conditions, even in the same crop category, does not necessarily apply to any other situation by
169 default.

170 The procedure of derivation of the residue definition for dietary risk assessment is a screening
171 exercise, where the relevance of all individual metabolites or groups thereof is thoroughly assessed in
172 a stepwise approach, starting with the compilation of an inventory of metabolites and the assessment

173 of genotoxicity endpoints (Module 1), continuing with other regulatory endpoints of toxicity (termed
174 general toxicity; Module 2). For every single metabolite, this screening generates an inventory of
175 toxicity and dietary exposure information for consumers and livestock including sources and types of
176 exposure, relevance of a particular exposure path and exposure from groundwater used as drinking
177 water. This information forms the basis for the final proposal of the residue definition (Module 3). The
178 scenario-specific information is completed by a list of uncertainties identified that were considered in
179 the final proposal and that are deemed relevant for decision making (risk management).


180 Where exposure assessments are used to waive further data requirements, e.g. when applying the TTC
181 approach or when major metabolites are excluded in the dietary exposure screening due to low
182 absolute residue values, the boundary conditions of these estimations are transparently described and
183 should be considered in future assessments.

184 The guidance document is complemented by three practical case studies which are intended to
185 demonstrate the applicability of the proposed decision scheme. Although the guidance document -and
186 the examples- describe EFSA's current thinking on this topic, this has to be viewed as
187 recommendation only. Thus, in the context of this guidance, the word "should" is used for something
188 suggested or recommended rather than required.

189 **2. Module 1: Exclusion of genotoxicity (steps 1-9)**

190 For all metabolites the genotoxic potential has to be assessed (Module 1, Fig. 1). The genotoxicity
191 assessment should start with identification of the metabolites at any level in nature-of-residue studies
192 (i.e. primary and rotational crops, livestock, fish, food processing). The assessment continues with the
193 exclusion of metabolites of no appreciable concern, e.g. sugar or lignin (step 2 of the decision
194 scheme). In step 3, screening for genotoxic compounds classified according to Regulation (EC)
195 1272/2008⁹ should be done (see point 2.5). If no concern is identified, proceed with step 4.

⁹ Regulation (EC) No 1272/2008 of the European Parliament and of the Council of 16 December 2008 on classification, labelling and packaging of substances and mixtures, amending and repealing Directives 67/548/EEC and 1999/45/EC, and amending Regulation (EC) No 1907/2006 (Text with EEA relevance) OJ L 353, 31.12.2008, p. 1–1355 (BG, ES, CS, DA, DE, ET, EL, EN, FR, GA, IT, LV, LT, HU, MT, NL, PL, PT, RO, SK, SL, FI, SV) Special edition in Croatian: Chapter 13 Volume 020 P. 3 - 1357

196

197 **Figure 1: Module 1 exclusion of genotoxicity**

198 **2.1. Identification of metabolites characterised by the toxicological studies conducted with**
 199 **the parent compound (step 4)**

200 Where no specific studies are available, the metabolites to have been studied in the toxicological
 201 studies conducted with the parent (i.e. active substance) are those contributing to 10% or more (as
 202 individual metabolite) of the administered dose in terms of total radioactive material recovered in the
 203 urine as detected in ADME studies. The study design and the dose selection of the ADME study
 204 should allow for a comparison with the general toxicity studies conducted with the parent.

205 As a general rule metabolites quantification would be based on the amount of metabolite considering
 206 the lowest available dose and the animal sex showing the lowest excreted amount from a repeat dose
 207 ADME study. ADME studies conducted in rat by repeated administration at doses similar to the one
 208 applied in the general toxicity studies should preferentially be used for the hazard characterisation of
 209 the metabolites. In case a different study design has been applied, e.g. single dose administration or
 210 doses much higher than those used in the general toxicity studies their use for the hazard
 211 characterisation of the metabolites should be justified.

212 For the metabolites considered to be evaluated by the toxicological studies conducted with the parent
 213 compound, the conclusions about the genotoxicity properties of the parent will apply to these
 214 metabolites as well and no further testing/data would be required (step 4 of the decision scheme). In
 215 addition if a metabolite is not characterized by the toxicological studies conducted with the parent, but
 216 found to be common to another active substance and covered by the toxicological properties of this
 217 active substance, the conclusion about the genotoxicity properties of this active substance can be used
 218 to characterize the metabolite.

219 However, in some cases a different approach can be taken:

220

221 i) When dealing with mixtures of isomers, the 10% value should be considered as the sum
222 of the individual isomers (EFSA PPR Panel, 2012).

223

224 ii) A special case should be also considered for conjugated metabolites. Glucoside and
225 glucuronide conjugates will be evaluated in terms of their aglycon moiety; all the
226 remaining conjugated metabolites (e.g. sulfate, amino acid) will be assessed case-by-case.

227

228 iii) For poorly or limited absorbed active substances, the 10% of total radioactive material
229 recovered in the urine from the ADME study can be referred to the absorbed dose rather
230 than to the administered dose. In the absence of an agreed definition of poorly or limited
231 absorbed substances a threshold of 80% or less in terms of calculated absorption or
232 bioavailability is considered as indicative for limited absorbed substances, though a case-
233 by-case consideration can be applied e.g. for potent active substances, see point 3.3.

234

235 iv) If a metabolite or degradate occurs $\leq 10\%$ of the absorbed dose in rat urine from the
236 ADME study, expert judgement may still conclude that the hazard has been characterised
237 by testing with the parent; though criteria for such conclusion should be provided (e.g.
238 the metabolite only differs from the parent by simple structural changes that are not
239 expected to cause additional hazard).

240

241 **2.2. Application of (Q)SAR and read across for the exclusion of genotoxicity (steps 5-6)**

242 The genotoxicity assessment should be assisted by application of (Q)SAR (step 5 of the decision
243 scheme) and read across of metabolites (step 6 of the decision scheme) and by considerations on
244 exposure (step 7 of the decision scheme) against the threshold of toxicological concern (TTC) for
245 genotoxicity (0.0025 $\mu\text{g}/\text{kg bw/day}$). For substances grouped according to their predicted effect it is
246 considered appropriate to apply the dose addition approach, as would be done for compounds included
247 in the same residue definition for dietary risk assessment (EFSA Scientific Committee, 2012; EFSA
248 PPR Panel, 2013, 2014).

249 Step 5 of the decision scheme includes the use of scientifically valid (Q)SAR models (see 2.2.1). The
250 use of computational models for predictions of genotoxicity should not be based on the use of any
251 single model alone, but on a “weight of evidence” approach including all available information
252 provided by the models (e.g. applicability domain, proposed mechanistic information, prediction for
253 the similar substance). To maximise the sensitivity and specificity of the prediction, at least two
254 independent (Q)SAR models, where possible, (e.g. based on different training sets and/or algorithms)
255 should be applied for each genotoxicity endpoint, including both knowledge based and statistical
256 based models (Worth et al., 2010, 2011a).

257 To address the possibility of false negative and false positive (Q)SAR predictions, grouping and read
258 across is proposed (Worth et al., 2011a,b, 2013) (step 6). Structural and functional similarity, grouping
259 criteria and selection of representative metabolite(s) for potential testing have to be substantiated by
260 appropriate and relevant information. For guidance on grouping and profiling see OECD (2014).

261 **2.2.1. Quality criteria for the application of (Q)SAR analysis for genotoxicity assessment**

262 A framework for assessing (Q)SAR applicability builds on guidance already adopted for the REACH
263 regulation (ECHA, 2008), including international (OECD) guidance on the scientific validation and
264 documentation of (Q)SAR models for regulatory purposes (OECD, 2007a).

265 In order a (Q)SAR prediction to be adequate for the assessment purpose i.e. genotoxicity assessment,
266 the following conditions should be fulfilled (Gleeson et al., 2012):

267 i) The prediction should be generated by a scientifically valid (i.e. relevant and reliable) model;

268 *ii)* The model should be applicable to the chemical of interest with the necessary level of
269 reliability;
270 *iii)* The model endpoint should be relevant for the purpose (i.e. genotoxicity assessment);
271 *iv)* The information should be well documented.

272 **2.2.1.1. Scientific validity of the model**

273 The first condition for using the (Q)SAR for regulatory purpose is the demonstration of the model
274 validity. A set of five validation principles has been established by the OECD (OECD, 2007a) to guide
275 regulatory agencies in the evaluation of the performance of (Q)SAR. According to them the model
276 should be associated with:

277 *i)* A defined endpoint;
278 *ii)* An unambiguous algorithm;
279 *iii)* A defined domain of applicability;
280 *iv)* Appropriate measures of goodness-of-fit, robustness and predictivity;
281 *v)* A mechanistic interpretation, where possible.

282 Information which covers the above listed five principles should be available to the assessor as a part
283 of the relevant documentation of the prediction. Information for some of the models may be available
284 from the JRC QSAR model database <http://qsardb.jrc.ec.europa.eu/qmrf/index.jsp>.

285 **2.2.1.2. Applicability domain**

286 The concept of applicability domain was introduced to assess the probability of a chemical of interest
287 being covered by the chemical space of the (Q)SAR model. When the substance to be predicted is
288 within its applicability domain, the model is generally considered to give reliable results. If a
289 substance is outside the applicability domain of the model, the reliability of the prediction is uncertain.
290 In this case, the prediction itself can be only used as a part of the overall weight of evidence or as
291 supporting information, though a positive prediction will be considered as alerting structure and
292 deviations should be justified.

293 For statistically based and hybrid models (e.g. CAESAR), the training set is used to develop the
294 applicability domain of the model.

295 For knowledge based models (e.g. DEREK), where no training set is available, the applicability
296 domain cannot be defined as described above. However, knowledge based models usually provide
297 multiple supporting information e.g. suggested mode of action, examples, references, that can be used
298 to evaluate the reliability and adequacy of the prediction.

299 Some software tools do not give any information on the applicability domain for the chemical of
300 interest. In this case, since the concept of the applicability domain is related to the reliability of the
301 prediction, model predictions for similar substances with known experimental data can be used as an
302 alternative. These analogues may be selected from the training set of the model (if available) and/ or
303 from additional data sets. The selection of analogues and the consequent prediction and analyses of the
304 results may be provided by the software used, or can, as an alternative, be done by the applicant.

305 Information on the applicability domain (reliability of the prediction) should be provided where
306 applicable as a part of the documentation of the prediction.

307 Description, experimental data and predictions of the substances considered analogues of the chemical
308 of interest (provided by the software or selected by the applicant) should be provided as part of the

309 supporting documentation for the prediction. If the information is not provided by the software itself,
310 criteria for the selection of analogues should be provided by the applicant.

311 **2.2.1.3. Relevant endpoints for genotoxicity**

312 In the context of this guidance, (Q)SAR should be used as a scientific tool for the genotoxicity
313 assessment of residues of pesticide active substances. The genotoxicity endpoints explored and
314 assessed through the application of (Q)SAR should be described and the information provided to the
315 assessor. Any additional information provided by the model e.g. suggested mechanism of action,
316 uncertainties, should be included in the supporting documentation. The relevant genotoxicity
317 endpoints that have to be explored are gene mutations, and structural and numerical chromosomal
318 alterations.

319 **2.2.1.4. Documentation**

320 The following should be provided to support the quality of the prediction

- 321 i) Used model (title, name of authors, reference);
- 322 ii) Information about modelled endpoint (endpoint, experimental protocol);
- 323 iii) Used training set (number of the substances, information about the chemical diversity of the
324 training set chemicals);
- 325 iv) Information on the algorithm used for deriving the model and the molecular descriptors (name
326 and type of the descriptors used, software used for descriptor generation and descriptor
327 selection);
- 328 v) Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,
329 robustness and predictivity (including specificity and sensitivity);
- 330 vi) External statistic, if available;
- 331 vii) Information about the applicability domain (description of the applicability domain of the
332 model and method used to assess the applicability domain);
- 333 viii) Mechanistic interpretation of the model;
- 334 ix) Description, experimental data and predictions of possible structural analogues of the
335 substance (provided by the software or selected by the applicant);
- 336 x) Any additional information provided by the model, e.g. suggested mechanism of action,
337 uncertainties;

338 Information mentioned in the points 1 to 8 can be substituted by referencing to the JRC QSAR model
339 reporting format database (QMRF), if the model is included in the database. However, irrespective
340 from the source of information, applicants should evaluate the validity of the model used (in relation
341 to the application) as well as the adequacy of the individual model prediction.

342 **2.2.1.5. Conclusions from the completed (Q)SAR predictions**

343 As a final step, a conclusion on the (Q)SAR prediction should be done as a part of the assessment. The
344 conclusive step includes analysis of the prediction and its reliability.

345 **2.2.2. Quality criteria for the application of “read across” analysis for genotoxicity assessment**

346 A framework for assessing “read across” applicability for genotoxicity assessment builds on guidance
347 already adopted for the REACH regulation (ECHA, 2008), including the updated OECD guidance on
348 grouping of chemicals (OECD, 2014) and ECHA Read across Assessment Framework (ECHA, 2015).

349 The term “read across” indicates an approach making use of endpoint information i.e. experimental
350 data on genotoxicity for a chemical(s) (source chemical(s)), to make a prediction for the same

351 endpoint for a different chemical(s) (target chemical(s)). The source and target chemical(s) are
352 considered to provoke similar effects related to the assessed endpoints, usually based on structural
353 similarity, and therefore assumed to exhibit similar biological activity (OECD, 2007b).

354 The approach proposed in this guidance is an implementation of the read across based on analogues
355 since it will be used for the analysis of a group generally composed of a limited number of substances.
356 The simplest case will be consistent with the use of the experimental data on genotoxicity generated
357 for the active substance (source chemical) for prediction of the genotoxic potential of its metabolite(s)
358 (target chemical(s)). However, any other available experimental information, e.g. experimental data
359 for other compounds, could be used and considered acceptable for performing the read across as long
360 as they fulfil and comply with the relevant OECD guidelines.

361 Read across must be, in all cases, scientifically justified and thoroughly documented.

362 In accordance to ECHA (ECHA, 2008), the main steps for the read across adapted for genotoxicity
363 assessment of metabolites of pesticide active substances are:

364 *i) Define the endpoint(s) that is/are going to be evaluated by read across*

365 The endpoint(s) that is/are going to be evaluated by read across should be clearly defined, e.g. in vitro
366 Ames mutagenicity, with/without S9. This is critical in order to demonstrate the regulatory relevance
367 of the selected endpoint, to justify the use of the read across working hypothesis and to assess the
368 similarity between the analogues which are considered endpoint related.

369 *ii) Make a clear working hypothesis and justification for the read across*

370 It is recommended that the read across working hypothesis would be based on the molecular initiating
371 events (knowledge on how the chemical is expected to interact with the biological system), e.g.
372 covalent binding with DNA. This would facilitate the definition of similarity and would provide
373 mechanistic evidence, enhancing the confidence in the read across prediction (Patlewicz, 2013).

374 Molecular initiating events of relevance for the genotoxicity assessment are well known and the
375 chemical properties important for the interaction with the DNA and/or proteins have been encoded
376 into structural alerts (Ashby and Tennant, 1988 and 1991; Bailey et al, 2005; Kazius et al 2005;
377 Serafimova et al, 2007; Benigni et al 2008; Enoch and Cronin, 2012).

378 Some of these lists (called primary profilers) are included into OECD QSAR Toolbox
379 (<http://www.qsartoolbox.org/>) and could be used for grouping.
380 Primary profilers are mechanistic or endpoint specific. Mechanistic primary profilers contain structural
381 alerts that have been developed around the chemistry related to a specific molecular initiating event
382 (e.g. DNA binding by OASIS v1.2, DNA binding by OECD Toolbox). The structural alerts within this
383 type of profiler are not necessarily supported by toxicological data. Endpoint specific primary profilers
384 contain structural alerts that have been identified from the analysis of toxicological data (e.g. DNA
385 alerts from the Ames, Micronucleus and Chromosome Assay tests by OASIS v 1.2, in vitro
386 mutagenicity test (Ames test) alerts by ISS).

387 Mechanistic and endpoint specific primary profilers should be applied in a complementary way to the
388 active substance and metabolites. The ideal profiling case will be when one (or both) of the
389 mechanistic profilers identifies a single mechanism related to the predicted endpoint that is supported
390 by appropriate endpoint specific profiler(s); in such a case the theoretically derived structural alert(s)
391 is/are confirmed by the experimental data.

392 Based on the results of the profiling a specific group should be formed. The first intention is to use the
393 active substance and (if available) its metabolites that have been tested for genotoxicity as source
394 chemical(s). Therefore, all metabolites sharing the same alert(s) as the active substance or tested

395 metabolites, for the predicted endpoint, or lack of alert(s), should be placed in the same group. The
396 remaining metabolites should be grouped depending on the resulting profile, e.g. to form a group
397 including all metabolites sharing the same alert, but not present in the active substance. It is worth to
398 note that read across can only be accepted in the framework of the current data requirements.

399 Provide information on substance identity for all the substances included in the read across

400 Detailed information on composition, including substance identity and purity, should be provided for
401 all substances (source and target (s) chemicals) included in the chemical groups formed and used for
402 read across. Information should be detailed enough to allow the assessor to unambiguously identify
403 the substances and to assess the structural similarity on which the read across hypothesis is based.
404 Lack of adequate information on structure and impurities could undermine the read across.

405 *iii) Outline the structural similarity(ies) between substances*

406 The structural similarity of the target and the source substances needs to be assessed. The impact of
407 the structural differences between substances for the endpoint(s) under consideration also needs to be
408 assessed.

409 The analysis on structural similarity should consider all the appropriate elements, namely:

410 - Presence of structural alerts;
411 - Presence, relevance and number of common functional groups;
412 - Presence and relevance of non-common functional groups;
413 - Similarity of the 'core structure' apart from the (non)-common functional groups;
414 - Potential differences due to differences in reactivity, metabolism and mode of action;
415 - Potential differences due to steric hindrance;

416 Secondary profilers (i.e. organic functional groups) in the OECD QSAR Toolbox could be used in this
417 analysis. However, it should be mentioned that the software could only help in the first part of the
418 analysis, in particular to identify common and non-common functional groups present in source and
419 target chemical(s). The relevance of the similarities and dissimilarities identified for making use of the
420 read across to evaluate the endpoint considered in the analysis should be discussed.

422 *iv) Conclusions from the completed read across investigations*

423 As a final step, a conclusion on the applicability of the read across should be done as a part of the
424 assessment. The conclusive step includes a scientific justification on the applicability of the read
425 across resulting in the following possibilities:

426 - A group of metabolites is proven to be similar to the source substance (i.e. the active
427 substance or a compound tested for genotoxicity), if the existing experimental data allows
428 concluding on a lack of genotoxicity concern for the source substance, then no genotoxicity
429 concern would exist for the substances included in that group.
430 - A group of metabolites is proven to be dissimilar to the source substance, if e.g. a new
431 structural alert has been identified and considered of genotoxicity concern. In this case,
432 genotoxicity cannot be excluded and the substance will move to step 7 of the decision
433 scheme.

434 In performing read across, a case should be made when positive in-vitro micronucleus test and
435 negative in-vivo micronucleus test exist for the same substance. In this case, before discharging the
436 positive concern by making use of the in-vivo micronucleus test, evidence of bone marrow exposure
437 has to be proven.

439 *v) Documentation*

440 The documentation provided must be sufficient to allow an independent assessment of the adequacy
441 and the scientific validity of the read across approach. The following elements are considered essential
442 to adequately document a read across approach (adapted from ECHA 2008, OECD 2014,
443 ECHA, 2013):

444 - Description of the endpoint(s) that is/are to be read across;
445 - A read across hypothesis;
446 - A justification for the read across hypothesis;
447 - A list of all the substances included in the approach with their detailed substance identity
448 information;
449 - An analysis of the similarity/dissimilarity
450 - A conclusion on the applicability of the proposed read across approach.

451

452 **2.2.3 Conclusion**

453 A final conclusion on the genotoxic potential should be made for all metabolites based on the
454 information of (Q)SAR predictions and read-across. In case of diverging results between QSAR
455 predictions and read-across analysis, justification for the decision has to be provided (see case studies).

456 **2.3. TTC assessment for evaluation of genotoxicity (step 7)**

457 The Threshold of Toxicological Concern (TTC) approach is a method that can be applied to evaluate
458 the toxicological relevance of metabolites (EFSA PPR Panel, 2012) when chemical-specific data are
459 not available. The assessment is based on the known chemical structure of the substance and the
460 estimated exposure.

461 In the context of this guidance, the TTC approach is not intended to supersede the evaluation of
462 available toxicological data; including those cases where structural analogues can be assessed based on
463 the toxicological data from the tested compounds i.e. parent and/or metabolites. For the genotoxicity
464 assessment, the TTC approach is a subordinate screening tool to (Q)SAR and read across, where
465 human exposure is estimated to be very low.

466 In addition, in case of dietary exposure to co-occurring pesticide metabolites, the application of the
467 TTC should assume dose addition.

468 For the genotoxicity endpoints it is proposed that metabolites showing commonality in reaction
469 mechanisms i.e. the same specific genotoxicity endpoint (i.e. point mutation or structural and
470 numerical chromosome aberration) to be grouped and optionally assessed against the TTC value of
471 0.0025 µg/kg bw/day as a combined exposure (see chapter 5), or directly to be subjected to
472 genotoxicity testing (step 8 of the decision scheme).

473 Substances considered to be of genotoxic concern following (Q)SAR prediction and read across, and
474 exceeding the cumulative exposure of 0.0025 µg/kg bw/day will go to step 8 of the decision scheme to
475 be tested.

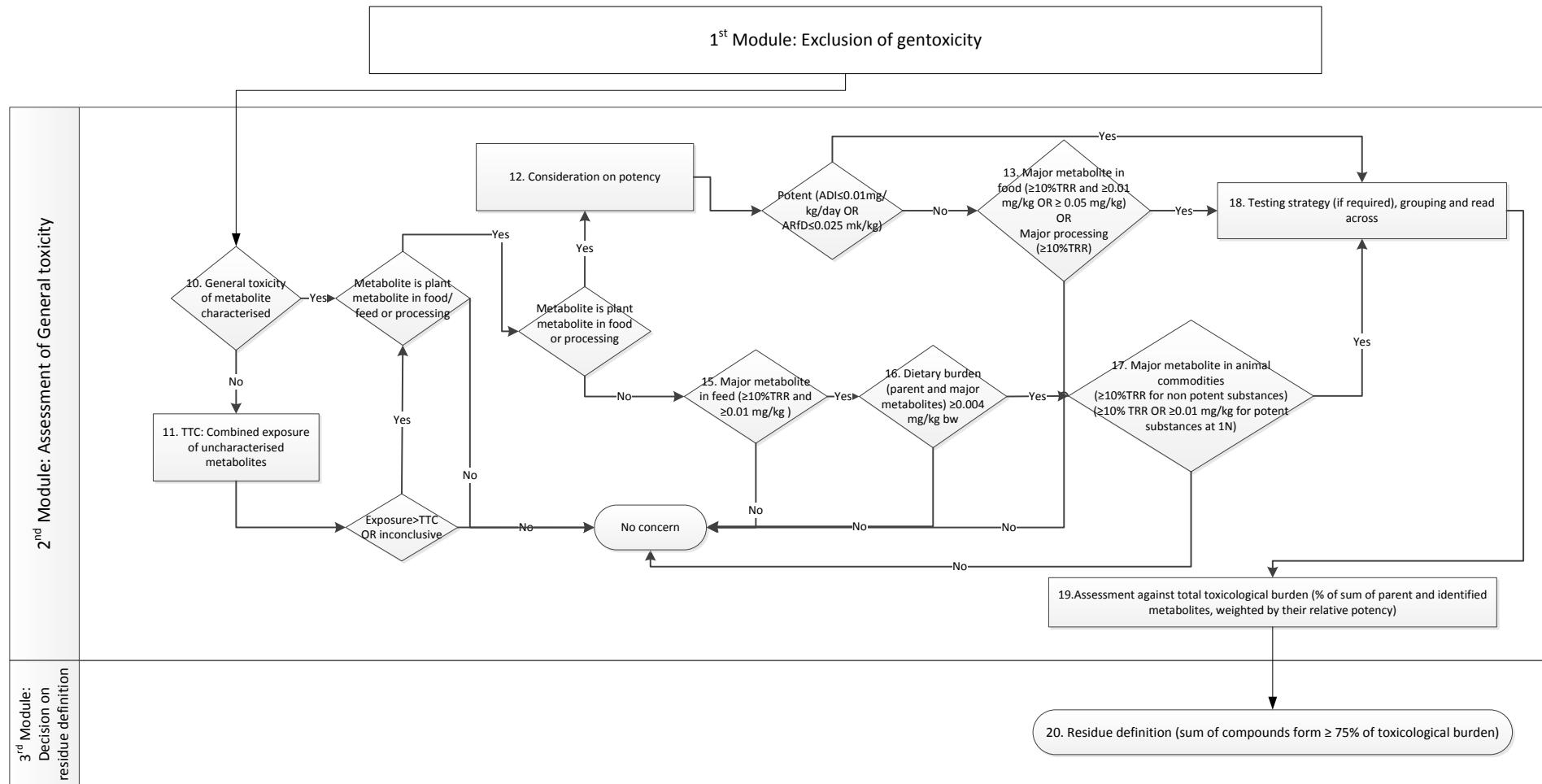
476 **2.4. Testing battery for assessment of genotoxicity (step 8)**

477 After profiling and grouping of metabolites (if necessary), in vitro tests on at least one representative
478 metabolite per group should be performed (step 8). The selection of the representative metabolite can
479 be based on multiple aspects e.g. relevant exposure or technical factors, and should be justified. For
480 one or more metabolites identified to be tested for their genotoxic potential, the testing battery should
481 include as a minimum two in vitro tests, covering all three genetic endpoints, i.e. gene mutations,
482 structural and numerical chromosomal alterations (EFSA Scientific Committee 2011; Kirkland et al.,
483 2014a, b). The need for in vivo follow up testing should be considered on a case by case, through the
484 evaluation of the spectrum of genotoxic events observed in vitro (if any), the data on toxicokinetics, on
485 bioavailability and on the potential target organ. Applicants and assessors should refer to the Scientific

486 Opinion on genotoxicity testing strategies applicable to food and feed safety assessment (EFSA
487 Scientific Committee, 2011) for selection of the most appropriate assays and results interpretation.

488 Individual metabolites or group representatives that are negative in the genotoxicity testing battery
489 will be considered of no genotoxicity concern and will go to the next step of the assessment decision
490 tree (Module 2). If testing is conducted on one or more group representatives the negative outcome of
491 the study will be applied to the full group. Metabolites or group representatives resulting positive in a
492 test battery will be considered of genotoxicity concern. If testing is conducted on a group
493 representative, the positive outcome of the study will be applied to the full group.

494 **2.5. Genotoxicity concern (Step 9)**


495 For all compounds identified as of genotoxic concern under steps 3 and all metabolites for which
496 genotoxic properties cannot be excluded after testing and read-across (positive in step 4 or 8), a case-
497 by-case assessment is required. These metabolites are not suitable candidates to be carried further
498 through the process for inclusion into the residue definition in the remit of this guidance document.
499 Instead, risk assessors and risk managers need to take further actions to exclude any unacceptable risk
500 for consumers (e.g. in depth-assessment of exposure, proposal of mitigation measures, management
501 decision on acceptability of known genotoxins in regulated products).

502 **3. Module 2: General Toxicity Assessment (steps 10 – 19)**

503 In this guidance, the general acute and chronic toxicity assessment of the metabolite of interest is
504 understood to enable a quantitative and qualitative comparison of the toxicity profile(s) of the
505 metabolite(s) with the parent substance and to identify any specific hazard for the metabolite in order
506 to derive respective health based limits for human exposure to the relevant metabolite(s), when
507 appropriate.

508 The assessment scheme is proposing the combined use of the TTC approach, occurrence level of
509 metabolites, elements of grouping and read across, and testing.

510
511

512

513 **Figure 2: Assessment scheme for general toxicity and decision on residue definition**

514 **3.1. Identification of metabolites characterised by the toxicological studies conducted with the**
515 **parent (step 10)**

516 In line with the criteria described in chapter 2.1, no further toxicological testing will be necessary, if
517 the metabolite is considered quantitatively covered by the mammalian metabolism studies (ADME
518 studies; step 10). If the criteria described in the chapter 2.1 are met, the general toxicity assessment of
519 the metabolite would be considered characterised by the studies conducted with the active substance
520 and the reference values of parent compound apply.

521 **3.2. TTC assessment for general toxicity (step 11)**

522 Following the specific criteria described in chapter 2.3, the combined exposure of all metabolites not
523 covered by the ADME study conducted in mammalian species or by specific studies, can be summed
524 up and compared to the specific TTC value as an optional assessment step (step 11).

525 For the general toxicity assessment (see Module 2), the exposure is intended as a combined exposure
526 of all identified, but toxicologically non-characterised metabolites (see step 11 of the decision
527 scheme). The TTC approach in this module should be seen as a screening tool, which is optional and
528 restricted to cases where the exposure can be reliably estimated and is not subject to large uncertainties
529 due to foreseeable extensions of authorisations, or limited knowledge about the identity and/or
530 magnitude of residues e.g. in case of transfer and metabolism of feed metabolites in livestock.

531 In order to apply the TTC in a cumulative way, the ratio between the exposure of each metabolite and
532 the corresponding Cramer Class TTC will be summed up. If the sum is ≥ 1 , specific hazard and/or
533 comparative risk assessment will be conducted. If the resulting sum is ≤ 1 , no further assessment is
534 necessary.

535 The thresholds of 0.3 $\mu\text{g}/\text{kg}$ bw/d (for organophosphate and carbamate with anti-cholinesterase
536 activity) or 1.5 $\mu\text{g}/\text{kg}$ bw/d (Cramer Class III and Cramer Class II) and 30 $\mu\text{g}/\text{kg}$ bw/d (Cramer Class
537 I) should be used (EFSA Scientific Committee, 2012).

538 Besides the standard chronic exposure assessment, an acute TTC assessment can be similarly
539 conducted, where necessary. In line with EFSA Scientific Opinion (EFSA PPR Panel, 2012) ad hoc
540 acute TTC values derived from short term exposure pesticide NOAELs can be adopted: 0.3 $\mu\text{g}/\text{kg}$
541 body weight/day for substances with neurotoxicity alert and 5 $\mu\text{g}/\text{kg}$ body weight/day for substances
542 allocated to Cramer class II and III. The same TTC values as for chronic exposure is adopted for
543 substances allocated in the Cramer class I (30 $\mu\text{g}/\text{kg}$ body weight/day).

544 **3.3. Potency considerations for metabolites (step 12)**

545 In the context of this guidance, potency is defined by the ADI or the ARfD of the parent substance or
546 the metabolite(s), if respective data exist. General criteria for definition of low ADIs and ARfDs were
547 derived from the evaluation of the distribution of ADIs and ARfDs from a pesticide database
548 comprising 270 and 195 active substances, respectively (see Appendix A). A conservative assumption
549 was made by considering that all the substances included in the lowest 25th percentile of the
550 distribution of ADIs or ARfDs were considered of potential concern, and it is expected that most of
551 the neurotoxic substances will be included in this range. It was concluded by extrapolation of the
552 corresponding ADI or ARfD values that active substances with an ADI <0.01 mg/kg/body weight per
553 day, or an ARfD <0.025 mg/kg/body weight, as appropriate, should be considered “potent”. In this
554 case the values for orientation to categorise significant and insignificant residues (see chapter 3.4)
555 should **not** be applied for the exclusion, by default, of any metabolite as of “no concern”.

556 If a metabolite is more potent than the parent on the basis of data (dossier, data base on toxicology
557 according to Annex I of OECD 2009a) and/or additional information (e.g. public literature) the
558 relative potency is addressed by the application of a relative potency factor (RPF). This might need to

559 be reflected in the characterisation of a metabolite as being potent or not according to the criteria for
560 the definition of potency.

561 Additional complementary elements can be considered at this point when estimating the relevance of
562 metabolites to be included in further assessment (OECD, 2009a), like:

563 - number and level of identified minor metabolites
564 - uses considered for the active substance
565 - the metabolite is common to other active substances and already characterised
566 - quantitative relevance of the metabolite in the mammalian metabolism study (see chapter 2.1)

567 If the overall assessment would be inconclusive, and a safety concern cannot be dismissed, then the
568 metabolites should be further assessed to define their toxicological relevance.

569 **3.4. Toxicological assessment of plant metabolites in food and feed (steps 13-15)**

570 Further assessment should be performed for major metabolites contributing at any point in time in the
571 residue metabolism studies to $\geq 10\%$ of the TRR and ≥ 0.01 mg/kg in food and in feed commodities, or
572 (if $<10\%$ TRR) to ≥ 0.05 mg/kg in food commodities (whichever set of conditions is met). For nature
573 of processing studies, 10% TRR applies as sole trigger for relevance. These thresholds are arbitrary
574 and should be considered only as indicative for a metabolite having a potential for exposure that could
575 significantly contribute to the dietary risk. Metabolites below 10% of the TRR in food and feed and
576 less than 0.05 mg/kg in food (minor metabolites), or above 10% of TRR but <0.01 mg/kg (non-
577 relevant major metabolites), are generally considered as unlikely to contribute significantly to the
578 dietary risk, unless they are presumed as "potent" based on considerations described in 3.3.

579 If the conditions described in chapter 2.1 are not met, then additional testing should be considered
580 (step 18) for all relevant major and potent minor plant metabolites in food. The testing strategy should
581 take into account the toxicological profile of the parent and the possibility to explore specific hazards.

582 Toxicological testing of livestock or plant metabolites can be waived, if it can be demonstrated that an
583 extension of uses or an increase of the application rate is unlikely to change the conclusion on the
584 relevance of metabolites (e.g. non-detectable residues of a metabolite of a non-potent active substance
585 in a feeding study at an exaggerated dose rate; a very limited number of target crops for a herbicide
586 and observed phytotoxicity precluding higher application rates).

587 **3.5. Livestock Dietary burden calculation (steps 16 and 17)**

588 Livestock metabolism data are used to identify potential candidates for inclusion into the residue
589 definition for plants (as for potential residue transfer into livestock matrices from feed) and into the
590 residue definition for livestock commodities itself (step 17). For the livestock dietary burden
591 calculation against the trigger of 0.004 mg/kg bw/d (step 16), parent and major plant metabolites
592 ($\geq 10\%$ TRR and ≥ 0.01 mg/kg) observed in feed items are used as the sum expressed as parent unless
593 information is available from animal studies that they belong to separate pathways in animals.

594 If a metabolism study in livestock is required (OECD 503 (2007c), all major livestock metabolites
595 $\geq 10\%$ TRR are selected (in step 17) for subsequent grouping and testing (step 18), if not yet
596 toxicologically characterised. In case of substances of high potency (see chapter 3.3), metabolites
597 $<10\%$ TRR are relevant for toxicological grouping and testing, if their anticipated individual level in
598 animal tissues or milk at 1N rate is ≥ 0.01 mg/kg.

599 **3.6. Testing Strategy (step 18)**

600 In general, a 28-day rat study according to OECD 407 enhanced (OECD, 2008) would be appropriate
601 as a first step.

602 Grouping can be used for the selection of representative substance/s to be tested and read across
603 according to the recommendations of OECD (2014); grouping criteria and/or selection of
604 representative substance/s for testing should be at least substantiated by:

605 - identification of the critical effect(s)/endpoint(s) of the parent to be read across
606 - criteria for similarity (e.g. structural similarities and chemical reactivity which are assumed to
607 trigger a similar toxicokinetic and toxicodynamic properties) and analogues selection.
608 - compile toxicity data for analogous chemicals
609 - support the proposed toxicity mechanism by comparative mechanistic data

610 In line with the general principles described above, the design of the 28 day rat toxicity study has to be
611 considered carefully. The following considerations should be taken into account for the design of the
612 study:

613 - The top dose of the metabolite should achieve the maximum tolerated dose (MTD) for
614 repeated administration. Alternatively, the maximum administrable dose or the maximum dose
615 of 1 g/kg body weight should be used in case the MTD cannot be determined.
616 - The range of doses selected in the study should allow for comparison with the toxicity of the
617 parent; alternatively, a parallel group should be tested with the parent. The experimental
618 conditions should be, as far as possible, close to the ones applied for the parent in terms of
619 animal species, strain, number of animals, endpoints evaluated and general experimental
620 conditions.

621 If a comparable 28-day rat study was not conducted with the parent, the choice of a 28-day study with
622 the metabolite could still represent a valid option; though, an expert toxicology judgment and/or the
623 use of an additional safety factor should be considered (see 3.7).

624 The enhanced OECD 407 (OECD, 2008) study has a number of optional endpoints in regard to
625 endocrine-mediated effects; these endpoints are recommended in order to make a robust and
626 comprehensive hazard characterisation of the metabolite.

627 Furthermore, the test should include an assessment of the male reproductive system by means of a
628 detailed histopathological evaluation of the testes, i.e. a stage-dependent qualitative evaluation of
629 spermatogenesis should be conducted on section of testes from all control and high dose terminal
630 necropsy animals. A qualitative examination of spermatogenesis stages will be made for normal
631 progression of the stages of spermatogenesis, cell associations and proportions expected to be present
632 during spermatogenesis. If potential effects are identified, then other groups should be examined
633 (Creasy, 2003 and Russell et al., 1990).

634 One important limitation of the extended 28 day rat toxicity study (OECD 407) is lack of exploration
635 of developmental and reproductive toxicity (DART) endpoints after in utero exposure

636 To minimize the risk associated with potential DART effects, different options can be considered:

637 If the parent compound has no DART precedents and the tested metabolite is considered qualitatively
638 similar to the parent in terms of toxicological profile, no further testing would be necessary and the
639 DART profile of the metabolite will be considered based on the parent.

640 If the parent compound has no DART precedents and the tested metabolite is considered qualitatively
641 different from the parent (i.e. different hazard profile or no hazard identified) the following options are
642 available:

- 643 1) Apply an additional safety factor of 10 when establishing reference dose (s) of the
644 metabolite (Blackburn et al., 2015).
- 645 2) Test the metabolite in a combined repeated dose toxicity study with the
646 reproduction/developmental toxicity screening test according to OECD 422 (OECD,
647 1996). This test would replace the necessity of a 28 day rat toxicity study.
- 648 3) Test the DART endpoints with the specific studies (developmental toxicity study
649 (OECD TG 414 (2001a), 416 (2001b), 443 (2011)).

650 If the parent compound has DART precedent and the tested metabolite is qualitatively similar to the
651 parent, the same reference dose set for the parent can be applied to the metabolite. This should be
652 applied irrespectively from the fact that the reference dose is triggered or not by the DART based
653 effect. Alternatively, testing for the DART endpoint of interest is an option.

654 If the parent compound has DART precedents and the tested metabolite is considered qualitatively
655 different from the parent (i.e. different hazardous profile or no hazard identified) the following options
656 are available: 1) apply an additional safety factor of 10 when establishing reference dose(s), 2) test for
657 the DART endpoint of interest.

658 Deviations from this approach should be scientifically justified and alternative, *ad-hoc* toxicity studies
659 or additional toxicity studies should be considered on a case by case basis. The choice should take into
660 account the toxicological and toxicokinetic profile and, if available, information on mode of action of
661 the parent compound. The studies should be informative enough to characterize the toxicological
662 profile of the metabolite, derive a reference value where necessary or provide mechanistic information
663 to enable a comparative assessment to the parent.

664 If specific, unexpected alerts are detected in the 28-day rat study for the metabolite of interest, or if the
665 studies conducted are not considered appropriate to characterize the hazard for the metabolite, (e.g.
666 parent is carcinogenic or neurotoxic), targeted toxicity studies may be required, case by case, to
667 establish the toxic profile of the metabolite and to enable establishment of reference values.

668 Targeted toxicity studies could be for example:

- 669 - acute neurotoxicity in rodents (OECD TG 424 (1997), 418 (1995a))
- 670 - repeated dose neurotoxicity in rodents (OECD TG 424 (1997), 419 (1995b))
- 671 - developmental toxicity study (OECD TG 414 (2001a), 426 (2007d) or 443 (2011) with DNT
672 cohorts)
- 673 - 2-generation reproductive toxicity study in rats or extended one-generation study
- 674 - (OECD TG 416 (2001b), 443 (2011))
- 675 - Carcinogenicity, also combined with chronic toxicity, study (OECD TG 451 (2009b), 452
676 (2009c), 453 (2009d))

677 However, mechanistic evidences (e.g. absence of the proven mechanistic effect leading to
678 carcinogenicity of the parent molecule) or a convincing toxicological assessment taking into
679 consideration all available data, can be provided to establish reference doses.

680 Also in cases where an acute assessment is necessary, the hazard triggering the regulatory reference
681 value i.e. the ARfD, should be explored with appropriate testing if not already characterised by testing

682 performed with the parent. Furthermore, the above mentioned consideration should also apply for the
683 acute assessment, where appropriate.

684 **3.7. Assessment of the toxicological burden and relevance of metabolites (step 19)**

685 Metabolites that are considered as candidates for inclusion into the residue definition for risk
686 assessment have to be screened for their individual impact on the dietary exposure and risk (step 19).
687 The relative contribution of a metabolite (or group of metabolites with similar profile) to the overall
688 toxicological burden (i.e. the sum of identified metabolites, weighted by their relative potency), is
689 considered a suitable measure to assess the relevance of a metabolite in terms of dietary consumer
690 safety. The toxicological burden is meant as the sum of those residue compounds that were not
691 previously excluded from the assessment (e.g. due to low potency, minor quantitative relevance, non-
692 significant transfer of major feed metabolites to food of animal origin).

693 Where an exposure assessment is performed within the decision process for the residue definition
694 (TTC, livestock dietary burden), the individual metabolite exposure data should be derived from the
695 representative uses or from an extended data set of intended uses (if submitted) according to the
696 conditions set out in chapter 5.

697 The outcome of toxicological testing of metabolites should be followed by establishment of the
698 toxicity profile and relative potencies for risk assessment. The possible outcomes could be:

- 699 - The toxicity of the metabolite is similar to or lower than that of the parent (the relative
700 potency factor (RPF) is ≤ 1); in this case the risk assessment can be performed using the acute
701 and chronic reference values of the parent or applying a $RPF < 1$ to the reference values based
702 on an appropriate data set
- 703 - The toxicity of the metabolite is higher compared to parent i.e. has lower NOAEL/LOAEL
704 referring to the critical endpoint ($RPF > 1$); the same ADI or ARfD of the parent has to be
705 used, though the potency of the metabolite should be considered for the residue definition.
- 706 - The metabolite has a toxicity profile different from the parent; in this case specific acute and
707 chronic reference values should be established. If the assessment conducted was not including
708 the establishment of an acute reference value, the worst case assumption will be that the same
709 value should be applied to both the acute as well as the chronic reference values. To establish
710 the reference doses in absence of a full data package, an additional safety factor of 10 should
711 be applied, if the 28 day rat study is the only study available.
- 712 - A specific relationship with the parent toxicity cannot be established e.g. because the endpoint
713 of reference for the parent was only observed in a study of longer duration, and it may
714 represent an evolution of the finding observed in the study conducted with the metabolite; in
715 this situation a case by case approach including expert judgement should be applied by
716 considering e.g. expert evaluation of the observed toxicity/pathology or the use of an
717 additional assessment factor.

718 **4. Module 3: Decision making for residue definition for risk assessment (step 20)**

719 The parent is considered as relevant for inclusion into the residue definition if present in at least one
720 commodity of relevance for human consumption (either via food of plant or animal origin).

721 The residue definition should be proposed per crop or livestock category.

722 Within a crop category, a residue definition consisting of separate components should be proposed for
723 metabolites bearing a toxicity profile different from parent and/or other relevant metabolites (see
724 chapter 3.7).

725 After grouping and toxicological assessment, the toxicological burden of each metabolite in a group of
726 metabolites with a comparable toxicity profile is expressed as percentage of the overall burden for the
727 critical effect (i.e. the effect triggering the reference value). By default, metabolites or groups of them
728 comprising $\geq 75\%$ of the overall toxicological burden should be considered relevant for inclusion into
729 the residue definition. Differences in the potency to parent should be balanced by accounting for a
730 relative potency factor (RPF). If a metabolite or group of metabolites from a highly potent active
731 substance is considered as significantly less toxic (falling in the group of non-potent substances), the
732 criteria of non-potent active substances apply to these metabolites. The threshold of 75% should be
733 considered as indicative and is not expected to cover all possible cases.

734 Where for derivation of the residue definition absolute exposure considerations¹⁰ are applied in
735 addition to the concept of relative contribution of metabolites to the dietary toxicological burden, these
736 exposure considerations need to consider the full picture of possible dietary exposure, i.e. direct
737 exposure via food of plant and indirect via food of animal origin, and where appropriate from
738 groundwater used as drinking water. Where this condition cannot be met, i.e. reliable dietary exposure
739 estimates cannot be provided, the assessment has either to be skipped (TTC), or a conservative
740 approach has to be applied (e.g. covering uncertainty on residue uptake from soil by rotational crops),
741 or a data gap is identified. In the latter case, the setting of a residue definition is either not possible or
742 only possible on a provisional basis.

743 In case of relevant isomeric properties of a residue of concern (see chapter 6), additional uncertainty
744 factors may be applied.

¹⁰ Absolute exposure considerations may refer to e.g. exclusion of metabolites via TTC, refinement of input values from metabolism data by field studies supporting a specific use

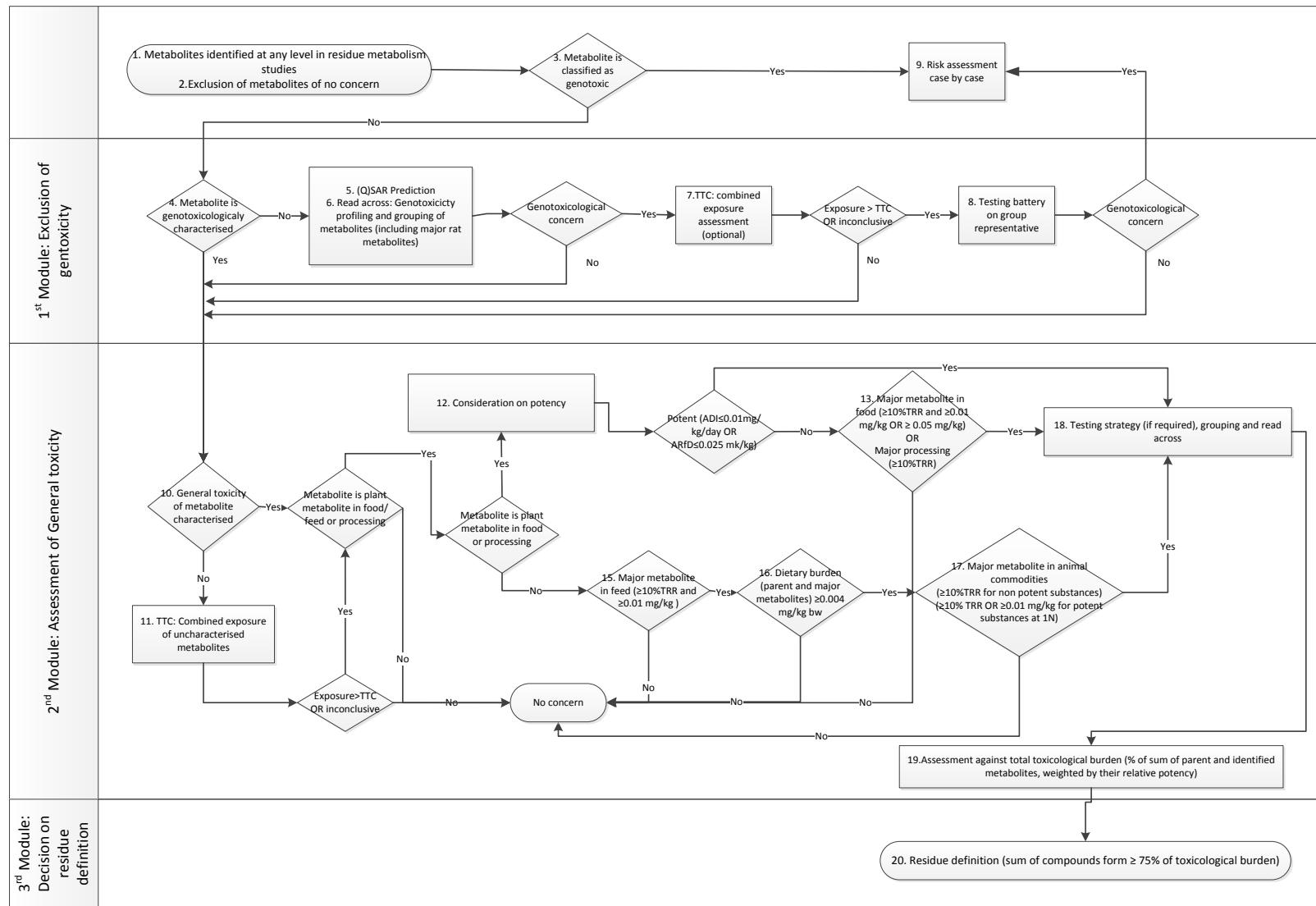


Figure 3: Overall assessment scheme

747 **5. Exposure assessments**

748 **5.1. General aspects**

749 The significance of absolute quantities of residues in metabolism and field studies is limited as regards
750 their use in exposure estimates. While for a very limited number of uses (e.g. the representative uses in
751 the pesticide peer review) the regulatory relevant consumer exposure (in mg/kg bw/d) can in most
752 instances be reliably estimated, this is not the case for uses intended in the future, which may create a
753 higher exposure potential, e.g. by higher application rates or shorter PHIs. In order to set up a residue
754 definition that is sufficiently robust against changes of authorisations of additional uses, the relative
755 contribution of metabolites to the toxicological burden is preferred over absolute exposure estimates as
756 a decision criteria for the residue definition.

757 However, within the decision process on the residue definitions, exposure calculations and assessment
758 of metabolites against agreed triggers may be performed where appropriate (obligatory in case of
759 potentially relevant metabolites in feed items, or on a facultative basis (TTC assessments of
760 genotoxicity (module 1) and general toxicity (module 2).

761 This guidance will rely on the core criteria and principles set out in test methods, guidelines and
762 guidance documents relevant to the submission of information to be used for the assessments for
763 pesticides in Europe or by the pertinent regulations them-selves. In this context it is implied that the
764 uncertainties and boundaries of assessments to inform regulatory decisions are acknowledged and
765 accepted, and as they are considered to apply to a comparable extend to every assessment within the
766 same framework, they are not further detailed and discussed in this guidance.

767 The following prerequisites and established principles are taken as given when applying the approach
768 suggested in this guidance document:

- 769 • In plant metabolism studies, selection of crops and use patterns are representative and
770 consistent with existing or intended GAPs and will reflect the situation where the highest
771 amount of radioactivity resulting from metabolism would be expected in the consumable¹¹
772 parts of the crop at harvest (steps 13-15)
- 773 • Where metabolism data is intended to be directly used for exposure estimates (TTC, livestock
774 dietary burden), scaling of overdosed metabolism studies is acceptable within an agreed range
775 of application rates and where the latter is the only deviation from cGAP (proportionality
776 approach EFSA, 2015).
- 777 • Only models and parameters agreed as applicable for assessments in the EU (variability and
778 processing factors; consumption data, livestock feeding tables etc.) are used in line with the
779 most current requirements and conventions.
- 780 • All residue data are expressed as equivalents of a reference compound (in most cases parent
781 compound) for exposure estimates and subsequent comparison against relevant triggers (TTC,
782 livestock dietary burden).
- 783 • Potential exposure from other possible sources related to the authorisation of a pesticide
784 (including drinking water) will be taken into account in order to ensure that total exposure of
785 consumers to a given metabolite is appropriately assessed. Metabolites that both occur in food
786 and in groundwater should be considered with their full consumer exposure potential in the
787 frame of TTC assessments for screening of dietary non-relevance and to inform risk managers
788 on additional sources of exposure.
- 789 • Similarly, the simultaneous use of the active substance as a biocide or in veterinary medicine
790 is reported and all available information submitted, to appropriately consider possible

¹¹ for livestock and consumers, respectively

791 cumulated exposure due to different uses of the same substance. Also, where the structure of a
792 metabolite is identical to that of another registered active substance all accessible information
793 will be provided, to take into account in the frame of TTC assessments for screening of dietary
794 non-relevance, and to inform risk managers on additional sources of exposure.

795
796 In principle, where metabolites are excluded from the residue definition based on exposure estimates
797 falling below the appropriate trigger (TTC, livestock dietary burden), the residue definitions are only
798 applicable within the boundaries of this specific exposure assessment. If a more critical residue
799 situation is created e.g. by extension of uses or number of applications, even within the assessed crop
800 groups (e.g. root crops, cereals, fruit crops), affirmation of the established residue definition by an
801 updated exposure assessment is required. However, if the metabolism data used for the initial
802 assessment of the residue definition are truly corresponding to realistic worst case conditions and are
803 covering an extensive range of uses¹², and any complementing relevant information with regard to
804 other sources of exposure to the active substance or its metabolites is complete, the necessity for a
805 soon revision is less probable.

806 Metabolites identified exclusively in plant feed items need to be considered for the livestock dietary
807 burden calculation when detected at significant proportions and levels ($\geq 10\%$ TRR and ≥ 0.01 mg/kg).
808 In addition, all metabolites deemed relevant for food items ($\geq 10\%$ TRR and ≥ 0.01 mg/kg, OR
809 ≥ 0.05 mg/kg, respectively) that can be used as feed items have to be included for livestock dietary
810 burden estimates. In case the exposure to livestock is comprised mostly of minor metabolites, the
811 overall dietary burden should yet be assessed. In this case a case by case evaluation is required, and
812 the scrutiny necessary in this evaluation will likely be driven by the structural and intrinsic properties
813 of these minor metabolites (e.g. a metabolite with a structure indicating it might be highly fat-soluble
814 or itself hardly metabolised may require more thorough considerations than a metabolite lacking such
815 properties). If exposure is significant and there is the potential that measurable residues may be
816 transferred into animal commodities, a best estimate of the levels (or a likely range of levels) of the
817 metabolite residues should be provided. The applicability of the available livestock data with parent to
818 the metabolites under assessment should be discussed.

819 5.2. Metabolite residue input levels for exposure calculation

820 Assessments should be made for the **target PHI**, even if this may not always represent the worst case
821 residue situation for all metabolites individually. However, in case of suspected genotoxicity of
822 metabolites (based on (Q)SAR, new alerts, *in vitro* tests), the maximum occurrence of metabolites at
823 the target PHI or later should be calculated and exposure compared to the adequate trigger and highest
824 consumption (equivalent to short-term consumer risk assessments). The reason is the underlying
825 assumption of non-thresholded genotoxicity, where a single exposure event may already provoke a
826 genotoxic effect. Where metabolites are grouped based on their common genotoxicity endpoint of
827 concern (i.e. point mutation, structural and numerical chromosome aberrations), the occurrence of
828 these metabolites should be assessed based on their critical occurrence level at a specific PHI (the
829 “worst case PHI”). Combination of different PHIs for metabolites within one group is not considered
830 adequate.

831 As a first step of exposure assessment, **median** and **maximum residue levels** for every single
832 metabolite or for a group of metabolites as appropriate should be derived. These should be based on as
833 much information as possible.

834 i) Best data would be **measured levels** from residue field trials (assisted by targeted processing
835 studies, if applicable) or livestock feeding studies performed under realistic worst case
836 conditions. If measured data are available, but not conforming GAP or anticipated dietary
837 burden levels (parent and metabolites), approximation to more realistic conditions should be

¹² e.g. where a number of MRL applications are part of dossier submission

838 attempted to receive highest and mean metabolite levels (linear extra- or extrapolation to GAP
839 rate according to the generally accepted rate range of between 0.3x and 4x the GAP rate,
840 respecting the limitations of this approach; refer to EFSA, 2015). While scaling of residue
841 field trial data has been investigated and confirmed as appropriate within the ranges
842 established, for livestock, toxicokinetic information should be used to assess if interpolation
843 can be made to adjust for a different exposure rate of the animal than investigated in tests and
844 studies.

845 ii) If such data are not available, **conversion factors** (residue level of indicator compound
846 divided by residue level of metabolite) should be derived from appropriate metabolism and/or
847 field data and be applied to the set of field samples analysed for the indicator compound. This
848 would allow determination of highest and mean metabolite levels. Often, parent compound is
849 an appropriate indicator, however, another main residue compound (dominant metabolite
850 analysed in metabolism and field trials or feeding studies) may provide more reliable
851 estimates of exposure at the relevant sampling stage. If a targeted primary crop metabolism
852 study is available that covers the intended use in terms of the type of crop or crop group, the
853 number and type of applications and sampling, then this study should be preferred for use in
854 exposure assessments over averaged data from a set of metabolism studies not exactly
855 reflecting target conditions. If several metabolism studies cover the same intended use (e.g. by
856 differing only in the radiolabel position), then mean conversion factors should be applied. If
857 no targeted metabolism study is available, adequate mean conversion factors should be
858 derived on base of available data, accompanied by a justification. Considerations should
859 include the type of application (e.g. soil or foliar), number of applications, their interval and
860 sampling stage (rate of metabolism), matrix type, active substance properties (systemic
861 behaviour), differences between metabolism studies (crop groups; mammals). Conversion
862 factors may also be based on intermediate or non-food/non-feed samples. In any case,
863 attention should be given to observed differences between metabolism and field trials (e.g.
864 reduced or enhanced metabolism in field trials compared to metabolism studies as observed by
865 residue levels of the indicator compound).

866 iii) In the context of this guidance, conversion factors are only intended to be used for screening
867 purposes for the relevance assessment of metabolites before setting the final residue
868 definition. It is not intended to supersede data requirements for the generation of field trials
869 according to the residue definition for risk assessment.

870 iv) It is only meaningful to apply conversion factors to field trials, where residues of the indicator
871 compound can be reliably determined in the field (>LOQ in at least 25% of field trials). Where no adequate field data is available, the metabolite input level for exposure assessments
872 can be derived by **normalising** the metabolism study values to 1N GAP conditions (if outside
873 $\pm 25\%$ of application rate), thus resulting in a single residue value. This value, derived for one
874 (or more) model crops in metabolism studies, may need to be extrapolated to all intended
875 crops for exposure assessment. Where only one indicator residue value from field trials is
876 available \geq LOQ, the highest residue from field and (normalised) metabolism studies should
877 be used.

878 v) The same principles for exposure assessments should apply to primary and **rotational crops**
879 (conversion factors, selection of indicator compound, preference of field data over metabolism
880 data, normalisation and extrapolation of crops).

881 Special consideration should be given to the effective N rate, at which rotational crop studies
882 are performed. The N rate is understood as the ratio of actual residues in the soil under study
883 conditions to the maximum likely residue soil situation comprising the background levels
884 from long-term use as well as realistic seasonal applications (e.g. crop failure is likely to be
885 relevant after early applications at growth stages, where crop damage cannot be excluded,
886 while it is unlikely to be relevant after applications immediately prior to harvest).

888 Exposure estimates for rotational crops may be normalised to 1N rate. The following should
889 be considered in the derivation of 1N rate:

890 • The expected maximum background levels of parent and metabolites after GAP
891 compliant use are calculated based on empirically derived kinetic types, degradation
892 half-lives and specific boundary conditions. Such background levels for assessment
893 should be adopted from the environmental fate assessment of parent and metabolites
894 and expressed in terms of g as/ha for scaling purposes. Documented evidence of
895 reduced bioavailability of soil residues over time ("aging") may be used for
896 refinement.

897 • If soil residue data for parent and metabolites are - together with the plant residue
898 data - available in rotational crop studies, these should be preferred for comparison
899 with the predicted soil background levels to calculate the effective N rate, especially
900 where metabolites show significant transfer from soil into the crops. Thereby, the soil-
901 plant transfer of relevant metabolites in the rotational crop studies at the different
902 plant-back intervals can be quantitatively assessed. Individual N rates may be derived
903 for parent and metabolites.

904 • Where soil residue data are provided within a rotational crop study for one sampling
905 point only, the time-dependent occurrence of metabolites might be calculated.

906 • Where no soil residue data are provided in the study reports and the active substance
907 and/or metabolites are considered as persistent with accumulation over years of GAP
908 compliant use, the transfer of soil residues into rotational crop has to be estimated
909 based on the calculated mean concentration of residues in soil under study conditions
910 and the maximum occurrence in the rotational field crops.

911 A case should be provided for the set-up of the scenario used for decision making.

912 Rotational crop studies are usually performed on a set of model crops (cereals, root and tuber
913 vegetable, leafy crop). In case of accumulating compounds, where assumptions on the likely
914 crop rotation can hardly be made for years, extrapolation to all potential field crops may be
915 required.

916 **6. Assessment of stereoisomers (enantiomers and diastereoisomers) for the parent and 917 metabolites**

918 The current data requirements for plant protection products indicate that the information provided
919 must be sufficient to permit an evaluation to be made on the nature and extent of the risks for
920 consumers from exposure to the active substance, its metabolites, degradation and reaction products,
921 where they are of toxicological significance, and also that it is necessary to establish the isomeric
922 composition and possible metabolic conversion of isomers when relevant. This does also include the
923 case when metabolites are isomers of the active substance, i.e. when interconversion (induced
924 enzymatically, photochemically, microbially, thermally, or in a different manner) leads to the
925 generation of isomers of the active substance that do not match the technical specification of the latter.

926 The impact of stereochemistry on the toxicological relevance of pesticide metabolites for dietary risk
927 assessments has previously been discussed in detail (EFSA PPR Panel, 2012). Since isomers may
928 differ in their toxicological potency or profile, changes in stereoisomeric compositions need to be
929 considered for the risk assessment. Therefore, the potential differences between the toxicologically
930 tested isomeric mixture(s) and the stereoisomeric composition of the residues to which humans will be
931 exposed need to be addressed.

932 Guidance regarding the technical aspects of addressing the aspects including basic chemical
933 evaluations, approaches to study design, sampling and analysis strategies or similar aspects relevant
934 for obtaining information on the stereochemical composition of the residues is considered out of scope
935 of this document. For guidance on these matters, a "Guidance of EFSA on completing risk

936 assessments for active substances of plant protection products that have stereoisomers and for
937 transformation products of any active substances where these transformation products may have
938 stereoisomers" is currently under development (hereinafter referred to as EFSA Guidance on isomers).
939 Moreover, the criteria to determine whether or not a change in the stereoisomer compositions is
940 significant (in terms of residue analysis) will also be defined in the ESFA Guidance on isomers, taking
941 into account the variability that can be reasonably expected in the analytical results obtained with
942 stereo-selective methods used in radiolabelled metabolism studies and/or in field studies.

943 With regard to the dietary risk assessment considerations for isomers, a stepwise approach is proposed
944 in this guidance document. The stepwise approach can be initiated with **either considerations on the**
945 **exposure profile or on the hazard characterisation** of the different isomers whatever is deemed
946 most suitable and adequate for the specific situation. A special case is derived in terms of the
947 evaluation of the genotoxic potential of isomers.

948 **6.1. Exclusion of genotoxicity for isomers or changed isomeric compositions**

949 Since biological systems are chiral entities, in a chiral environment stereoisomers can show selective
950 absorption, accumulation, enzyme interactions and metabolism, receptor interactions and DNA
951 binding. Consequently each stereoisomer or isomeric mixture can have different kinetic, dynamic and
952 toxicological profile. With the DNA 3D structure certain compounds could interact stereo selectively.
953 Examples include Cis-platin (Boudvillain et al., 1995; Kasparkova et al., 2008; Marchan et al., 2004)
954 and transformations leading to epoxide intermediates which are particularly prone to stereo selective
955 mutagenicity and carcinogenicity i.e. Aflatoxin B1 (Stewart et al., 1996, Iyer et al., 1994) and styrene
956 7,8-epoxide.

957 For pesticide substances there is substantial evidence of stereo-selective metabolism, stereo-selective
958 toxicity and also data on isomerisation in the environment, but no examples for stereo-selective
959 genotoxicity of pesticides or their metabolites are currently known. Such conditions may not be
960 completely excluded i.e. stereo-selective genotoxicity might not have been discovered by studies;
961 however (Q)SAR analysis predict structural alerts independently from the stereochemical
962 composition.

963 The low level of uncertainties linked to the potential genotoxicity of isomers or different isomer
964 compositions of a compound leads to the conclusion that isomers and changes in the isomers
965 composition is not anticipated to be a genotoxicity concern and will be not further addressed by the
966 guidance.

967 **6.2. Isomer assessment step 1 Exposure profile**

968 The stereoisomeric ratio to which humans will be exposed has to be defined.
969 Different outcomes from the investigation of the isomeric composition of the residues in consumable
970 crop parts/commodities are possible, making it difficult to suggest a generic strategy that will cover all
971 situations; however, the most likely cases are expected as follows:

972 Case 1: The stereoisomeric ratio of the active substance and the pertinent metabolites (i.e.
973 metabolites evaluated in module 2 for which the stereoisomeric composition should be known), found
974 in samples from nature-of-residues studies across different crops (including rotational crops) and at
975 different sampling times, as well as in livestock metabolism studies where appropriate, show no
976 difference in stereoisomeric ratio compared to the parent and the metabolites addressed in module 2.
977 In this case, it is important that the mixture composition used in the key study performed to assess the
978 hazard in module 2 is reflecting the mixture composition of the residues studies. In the case of 'no
979 difference' further investigation of isomer ratios is not required, and the magnitude of residue studies
980 with analysis of residues as the sum of the respective stereoisomers are appropriate to be used for
981 dietary exposure and risk assessments. No further isomer-specialised hazard assessment is required.
982

983 Case 2: The stereoisomeric compositon of residues found in the nature-of-residues studies
984 show a significant difference compared to the stereoisomeric ratio of parent and compounds addressed
985 in module 2, and these changes are consistently observed across crops / commodities and different
986 sampling / harvesting intervals (and number of available studies satisfies the criteria set out in current
987 guidance for establishing a global residue definition). Further investigation of isomer ratios in residue
988 trials is not necessarily required. Hazard evaluation should be conducted.

989 Case 3: The stereoisomeric composition of residues found in samples from the nature-of-
990 residue studies show a difference compared to parent and compounds addressed in module 2 or the
991 composition / ratio of isomers found in the nature-of-residue studies is not coherent across the crops /
992 commodities, in particular when showing a change of the isomeric ratio into different directions (for
993 both the active substance and pertinent metabolites). Hazard evaluation should be conducted. In a case
994 where a significant impact of the isomer ratio on the observed toxicity is expected, robust data for
995 exposure assessment become necessary. Studies on the magnitude of residues (decline and at harvest
996 trials, processing trials, rotational crop trials, feeding studies as appropriate) have to be conducted
997 using stereoselective analytical methods for. This applies to all crops and commodities to be assessed
998 in order to generate a representative number of results. With regard to representativeness the same
999 standards should be applied as defined by current guidance on magnitude-of-residue studies.

1000 6.3. Isomer assessment step 2: Hazard evaluation

1001 The stereoisomeric composition established as the likely exposure profile should be compared with
1002 that of the material used in the toxicological studies conducted with parent or metabolites, if that is the
1003 case. If no significant change in composition (including ratio) is observed, the data for the
1004 toxicologically tested substance should be used for risk assessment.

1005 Upon assessment of the study results, and where feasible, a case might be made for waiving further
1006 toxicological testing by deriving a factor to describe the change of ratio of the individual isomers in
1007 residue studies compared to the ratio initially tested in the toxicology studies for the parent and
1008 metabolites if is the case. This factor can be used as an equivalence/correction factor in the dietary risk
1009 assessment. This conservative approach might be meaningful mostly when the number of isomers is
1010 very limited, and the uncertainty added to the risk assessment by using such factors is noted.

1011 This worst case approach may be taken for the derivation of the ADI by applying a factor of two when
1012 the mixture is a sample racemate of two isomers and is based on the assumption that the biological
1013 activity (i.e. target effect, toxicodynamic and toxicokinetic/metabolism properties) is due to one
1014 isomer which is representing all residue.

1015 A larger factor can be applied for compounds with more than one chiral centre with the assumption
1016 that all biological activity is due to the isomer present in the smallest proportion and that all residues in
1017 food are present in this form. This approach is however considered to be very conservative though it
1018 could be used for the definition of "significant changes" in isomer composition and then trigger further
1019 considerations when exposure is above the ADI.

1020 When significant change in isomer composition is detected in residue studies, the next step is the
1021 hazard evaluation of the isomeric mixture considering **all the available data** on isomers present in the
1022 mixture and the **nature and severity of the toxicological** effects observed with the mixture. The aim
1023 is to conclude if the stereoisomers will contribute qualitatively and quantitative to the hazard. This
1024 should be done by providing supporting evidences. Supporting evidences can be provided by
1025 additional investigations as described in the module 2 of this guidance and by making use of *in-vitro*
1026 and/or *in-vivo* studies to investigate initially the toxicological and metabolic properties of the mixture
1027 and, if is the case, of the single enantiomer.

1028 If the hazard evaluation concludes that no quantitative and/or qualitative differences are likely and this
1029 is scientifically justifiable, the risk assessment based on total exposure to all stereoisomers is

1030 appropriate. If conclusion cannot be made, the risk assessment will be made by considering the
 1031 specific isomeric hazard characterisation to provide a specific ADI.

1032 **6.4. Isomer assessment step 3: Consumer risk assessment**

1033 Both acute and chronic risk assessments need to be considered. As for case 1 and 2, the consumer risk
 1034 assessment is conducted against the toxicological reference values derived for the residue of concern
 1035 from the data package deemed suitable.

1036 As for case 2 and 3, if data on the toxicity of individual isomers and quantitative data on the isomeric
 1037 composition of residues in food are available, calculation of the consumer intake can be carried out.

1038 **7. Uncertainties**

1039 This chapter is still under development and might be changed according to the Scientific Committee
 1040 guidance on uncertainty in scientific assessment (pending adoption).

1041 In its Scientific Opinion the PPR Panel (EFSA PPR Panel, 2012) proposed different levels of
 1042 uncertainties analysis (i.e. qualitative, deterministic or probabilistic) for the uncertainties affecting the
 1043 assessment. It is assumed that the uncertainty assessment will take into account case by case
 1044 circumstances and that will be used to identify critical areas that need further refinement. PPR Panel
 1045 (2012) recommended initially, all significant uncertainties to be evaluated qualitatively; however, if
 1046 the outcome is not considered clear enough for a decision making, those critical uncertainties should
 1047 be analysed quantitatively.

1048 A tabular approach is recommended for evaluation and expression of uncertainties affecting the
 1049 residue definition.

1050 Table 1. Tabular approach for evaluation and expression of uncertainties affecting the residue
 1051 definition. The +/- symbols indicate whether each source of uncertainty has the potential to make the
 1052 true risk higher (+) or lower (-) than the indicated outcome. The number of symbols provides a
 1053 subjective relative evaluation of the magnitude of the effect (e.g. +++ indicates an uncertainty that
 1054 could make the true risk much higher). If the effect could vary over a range, lower and upper
 1055 evaluations are given (e.g. + / ++). If possible, the user should indicate the meaning of different
 1056 numbers of symbols (e.g. two symbols might be used to represent a factor of 5, and three symbols a
 1057 factor of 10). Finally, the combined impact of all the uncertainties is evaluated subjectively. More
 1058 detail on the rationale for these evaluations (especially for the more important uncertainties and the
 1059 overall uncertainty) should be provided as separate text accompanying the table.

Source of uncertainty	Magnitude and direction of influence
Concise description of source of uncertainty	Symbols to show evaluation of influence (e.g.: +/-++)
Insert one row for each source of uncertainty affecting the assessment	
Overall evaluation of uncertainty affecting the assessment outcome	Evaluation of overall uncertainty (e.g., - - - +/-)
Add narrative text here, describing the assessor's subjective evaluation of the overall degree of uncertainty affecting the assessment outcome, taking account of all the uncertainties identified	

above.

1060

1061

1062 A number of uncertainties having a potential impact on the residue definition (and therefore ultimately
1063 on the dietary risk assessment) were noted across the different steps described in this guidance
1064 document and they were listed below. The list should be intended as indicative and a more thorough
1065 evaluation should be performed on a case by case basis as the uncertainties are largely dependent on
1066 the amount and quality of the available data.

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

- Exclusion of genotoxicity using of (Q)SAR and read across. In particular, the use of read across for further assessment of chemical structures of concern following the (Q)SAR is a potential source of uncertainties.
- Grouping and read across are applied as a tool to support the general toxicological assessment of metabolites and this is a potential source of uncertainties.
- The use of TTC as a screening tool in the toxicological risk assessment of residues was considered a source of uncertainties, particularly because of the uncertainties linked to the exposure scenario.
- Differential metabolism of the isomers may lead to a predominance of one of the isomers in animals or plants and this is considered a source of uncertainties in the toxicity evaluation of residues.
- The exclusion criteria based on simple structural changes is a source of uncertainties, particularly when dealing with endpoints of chronic toxicity. Metabolism of a chemical often comprises, among others, demethylation or hydroxylation of a ring structure. It is assumed that the simple demethylation or hydroxylation of a ring structure without opening the ring will not increase the toxicity of the metabolite. This assumption is based on a conclusion in an External Scientific Report to EFSA prepared by AGES (2010). It is noted that AGES based this conclusion on data obtained mostly from acute toxicity studies. AGES also noted that there are some compounds where hydroxylation of a ring structure may increase its toxicity (e.g. hydroquinone). Therefore, some uncertainty remains on the applicability to predict the toxicity after short-term or long-term exposure.
- In the context of this guidance thresholds are applied across multiple steps of the decision scheme. They are arbitrary in their nature and considered a source of uncertainties. The use of the ADME study conducted in rodent species is a relevant source of uncertainties, particularly when dealing with effects observed in different species, pregnant animals or in the foetus.
- A number of uncertainties are linked to the experimental conditions applied for the characterisation of the metabolic and toxicological profile of the parent substance and of the metabolites.
- The lack of information about the nature and quantity of unidentified residues needs to find due considerations in the uncertainty assessment.
- Metabolite exposure assessment has to rely not only on the available data, but on extrapolations and additional assumptions of varying degrees of uncertainty, whose inherent uncertainties need to be addressed. Risk managers should be informed about additional sources of exposure (e.g. groundwater, metabolites common to other active substances).
- The potential contribution of individual metabolites to adequate reference values is assessed under step 19; a detailed uncertainty analysis covering the overall level of conservatism for the chosen scenario can be provided upon request of risk management.

1112 **REFERENCES**

1113
1114 AGES (Austrian Agency for Health and Food Safety), 2010. Impact of metabolic and degradation
1115 processes on the toxicological properties of residues of pesticides in food commodities. External
1116 scientific report. EFSA. Available from: <http://www.efsa.europa.eu/en/supporting/pub/449e.htm>

1117 Ashby J and Tennant RW, 1988. Chemical structure, *Salmonella* mutagenicity and extent of
1118 carcinogenicity as indicators of genotoxic carcinogenesis among 222 chemicals tested in rodents by
1119 the U.S. NCI/ NTP. *Mutation Research*, 204, 17-155.

1120 Ashby J and Tennant RW, 1991. Definitive relationships among chemical structure, carcinogenicity
1121 and mutagenicity for 301 chemicals tested by the U.S. NTP. *Mutation Research/reviews in genetic*
1122 *Toxicology*, 257, 3, 229-306.

1123 Bailey A, Chanderbhan N, Collazo-Braier N, Cheesman M and Twaroski M, 2005. The use of
1124 structure-activity relationship analysis in the food contact notification program. *Regulatory*
1125 *Toxicology and Pharmacology*, 42, 225-235.

1126 Benigni R and Bossa C, 2008. Predictivity and reliability of (Q)SAR models: The case of mutagens
1127 and carcinogens. *Toxicology Mechanisms and Methods*, 18(2-3), 137-147.

1128 Blackburn K, Daston G, Fisher J, Lester C, Naciff JM, Rufer ES, Stuard SB and Woller K, 2015. A
1129 strategy for safety assessment of chemicals with data gaps for development and/or reproductive
1130 toxicity. *Regulatory Toxicology and Pharmacology*, 72, 202-215.

1131 Boudvillain M, Dalbies R, Aussourd C, Leng M, 1995. Intrastrand cross-links are not formed in the
1132 reaction between transplatin and native DNA: relationm with the clinical inefficiency of transplatin.
1133 *Nucleic Acids Research*, 23, 2381-2388.

1134 Creasy DM, 2003. Evaluation of testicular toxicology: A synopsis and discussion of the
1135 recommendations proposed by the society of toxicologic pathology. *Birth Defects Res (part B)*, 68,
1136 408-415.

1137 ECHA (European Chemicals Agency), 2008. Guidance on Information Requirements and Chemical
1138 Safety Assessment. Chapter R6. ECHA, Helsinki, Finland. 134pp. Available online:
1139 http://echa.europa.eu/documents/10162/13632/information_requirements_r6_en.pdf.

1140 ECHA (European Chemicals Agency), 2013. Grouping of substances and read across approach, Part1.
1141 ECHA, Helsinki, Finland. Available online:
1142 http://echa.europa.eu/documents/10162/13628/read_across_introductory_note_en.pdf.

1143 ECHA (European Chemicals Agency), 2015. Read across Assessment Framework, ECHA, Helsinki,
1144 Finland. Available online: http://echa.europa.eu/documents/10162/13628/raaf_en.pdf

1145 EFSA (European Food Safety Authority), 2015, Residues trials and MRL calculations - Proposals for
1146 a harmonised approach for the selection of the trials and data used for the estimation of MRL,
1147 STMR and HR. Available online:
1148 http://ec.europa.eu/food/plant/docs/pesticides_mrl_guidelines_plant_mrl_calculations_2015_en.pdf

1149 EFSA Scientific Committee, 2011. Scientific Opinion on genotoxicity testing strategies applicable to
1150 food and feed safety assessment. EFSA Journal 2011;9(9):2379, 69
1151 pp.doi:10.2903/j.efsa.2011.2379

1152 EFSA Scientific Committee, 2012. Scientific Opinion on exploring options for providing advice
1153 about possible human health risks based on the concept of Threshold of Toxicological Concern
1154 (TTC). EFSA Journal 2012;10(7):2750, 103 pp. doi:10.2903/j.efsa.2012.2750

1155 EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2012. Scientific
 1156 Opinion on Evaluation of the Toxicological Relevance of Pesticide Metabolites for Dietary Risk
 1157 Assessment. EFSA Journal 2012;10(07):2799, 187pp. doi:10.2903/j.efsa.2012.2799

1158 EFSA PPR Panel (EFSA Panel on Plant Protection Products and their Residues), 2013. Scientific
 1159 Opinion on relevance of dissimilar mode of action and its appropriate application for cumulative
 1160 risk assessment of pesticides residues in food. EFSA Journal 2013;11(12):3472, 40 pp.
 1161 doi:10.2903/j.efsa.2013.3472

1162 EFSA Panel on Plant Protection Products and their Residues (PPR), 2014. Scientific Opinion on the
 1163 identification of pesticides to be included in cumulative assessment groups on the basis of their
 1164 toxicological profile (2014 update). EFSA Journal 2013;11(7):3293, 131 pp.
 1165 doi:10.2903/j.efsa.2013.3293

1166

1167 Enoch SJ and Cronin MTD, 2012. Development of new structural alerts suitable for chemical category
 1168 formation for assigning covalent and non-covalent mechanisms relevant to DNA binding. Mutation
 1169 Research – Reviews, 743 (1–2), 10–19.

1170

1171 EC (European Commission), 1997. Guidance Document, Appendix A - Metabolism and Distribution
 1172 in Plants 7028/VI/95 rev.3. EC, Brussels, 13pp. Available online:
 1173 http://ec.europa.eu/food/plant/pesticides/max_residue_levels/guidelines/index_en.htm.

1174 FAO (Food and Agriculture Organization of the United Nations), 2009. FAO Manual on the
 1175 Submission and Evaluation of Pesticide Residues Data; Plant Production and Protection Paper 197;
 1176 Rome 2009 (second edition)

1177 Gleeson MP, Modi S, Bender A, Robinson RL, Kirchmair J, Promkatkaew M, Hannongbua S, and
 1178 Glen RC, 2012. The challenges involved in modelling toxicity data in-silico: a review. Current
 1179 pharmaceutical design, 18 (9), 1266-1291.

1180 Iyer RS, Coles BF, Raney KD, Thier R, Guengerich FP and Harris TM. 1994. DNA adduction by the
 1181 potent carcinogen aflatoxin B1: Mechanistic studies. Journal of American Chemical Society, 116,
 1182 1603–1609.

1183 Kasparkova J, Marini V, Bursova V and Brabec V, 2008. Biophysical Studies on the Stability of
 1184 DNA Intrastrand Cross-Links of Transplatin. Biophysical Journal, 95, 4361-4371.

1185 Kazius J, McGuire R and Bursi R, 2005. Deviation and validation of toxicophores for mutagenicity
 1186 prediction. Journal of Medicine Chemistry, 48 (1), 312-320.

1187 Kirkland D, Zeiger E, Madia F, Gooderham N, Kasper P, Lynch A, Morita T, Ouedraogo G, Parra
 1188 Morte JM, Pfuhler S, Rogiers V, Schulz M, Thybaud V, van Benthem J, Vanparys P, Worth A and
 1189 Corvi R, 2014a. Can in vitro mammalian cell genotoxicity test results be used to complement
 1190 positive results in the Ames test and help predict carcinogenic or in vivo genotoxic activity? I.
 1191 Reports of individual databases presented at an EURL ECVAM Workshop. Mutation
 1192 Research/Genetic Toxicology and Environmental Mutagenesis, 775–776, 55-68.

1193 Kirkland D, Zeiger E, Madia F and Corvi R, 2014b. Can in vitro mammalian cell genotoxicity test
 1194 results be used to complement positive results in the Ames test and help predict carcinogenic or in
 1195 vivo genotoxic activity? II. Construction and analysis of a consolidated database. Mutation
 1196 Research/Genetic Toxicology and Environmental Mutagenesis, 775–776, 69-80.

1197 Marchan V, Pedroso E and Grandas A, 2004. Insights into the reaction of transplatin with DNA and
 1198 proteins: Methionine-mediated formation of histidine-guanine trans-Pt(NH3)(2) cross-links.
 1199 Chemistry-a European Journal, 10, 5369-5375.

1200 OECD (Organisation for Economic Co-operation and Development), 1995a. Test No. 418: Delayed
 1201 Neurotoxicity of Organophosphorus Substances Following Acute Exposure, OECD Guidelines for

1202 the Testing of Chemicals, Section 4, OECD Publishing, Paris.
1203 DOI: <http://dx.doi.org/10.1787/9789264070905-en>

1204 OECD (Organisation for Economic Co-operation and Development), 1995b. Test No. 419: Delayed
1205 Neurotoxicity of Organophosphorus Substances: 28-day Repeated Dose Study, OECD Guidelines
1206 for the Testing of Chemicals, Section 4, OECD Publishing, Paris.
1207 DOI: <http://dx.doi.org/10.1787/9789264070929-en>

1208 OECD (Organisation for Economic Co-operation and Development), 1996. Test No. 422: Combined
1209 Repeated Dose Toxicity Study with the Reproduction/Developmental Toxicity Screening Test,
1210 OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing, Paris. DOI:
1211 <http://dx.doi.org/10.1787/9789264070981-en>

1212 OECD (Organisation for Economic Co-operation and Development), 1997. Test No. 424: Neurotoxicity Study in Rodents, OECD Guidelines for the Testing of Chemicals, Section 4, OECD
1213 Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264071025-en>

1215 OECD (Organisation for Economic Co-operation and Development), 2001a. Test No. 414: Prenatal
1216 Development Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4, OECD
1217 Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264070820-en>

1218 OECD (Organisation for Economic Co-operation and Development), 2001b. Test No. 416: Two-
1219 Generation Reproduction Toxicity, OECD Guidelines for the Testing of Chemicals, Section 4,
1220 OECD Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264070868-en>

1221 OECD (Organisation for Economic Co-operation and Development), 2007a. Guidance Document on
1222 the Validation of (Quantitative) Structure Activity Relationship ((Q)SAR) Models. OECD Series
1223 on Testing and Assessment No. 69.ENV/JM/MONO(2007)2. OECD Publishing, Paris. Available
1224 at: <http://www.oecd.org/>

1225 OECD (Organisation for Economic Co-operation and Development), 2007b. Guidance on Grouping
1226 of Chemicals. Series on Testing and Assessment Number 80.ENV/JM/MONO(2007)28. OECD
1227 Publishing, Paris. Available at: <http://www.oecd.org/>

1228 OECD (Organisation for Economic Co-operation and Development), 2007c. Test No. 503: Metabolism in Livestock, OECD Guidelines for the Testing of Chemicals, Section 5, OECD
1229 Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264061873-en>

1231 OECD (Organisation for Economic Co-operation and Development), 2007d. Test No. 426: Developmental Neurotoxicity Study, OECD Guidelines for the Testing of Chemicals, Section 4,
1232 OECD Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264067394-en>

1234 OECD (Organisation for Economic Co-operation and Development), 2008. Test No. 407: Repeated
1235 Dose 28-day Oral Toxicity Study in Rodents, OECD Guidelines for the Testing of Chemicals, Section 4,
1236 OECD Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264070684-en>

1237 OECD (Organisation for Economic Co-operation and Development), 2009a. Series on testing and
1238 assessment No. 63 and Series on pesticides No. 31 guidance document on the definition of residue;
1239 ENV/JM/MONO(2009)30; 28-Jul-2009

1240 OECD (Organisation for Economic Co-operation and Development), 2009b. *Test No. 451: Carcinogenicity Studies*, OECD Guidelines for the Testing of Chemicals, Section 4, OECD
1241 Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264071186-en>

1243 OECD (Organisation for Economic Co-operation and Development), 2009c. Test No. 452: Chronic
1244 Toxicity Studies, OECD Guidelines for the Testing of Chemicals, Section 4, OECD Publishing,
1245 Paris. DOI: <http://dx.doi.org/10.1787/9789264071209-en>

1246 OECD (Organisation for Economic Co-operation and Development), 2009d. Test No. 453: Combined
1247 Chronic Toxicity/Carcinogenicity Studies, OECD Guidelines for the Testing of Chemicals, Section
1248 4, OECD Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264071223-en>

1249 OECD (Organisation for Economic Co-operation and Development), 2011. Test No. 443: Extended
1250 One-Generation Reproductive Toxicity Study, OECD Guidelines for the Testing of Chemicals, Section
1251 4, OECD Publishing, Paris. DOI: <http://dx.doi.org/10.1787/9789264122550-en>

1252 OECD (Organisation for Economic Co-operation and Development), 2014, Series on testing &
1253 assessment No 194. Guidance on grouping of Chemicals. Second edition. OECD Publishing, Paris.

1254 Patlewicza G, Ballb N, Boothc E, Hulzebosd E, Zvinavashee E and Hennesf C, 2013. Use of
1255 category approaches, read across and (Q)SAR: General considerations. *Regulatory Toxicology and*
1256 *Pharmacology*, 67 (1), 1–12.

1257 Russell LD, Ettlin RA, Sinha Hikim AP and Clegg ED, 1990. Histological and histopathological
1258 evaluation of the testis. Cache River Press, Clearwater, FL. (1990)

1259 Serafimova R, Todorov M, Nedelcheva D, Pavlov T, Akahori Y, Nakai M and Mekenyany O, 2007.
1260 QSAR and mechanistic interpretation of estrogen receptor biding. *SAR ad QSAR in Environmental*
1261 *Research*, 18 (3), 389-421.

1262 Stewart RK, SerabjitSingh CJ and Massey TE, 1996. Glutathione S-transferase-catalyzed conjugation
1263 of bioactivated aflatoxin B-1 in rabbit lung and liver. *Toxicology and Applied Pharmacology* 140,
1264 499-507.

1265 Worth AP, Fuart-Gatnik M, Lapenna S, Lo Piparo E, Mostrag-Szlichtyng A and Serafimova R, 2010.
1266 Applicability of QSAR analysis to the evaluation of the toxicological relevance of metabolites and
1267 degradates of pesticide active substances for dietary risk assessment. Final report of a project
1268 carried out by the JRC for the European Food Safety Authority (EFSA). Available from:
<http://www.efsa.europa.eu/en/scdocs/scdoc/50e.htm>

1270 Worth A, Fuart-Gatnik M, Lapenna S, Lo Piparo E, Mostrag-Szlichtyng A and Serafimova R, 2011a.
1271 The use of computational methods in the toxicological assessment of chemicals in food: current
1272 status and future prospects. JRC report EUR 24748 EN. Publications Office of the European
1273 Union, Luxembourg. Available from: <http://publications.jrc.ec.europa.eu/repository/>

1274 Worth A, Lapenna S, Lo Piparo E, Mostrag-Szlichtyng A and Serafimova R, 2011b. A Framework for
1275 assessing in silico Toxicity Predictions: Case Studies with selected Pesticides. JRC report EUR
1276 24705 EN. Publications Office of the European Union, Luxembourg. Available from:
<http://publications.jrc.ec.europa.eu/repository/>

1278 Worth A, Lapenna S and Serafimova R, 2013. QSAR and metabolic simulation tools in the assessment
1279 of genotoxicity. Chapter 6 in: Computational Toxicology, Volume II. Methods in Molecular
1280 Biology, Volume 930. B Reisfeld & AN Mayeno (Eds). Humana Press, New York. pp 125-162.

1281

1282 **APPENDICES**

1283 **Appendix A. ADI and ARfD distribution for pesticide active substances**

1284 **1. Introduction**

1285 In the context of this guidance, separation between major and minor metabolites is made using
1286 arbitrary thresholds. These thresholds have a limited scientific validity; though, they have been used in
1287 the regulatory field in multiple circumstances and for this reason they are generally accepted as a
1288 pragmatic and practical tools. However, because of this arbitrary nature, additional considerations on
1289 the toxicological properties of the parent substance are necessary to accomplish the aim of predicting
1290 whether a metabolite is toxicologically similar or different to the parent substance. In particular, and in
1291 line with the OECD guidance (OECD, 2009), it is important to take into account the potency and the
1292 relevant endpoints of toxicity of the parent substance. In the absence of toxicity data on the
1293 metabolites, the default assumption is that they possess the same toxicological profile as for the parent
1294 substance and the more toxic is the parent compound, the greater is the need for inclusion of the
1295 metabolites in the assessment. In order to propose a definition of potency that could be used to
1296 complement the arbitrary thresholds, an evaluation of the distribution of the ADIs and ARfDs for
1297 European approved active substances was performed, assuming that most of the active substances
1298 eliciting neurotoxic effects are the one with the lower reference values. The data used in performing
1299 this exercise were extracted from the external report on “Investigation of the state of the art on
1300 identification of appropriate reference point for the derivation of health-based guidance values (ADI,
1301 AOEL and AAOEL) for pesticides and on the derivation of uncertainty factors to be used in human
1302 risk assessment” (CRD-HSE, 2013). Additional data were added to the database for the most recently
1303 evaluated active substances by EFSA (until end of 2014) which were not included in the database at
1304 the time of publication.

1305 The Assessment and Methodological Support Unit (AMU) of EFSA was requested to support the
1306 PRAS unit in identifying a data driven distribution of ADIs and ARfDs for pesticide active substances.

1307 **2. Material and methods**

1308 **2.1 Data**

1309 Two sets of raw data were provided to the AMU unit. A first set (ADIClean.csv) listed 270 approved
1310 compounds and their related Acceptable Daily Intake (ADI) values. A second set (ARDclean.csv)
1311 listed 195 approved compounds and their related Acute Reference Dose (ARfD) values.

1312 **2.2 Methodologies**

1313 A simple descriptive statistics was first computed to understand the distribution of the data. The data
1314 were visualised using boxplots.

1315 As a second step, a set of quantiles (from 10% to 50% with steps of 5%) were calculated based on the
1316 available raw data. The quantiles were calculated both for the ADI and the ARfD values. The results
1317 were then plotted in a density graph.

1318 Finally, a set of tables were produced in order to list all the compounds with an ADI or an ARfD value
1319 lower than each threshold.

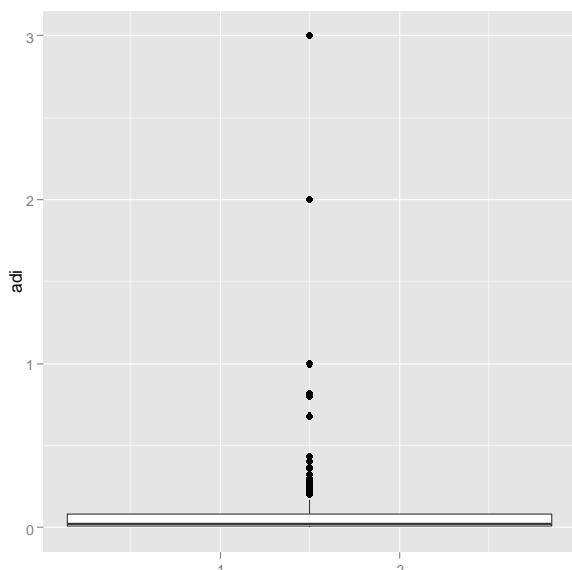
1320 All analysis were performed in R¹³ and the following packages were used:

1321 • stats

¹³ R Core Team (2014). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL <http://www.R-project.org/>.

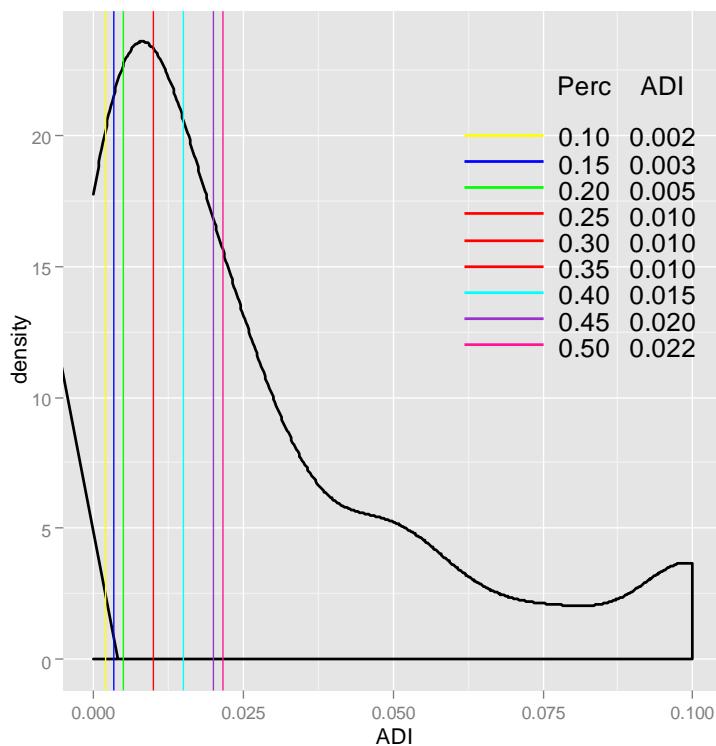
1322 • ggplot2

1323 **3. Results**


1324 **3.1 ADI**

1325 The boxplots based on the available data showed a distribution of the data concentrated mainly around
 1326 the median value (0.02 – see Figure 1, the white box around the zero value groups the data up the 75th
 1327 percentile of the ADI data distribution) with some outliers relatively far from the median (the
 1328 maximum value observed is equal to 10, not represented in Figure 1). Table 1 shows the summary
 1329 statistics on the ADI values.

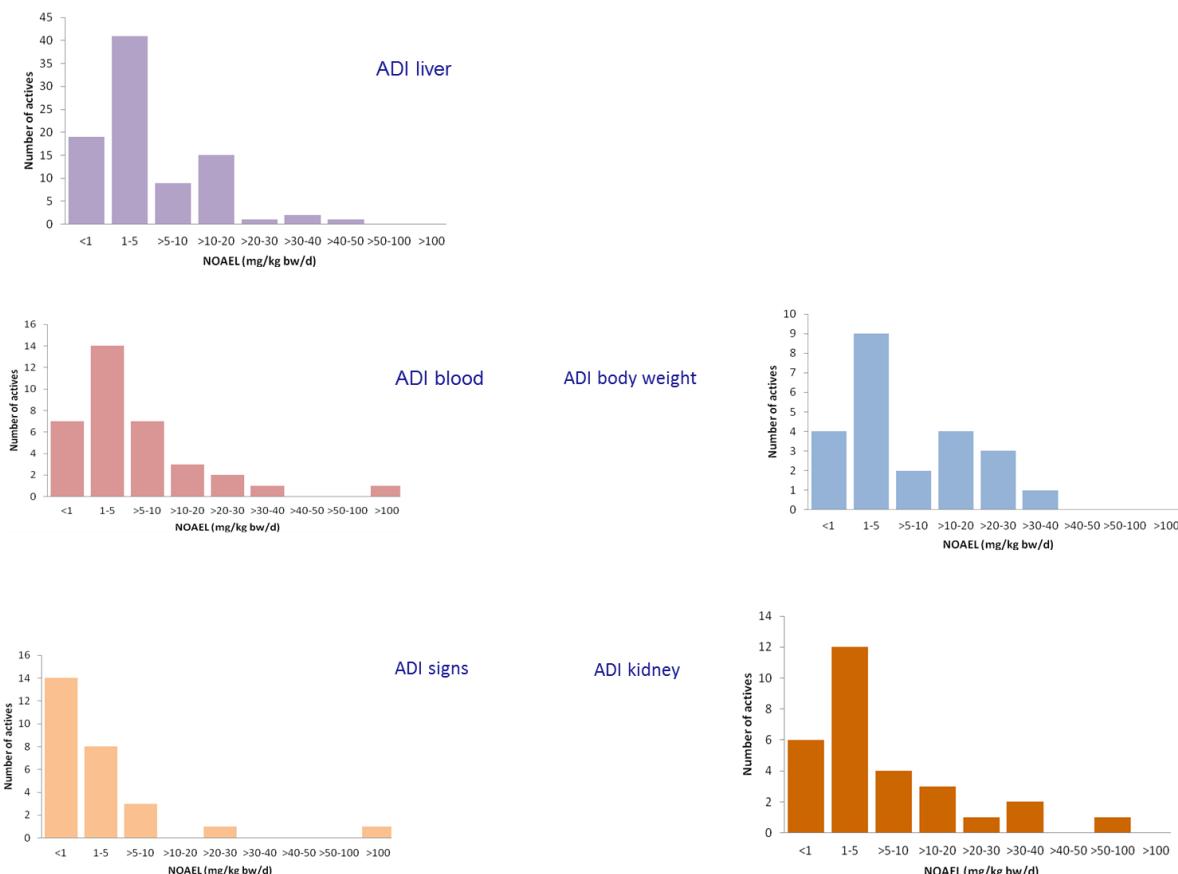
1330 **Table 1: Summary statistics on ADI values (in mg/kg bw/d)**


Min.	1st Qu.	Median	Mean	3rd Qu	Max.
0.00015	0.01	0.02150	0.12970	0.08000	10

1331

1332
 1333 **Figure 1: ADI boxplot. The observations with a value higher than 3 are excluded from the**
 1334 **visualisation.**

1335 Figure 2 shows the density distribution of the ADI values. The coloured lines represent the location of
 1336 the different quantiles on the distribution. The values are reported in the legend.



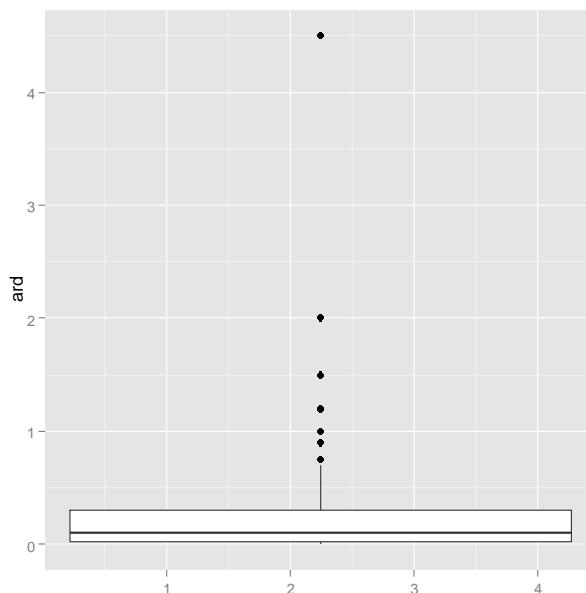
1337
 1338
 1339

Figure 2: Density plot of the ADI values. The coloured lines show the different percentiles and the correspondent ADI value

1340 In order to have information on the relevant endpoints triggering the distribution of the ADIs, the
 1341 distribution of the NOAELs relative to the endpoints of interest was performed for the active
 1342 substances included in the external report (n= 224 active substances) (CRD-HSE, 2013).

1343 Results are summarized in Figure 3.

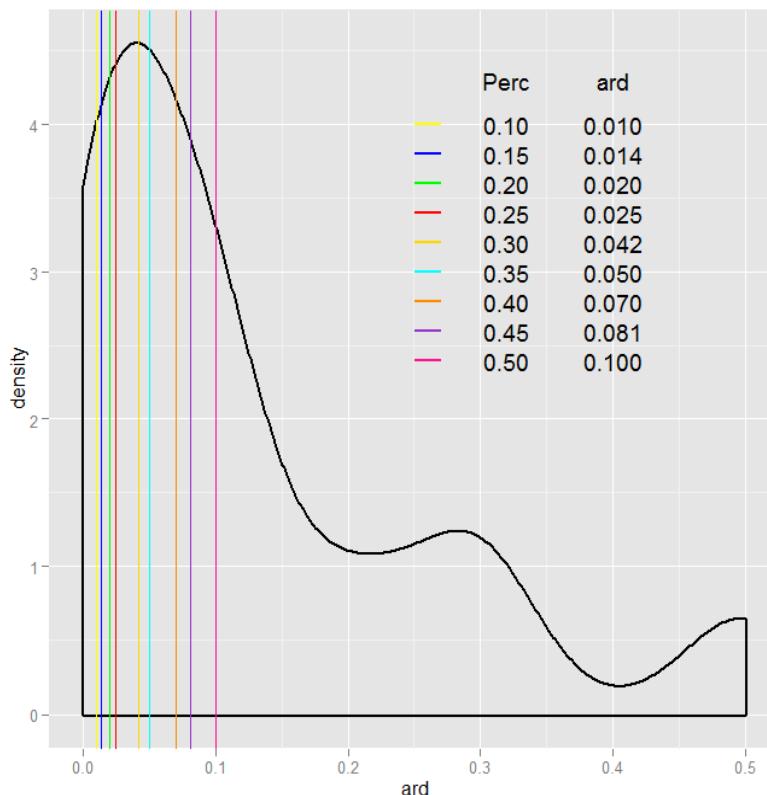
1344
 1345 **Figure 3 Plots of the different NOAELs used for the derivation of the ADI separated by target**
 1346 **organ**


1347 **3.2 ARfD**

1348 The boxplots based on the available ARfD data shows the distribution of the data concentrates mainly
 1349 around the median value (0.1 mg/kg bw – see Figure 14, the white box around the zero value groups
 1350 the data up the 75th percentile of the ARfD data distribution) with some outliers relatively far from the
 1351 median. Table 2 shows the summary statistics on the ARfD values.

1352 **Table 2: Summary statistics on ARfD values**

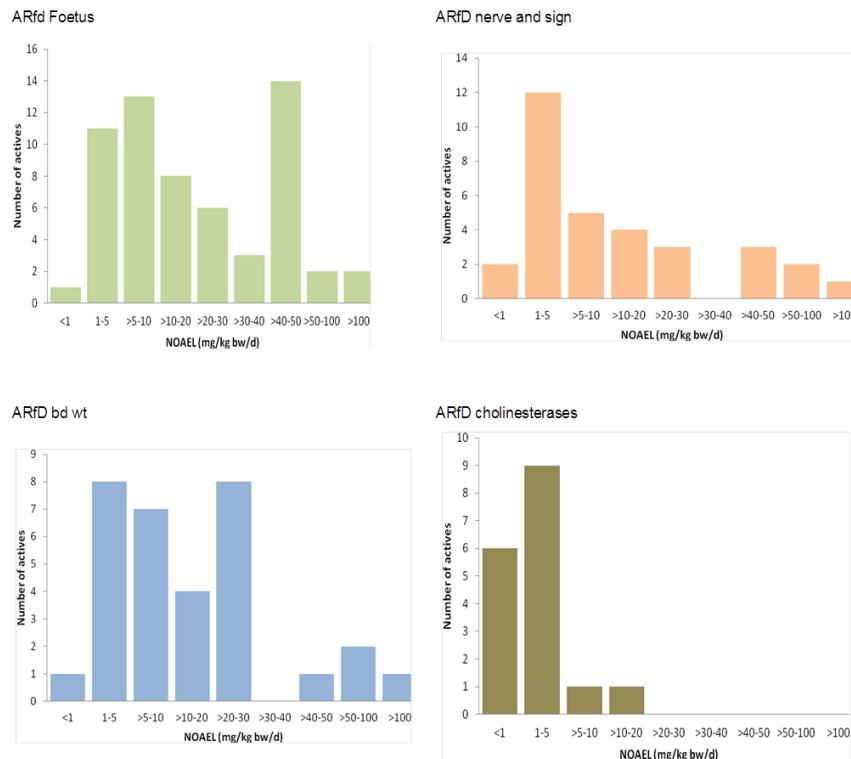
Min.	1st Qu.	Median	Mean	3rd Qu.	Max.
0.0002	0.0275	0.1000	0.2428	0.3000	4.5000


1353

 1354
 1355

Figure 4: ARfD boxplot. All observations are included.

 1356
 1357


Figure 25 shows the density distribution of the ARfD values. The coloured lines represent the location of the different quantiles on the distribution. The values are reported in the legend.

 1358
 1359
 1360

Figure 5 Density plot of the ARfD values. The coloured lines show the different percentiles and the correspondent ARfD value

 1361
 1362
 1363
 1364

In order to have information on the relevant endpoints triggering the distribution of the ARfDs, the distribution of the NOAELs relative to the endpoints of interest was performed for the active substances included in the external report (n= 224 active substances). Results are summarized in figure 6.

1365
 1366 **Figure 6 Plots of the different NOAEls used for the derivation of the ARfD separated by target**
 1367 **organ**

1368 **4. Discussion and Conclusions**

1369 The plots of NOAEls (Figure 3) used to derive the ADIs indicate that, other than for clinical signs,
 1370 there is a broad range of potencies and none of the end-points is related to either relatively high or low
 1371 dose levels. The liver is the most common target and clinical signs are the most frequent endpoint
 1372 triggering relatively low ADIs values.

1373 The plots of NOAEls (Figure 6) used to derive the ARfDs indicate that, other than cholinesterase
 1374 inhibition, there is a broad range of potencies and none of the end points can be considered as
 1375 prevalent. The effects on foetus (and maternal toxicity) and nervous system/clinical signs are the main
 1376 targets/end points.

1377 As expected the ADI is more conservative concerning the neurotoxic effects and provides a better
 1378 estimation of the distribution of the effect (e.g. effects only observed after repeated dose).

1379 The ADI of 0.01 mg/kg/bw/d is representing the 25th percentile of the ADIs distribution and includes
 1380 most of the active substances (approx. 67%) for which neurotoxic effects are relevant and the most
 1381 toxic substances for other target organs toxicity in general. The value of 0.01mg/kg/bw/d will only
 1382 partially include active substances with developmental effects (maternal and foetal effects).

1383 The ARfD of 0.025 mg/kg/bw is representing the 25th percentile and includes most of substances
 1384 (approx. 50%) inducing acute clinical signs and/or neurotoxic effects. However, as for the ADI, this
 1385 value only partially covers foetal effects.

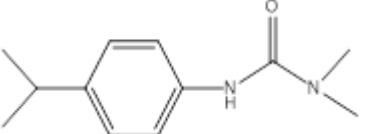
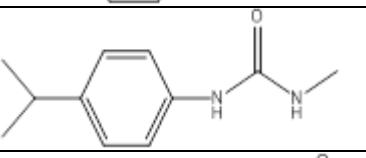
1386 Based on these considerations, the ADI dose of <0.01 mg/kg/bw/d and the ARfD of <0.025 mg/kg/bw
 1387 are proposed as a threshold to define toxicologically potent substances.

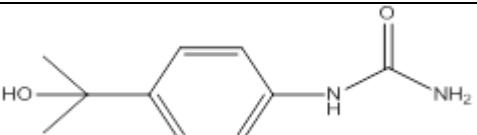
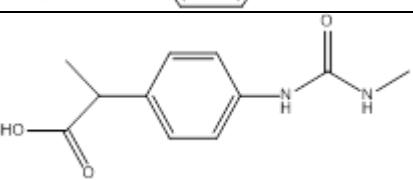
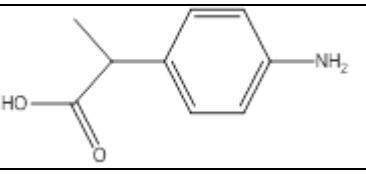
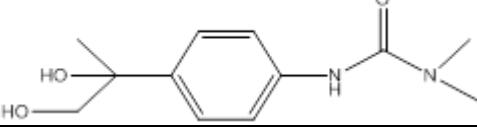
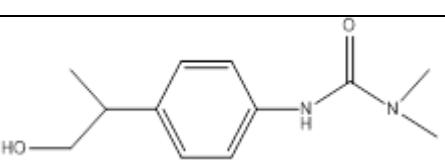
1388

1389 **5. References**

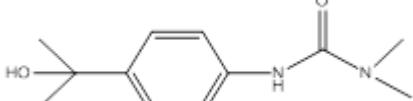
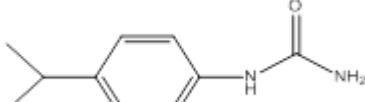
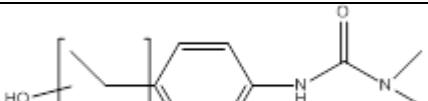
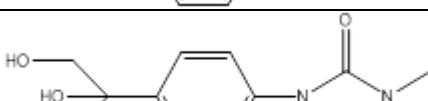
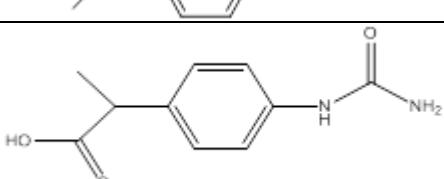
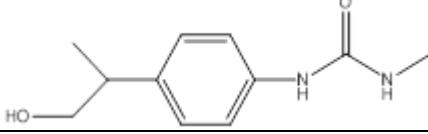
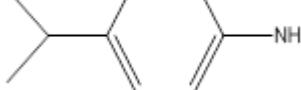
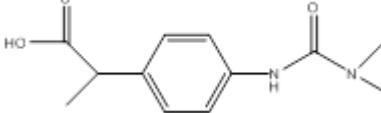
1390 OECD (Organisation for Economic Co-operation and Development), 2009. Series on testing and
1391 assessment No. 63 and Series on pesticides No. 31 guidance document on the definition of residue;
1392 ENV/JM/MONO(2009)30; 28-Jul-2009

1393 CRD-HSE (Chemicals Regulation Directorate, Health & Safety Executive, UK), 2013. Investigation
1394 of the state of the art on identification of appropriate reference points for the derivation of health-
1395 based guidance values (ADI, AOEL and AAOEL) for pesticides and on the derivation of
1396 uncertainty factors to be used in human risk assessment. Supporting Publications 2013:EN-413.
1397 [169 pp.]






1398

1399 **Appendix B. Case study – Isoproturon (Germany, 2014)¹⁴**









1400
1401
1402
1403

Step 1: Metabolite identified at any level in residue metabolism (plant) and groundwater studies

Table 1 Isoproturon metabolites

Compound identifier	Name in Study and Assessment reports and SMILES	Structure
Parent	Isoproturon CC(C)c1ccc(NC(=O)N(C)C)cc1	
M02	AE F064145 Monodesmethyl isoproturon CC(C)c1ccc(NC(=O)NC)cc1	
M03	RPA 415044 Hydroxy-monodesmethyl CC(C)(O)c1ccc(NC(=O)NC)cc1	
M04	RPA 410365 Hydroxy-didesmethyl CC(C)(O)c1ccc(NC(N)=O)cc1	
M05	RPA 409656 CC(c1ccc(NC(=O)NC)cc1)C(O)=O	
M06	RPA 410198 CC(C(O)=O)c1ccc(N)cc1	
M07	RPA 410226, sum of isomers CC(O)(CO)c1ccc(NC(=O)N(C)C)cc1	
M07a	BD4236D2 (Isomer 1), RPA 410226	
M07b	BD4236D2 (Isomer 2), RPA 410226	
M08	RPA 409658 1-OH-isoproturon CC(CO)c1ccc(NC(=O)N(C)C)cc1	

¹⁴ Germany, 2014. Renewal Assessment Report (RAR) on the active substance isoproturon prepared by the rapporteur Member State Germany in the framework of Regulation (EU) No 1141/2010, February 2014. Available at <http://dar.efsa.europa.eu/dar-web/provision>

Compound identifier	Name in Study and Assessment reports and SMILES	Structure
M09	BD4236D7 Hydroxypropyl isoproturon CC(C)(O)c1ccc(NC(=O)N(C)C)cc1	
M10	LS 730334 Didesmethyl isoproturon CC(C)c1ccc(NC(N)=O)cc1	
M11	BD4236D3. RPA 409660 CC(CO)c1ccc(NC(N)=O)cc1	
M12	BD4236D4 CN(C)C(=O)Nc1ccc(CCO)cc1	
M13	BD4236D CC(O)(CO)c1ccc(NC(=O)NC)cc1	
M14	RPA 409657 CC(c1ccc(NC(N)=O)cc1)C(O)=O	
M15	RPA 409659 CC(CO)c1ccc(NC(=O)NC)cc1	
M16	RPA 710989 CC(C)c1ccc(N)cc1	
M18	RPA 409394 Propanoic acid isoproturon CC(c1ccc(NC(=O)N(C)C)cc1)C(O)=O	

1404

1405

Step 2: Exclusion of metabolites of no concern

1407

1408 None.

1409

1410

Step 3: Metabolite is known to be genotoxic

1411

1412 No specific information on genotoxicity of metabolites is available.

1413

1414

1415

Step 4: Metabolites genotoxicologically characterised – yes/no

1416

1417

1418 **Step 4.1 Assessment of metabolites whether they are covered by studies with the parent (Table**
 1419 **2) or specific studies.**

1420 **Step 4.2 Conclusion**

1422 Proceed with genotoxicity assessment (steps 5 to 9) for all metabolites whose toxicological properties
 1423 are not covered by the parent compound (shaded in grey) or by specific studies.

1424 **Table 2 Assessment of occurrence of isoproturon residue metabolites in toxicological studies with**
 1425 **parent compound (RAR Germany 2014)**

Compound	Name in Study and Assessment reports	Occurrence in rat metabolism (% administered dose)	Toxicological properties covered by studies with parent compound
Parent	Isoproturon	<1	Yes
M02	AE F064145 Monodesmethyl isoproturon	1	No (specific bacterial mutagenicity study available)
M03	RPA 415044 Hydroxy-mono-desmethyl	24	Yes (>10% AD)
M04	RPA 410365 Hydroxy-didesmethyl	51	Yes (>10% AD)
M05	RPA 409656	8	No
M06	RPA 410198	-	No
M07	RPA 410226, sum of isomers	6	No
M08	RPA 409658 1-OH-isoproturon	3	No
M09	BD4236D7 Hydroxypropyl isoproturon	3	No
M10	LS 730334 Didesmethyl isoproturon	15	Yes (>10% AD)
M11	BD4236D3. RPA 409660	6	No
M12	BD4236D4	-	No
M13	BD4236D	11	Yes (>10% AD)
M14	RPA 409657	2	No
M15	RPA 409659	3	No
M16	RPA 710989	-	No
M18	RPA 409394 Propanoic acid isoproturon	2	No

1426 AD: administered dose

1427

1428 **Step 5: (Q)SAR prediction of genotoxicity**

1429

1430 **Step 5.1: Description of (Q)SAR strategy**

1431 In order to predict the genotoxic potential (gene mutation and chromosomal aberrations) of the minor
 1432 rat and plant specific metabolites, four models have been applied: CAESAR Mutagenicity Model v
 1433 2.1.12 - implemented in the VEGA software (v 1.0.8) and DEREK Nexus Mutagenicity Model (v
 1434 4.0.6.) for prediction of gene mutation; and a rule base with the structural alerts for in vivo
 1435 micronucleus - implemented in the Toxtree v.2.6.6. (R. Benigni, C., O. Tcheremenskaia and A. Worth,
 1436 Development of structural alerts for the in vivo micronucleus assay in rodents", European Commission
 1437 report EUR 23844) and DEREK Nexus Chromosome Damage model Model (v 4.0.6) for prediction of
 1438 chromosomal aberrations

1439 Independently from the predictions of the models, the metabolite(s) will be subject of read across
 1440 analysis (step 6).

1441 **Step 5.2: Documentation of CAESAR Mutagenicity model**

1442 *xi) Used model (title, name of authors, reference)*

1443 CAESAR Mutagenicity Model v 2.1.12, Ferrari T., Gini G.

1444 An open source multistep model to predict mutagenicity from statistical analysis and relevant
1445 structural alerts.Ferrari T., Gini G.Chemistry Central Journal 2010, 4(Suppl 1):S2 (29 July 2010)

1446 *xii) Information about modelled endpoint (endpoint, experimental protocol)*

1447 Ames Mutagenicity essay.

1448 *xiii) Used training set (number of the substances, information about the chemical diversity of the
1449 training set chemicals)*

1450 4204 compounds from the Kazius-Bursi mutagenicity database (Kazius J, McGuire R, Bursi R:
1451 Derivation and validation of toxicophores for mutagenicity prediction.J Med Chem 2005, 48(1):312-
1452 320.), 2348 classified as mutagenic and 1856 classified as non-mutagenic by Ames test. 80% of the
1453 entire data set (3367 compounds) was used for the development of the model, while the other 20%
1454 (837 compounds) was used as a test (validation set).

1455

1456 *xiv) Information on the algorithm used for deriving the model and the molecular descriptors
1457 (name and type of the descriptors used, software used for descriptor generation and
1458 descriptor selection)*

1459 A mutagenicity classifier has been arranged integrating two different techniques: a machine learning
1460 algorithm from the Support Vector Machines (SVM) collection, to build an early model with the best
1461 statistical accuracy, then an ad hoc expert system based on known *structural alerts* (SAs)(Benigni-
1462 Bossa rule base), tailored to refine its predictions. The purpose is to prevent hazardous molecules
1463 misclassified in first instance (*false negatives*) from being labelled as safe. The resultant classifier can
1464 be presented as a cascading filters system: compounds evaluated as positive by SVM are immediately
1465 labelled *mutagenic*, whereas the presumed negatives are further shifted through two consecutive
1466 checkpoints for SAs with rising sensitivity. The first checkpoint (12 SAs) has the chance to enhance
1467 the prediction accuracy by attempting a precise isolation of potential *false negatives* (FNs); the second
1468 checkpoint (4 SAs) proceeds with a more drastic (but more prudent) FNs removal, as much as this
1469 doesn't noticeably downgrade the original accuracy by generating too many *false positives* (FPs) as
1470 well. To reinforce this distinction, compounds filtered out by the first checkpoint are
1471 labelled mutagenic while those filtered out by the second checkpoint are labelled suspicious: this label
1472 is a warning that denotes a candidate mutagen, since it has fired a SA with low specificity. Unaffected
1473 compounds that pass through both checkpoints are finally labelled non-mutagenic.

1474 *xv) Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,
1475 robustness and predictivity*

1476 The authors reported accuracy of around 92% for the training set and around 82% for the test set.

1477 *xvi) External statistic, if available*

1478 Not available

1479 *xvii) Information about the applicability domain (description of the applicability domain of the
1480 model and method used to assess the applicability domain)*

1481 The model provides evaluation of the reliability of the prediction which is in three steps scale:
1482 Compound is in model Applicability Domain, Compound could be out of model Applicability Domain
1483 and Compound is out of model Applicability Domain.

1484 The Applicability Domain evaluation is based of combination of 5 Applicability Domain scores:

1485 Similarity index – measure for the similarity between the predicted substance and training set
1486 substances with known experimental value;

1487 Concordance – the similar substances found in the training set have (or have not) experimental values
1488 that are in agreement with the predicted value;

1489 Accuracy – accuracy of prediction for similar molecules found in the training set

1490 Atom centred fragments similarity check – all atom centred fragments of the substance are (are not)
1491 found in the list of atom centred fragments of the training set substances.

1492 Model descriptor range check – descriptors for the substance have (or have not) values inside the
1493 descriptor range of the training set substances.

1494 *xviii) Mechanistic interpretation of the model*

1495 Not available

1496 *xix) Description, experimental data and predictions of possible structural analogues of the*
1497 *substance (provided by the software or selected by the applicant)*

1498 The software provides six most similar substances from the training set with their experimental and
1499 predicted values.

1500 *xx) Any additional information provided by the model, e.g. suggested mechanism of action,*
1501 *uncertainties*

1502 Not available

1503 **Documentation of DEREK Nexus mutagenicity model**

1504 *1. Used model (title, name of authors, reference)*

1505 DEREK Nexus Mutagenicity Model v 4.0.6.

1506 Lhasa Ltd, Leeds, UK, <http://www.lhasalimited.org/>

1507 Sanderson DM & Earnshaw CG (1991). Computer prediction of possible toxic action from chemical
1508 structure; The DEREK system. Human and Experimental Toxicology 10, 261-273.

1509 Judson PN, Marchant CA & Vessey JD (2003). Using argumentation for absolute reasoning about the
1510 potential toxicity of chemicals. Journal of Chemical Information and Computer Sciences 43, 1364-
1511 1370.

1512 Marchant CA, Briggs KA & Long A (2003). In silico tools for sharing data and knowledge on toxicity
1513 and metabolism: Derek for Windows, Meteor, and Vitic. Toxicology Mechanisms and Methods 18,
1514 177-187.

1515 Judson PN, Stalford SA & Vessey J (2013). Assessing confidence in predictions made by knowledge-
1516 based systems. Toxicology Research 2, 70-79.

1518 2. *Information about modelled endpoint (endpoint, experimental protocol)*

1519 The Derek Nexus model for mutagenicity is developed from Ames test data in both S.typh and E.coli.
1520 Supporting data from in vivo lacZ-transgenic assay, in vitro L5178Y TK+/- assay, in vitro HGPRT
1521 gene mutation assay, in vitro Na+/K+ ATPase gene mutation assay has also been considered for the
1522 development of a small number of alerts. Additionally, alert writers consider both mechanistic
1523 evidence and chemical properties (such as reactivity).

1524 3. *Used training set (number of the substances, information about the chemical diversity of the*
1525 *training set chemicals)*

1526 The DEREK model for mutagenicity is base of rules which codified the knowledge about the relation
1527 between a structural features and a toxicological (i.e. mutagenic) effect. Although almost all alerts are
1528 related with mechanistic explanation and examples, these rules are not related with particular training
1529 set.

1530 Recently a model for negative prediction (non-mutagenic) has been developed and added to the
1531 previous model. For it development a training set of above 10 000 substances has been used (the
1532 number of mutagenic and non-mutagenic substances is almost equal). The training set is a compilation
1533 of six public available data sets (e.g. Kirkland, ISSSTY, NTP data sets)

1534 4. *Information on the algorithm used for deriving the model and the molecular descriptors*
1535 *(name and type of the descriptors used, software used for descriptor generation and*
1536 *descriptor selection)*

1537 Derek Nexus is a rule-based expert system for the prediction of toxicity. Its knowledge base is
1538 composed of alerts, examples and reasoning rules which may each contribute to the predictions made
1539 by the system. Each alert in Derek describes a chemical substructure believed to be responsible for
1540 inducing a specific toxicological outcome (often referred to as a toxicophore). Alerts are derived by
1541 experts, using toxicological data and information regarding the biological mechanism of action. Where
1542 relevant, metabolism data may be incorporated into an alert, enabling the prediction of compounds
1543 which are not directly toxicity but are metabolised to an active species. The derivation of each alert is
1544 described in the alert comments along with supporting references and example compounds where
1545 possible. In addition a likelihood is provided (e.g. certain, probable, plausible) which takes into
1546 account the presence of a structural alert and a limited number of molecular descriptors.

1547 5. *Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,*
1548 *robustness and predictivity*

1549 Derek is a knowledge-based expert system containing mechanistically-based rules which are built
1550 using all the underlying evidence available to the SAR developer. Therefore, there is no defined
1551 training or test set, and therefore there are no internal validation statistics to report.

1552 6. *External statistic, if available*

1553 Not public available

1554 7. *Information about the applicability domain (description of the applicability domain of the*
1555 *model and method used to assess the applicability domain)*

1556 The scope of the structure-activity relationships describing the mutagenicity endpoint are defined by
1557 the developer to be the applicability domain for the model. Therefore, if a chemical matches an alert
1558 describing a structure-activity for mutagenicity it can be considered to be within the applicability
1559 domain. The applicability domain of each alert is defined by the alert developer on the basis of the

1560 training set data and expert judgement on the chemical and biological factors which affect the
1561 mechanism of action for each alert.

1562 *8. Mechanistic interpretation of the model*

1563 All alerts describing structure-activity relationships for the mutagenicity endpoint have a mechanistic
1564 basis wherever possible. Mechanistic information is detailed in the comments associated with an alert
1565 and can include information on both the mechanism of action and biological target. The mechanistic
1566 basis of the model was developed *a priori* by examining the active and inactive structures before
1567 developing the structure-activity relationship. All references supporting the mechanistic basis of an
1568 alert are detailed and available for inspection within the software.

1569 *9. Description, experimental data and predictions of possible structural analogues of the*
1570 *substance (provided by the software or selected by the applicant)*

1571 The derivation of each alert is described in the alert comments along with supporting references and
1572 example compounds where possible

1573 *10. Any additional information provided by the model, e.g. suggested mechanism of action,*
1574 *uncertainties*

1575 Described above

1576 The model is published in the QMRF JRC Database: <http://qsardb.jrc.it/qmrf/>

1577
1578 **Documentation of Toxtree model – structural alerts for in vivo micronucleus assay**

1579 *1. Used model (title, name of authors, reference)*

1580 Structural alerts for in vivo micronucleus implemented in the Toxtree v.2.6.6

1581 Structural analysis and predictive value of the rodent in vivo micronucleus assay results. Benigni R,
1582 Bossa C, Worth A, Mutagenesis.2010 Jul;25(4):335-41

1583 *2. Information about modelled endpoint (endpoint, experimental protocol)*

1584 A large majority of the data are based on the analysis of micronuclei in bone marrow cells for rationale
1585 of and details on the assay, see (Krishna, G. and Hayashi, M. (2000) In vivo rodent micronucleus
1586 assay: protocol, conduct and data interpretation. Mutat. Res., 455, 155–166.

1587 Morita, T., Asano, N., Awogi.T et al. (1997) Evaluation of the rodent micronucleus assay in the
1588 screening of IARC carcinogens (groups 1, 2A and 2B) the summary report of the 6th collaborative
1589 study by CSGMT/JEMS MMS. Collaborative Study of the Micronucleus Group Test. Mammalian
1590 Mutagenicity Study Group. Mutat. Res., 389, 3–122.

1591 Hayashi, M., MacGregor, J. T., Gatehouse, D. G. et al. (2000) In vivo rodent erythrocyte micronucleus
1592 assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity
1593 testing, and automated scoring. Environ. Mol. Mutagen., 35, 234–252.

1594 Hayashi, M., MacGregor, J. T., Gatehouse, D. G. et al. (2007) In vivo erythrocyte micronucleus assay
1595 III. Validation and regulatory acceptance of automated scoring and the use of rat peripheral blood
1596 reticulocytes, with discussion of non-hematopoietic target cells and a single dose-level limit
1597 test. Mutat. Res., 627, 10–30.).]

1598 *3. Used training set (number of the substances, information about the chemical diversity of the*
1599 *training set chemicals)*

1600 690 chemicals from 'FDA SAR Genetox Database'; Leadscape Inc. 178 are micronucleus positive and
1601 512 are micronucleus negative.

1602
1603 4. *Information on the algorithm used for deriving the model and the molecular descriptors*
1604 *(name and type of the descriptors used, software used for descriptor generation and*
1605 *descriptor selection)*

1606 The model is based on both existing hypotheses on the mechanisms of toxic action (by e.g. checking
1607 the relative influence on micronucleus induction of DNA reactivity and protein binding) and on a
1608 structural analysis of the chemicals tested in the assay.

1609 The rulebase consists of the Benigni-Bossa mutagenicity-carcinogenicity alerts, with the exclusion of
1610 the alerts specific for non-genotoxic carcinogenicity – 30 alerts, and five additional alerts associated
1611 with a few suggested mechanisms related with in vivo micronucleus (e.g. mitotic spindle poisoning,
1612 topoisomerase II inhibition)

1613 5. *Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,*
1614 *robustness and predictivity*

1615 The authors reported an accuracy of prediction around 57%

1616 6. *External statistic, if available*

1617 Not available

1618 7. *Information about the applicability domain (description of the applicability domain of the*
1619 *model and method used to assess the applicability domain)*

1620 Not available

1621 8. *Mechanistic interpretation of the model*

1622 The structural alerts included in the model relate with the mechanisms of action suggested by the
1623 authors: DNA damaging, mitotic spindle poisoning or topoisomerase II inhibition. The latter effects
1624 are likely related to interference with proteins.

1625 9. *Description, experimental data and predictions of possible structural analogues of the*
1626 *substance (provided by the software or selected by the applicant)*

1627 Not available

1628 10. *Any additional information provided by the model, e.g. suggested mechanism of action,*
1629 *uncertainties*

1630 Not available

1631 The model is published in the QMRF JRC Database: <http://qsardb.jrc.it/qmrf/>

1632 **Documentation of DEREK Nexus Chromosome damage model**

1633 1. *Used model (title, name of authors, reference)*

1634 DEREK Nexus chromosome damage Model v 4.0.6.

1635 Lhasa Ltd, Leeds, UK, <http://www.lhasalimited.org/>

1636 Sanderson DM & Earnshaw CG (1991). Computer prediction of possible toxic action from chemical
 1637 structure; The DEREK system. Human and Experimental Toxicology 10, 261-273.
 1638 Judson PN, Marchant CA & Vessey JD (2003) Using argumentation for absolute reasoning about the
 1639 potential toxicity of chemicals. Journal of Chemical Information and Computer Sciences 43, 1364-
 1640 1370.
 1641 Marchant CA, Briggs KA & Long A (2003). In silico tools for sharing data and knowledge on toxicity
 1642 and metabolism: Derek for Windows, Meteor, and Vitic. Toxicology Mechanisms and Methods 18,
 1643 177-187.
 1644 Judson PN, Stalford SA & Vessey J (2013). Assessing confidence in predictions made by knowledge-
 1645 based systems. Toxicology Research 2, 70-79.

1646 *2. Information about modelled endpoint (endpoint, experimental protocol)*

1647 The Derek Nexus model for chromosome damage is developed from several sources of data. Sources
 1648 of primary data used for alert development include in vitro and in vivo chromosome aberration test, in
 1649 vitro and in vivo micronucleus test, in vitro L5178Y TK⁺/- assay. Alert writers consider both
 1650 mechanistic evidence and chemical properties (such as reactivity). Depending on evidence in vitro
 1651 and/or in vivo prediction can be made.

1652 *3. Used training set (number of the substances, information about the chemical diversity of the
 1653 training set chemicals)*

1655 The DEREK model for chromosome damage is base of rules which codified the knowledge about the
 1656 relation between a structural features and a toxicological (i.e. mutagenic) effect. Although almost all
 1657 alerts are related with mechanistic explanation and examples, these rules are not related with particular
 1658 training set.

1659 *4. Information on the algorithm used for deriving the model and the molecular descriptors
 1660 (name and type of the descriptors used, software used for descriptor generation and
 1661 descriptor selection)*

1662 Derek Nexus is a rule-based expert system for the prediction of toxicity. Its knowledge base is
 1663 composed of alerts, examples and reasoning rules which may each contribute to the predictions made
 1664 by the system. Each alert in Derek describes a chemical substructure believed to be responsible for
 1665 inducing a specific toxicological outcome (often referred to as a toxicophore). Alerts are derived by
 1666 experts, using toxicological data and information regarding the biological mechanism of action. Where
 1667 relevant, metabolism data may be incorporated into an alert, enabling the prediction of compounds
 1668 which are not directly toxicity but are metabolised to an active species. The derivation of each alert is
 1669 described in the alert comments along with supporting references and example compounds where
 1670 possible. In addition a likelihood is provided (ie certain, probable, plausible, equivocal and nothing to
 1671 report) which takes into account the presence of a structural alert and a limited number of molecular
 1672 descriptors.

1673 *5. Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,
 1674 robustness and predictivity*

1675 Derek is a knowledge-based expert system containing mechanistically-based rules which are built
 1676 using all the underlying evidence available to the SAR developer. Therefore, there is no defined
 1677 training or test set, and therefore there are no internal validation statistics to report.

1678 *6. External statistic, if available*

1679 Not public available

1680 7. *Information about the applicability domain (description of the applicability domain of the*
 1681 *model and method used to assess the applicability domain)*

1682 The scopes of the structure-activity relationships describing the chromosome damage endpoint are
 1683 defined by the developer to be the applicability domain for the model. Therefore, if a chemical
 1684 activates an alert describing a structure activity for chromosome damage it can be considered to be
 1685 within the applicability domain. If a compound does not activate an alert or reasoning rule in Derek, a
 1686 result of 'nothing to report' is presented to the user. This can be interpreted as a negative prediction or
 1687 that the query compound is outside the domain of the model. Which of these is more appropriate may
 1688 depend on the endpoint of interest.

1689 8. *Mechanistic interpretation of the model*

1690 All alerts describing structure-activity relationships for the chromosome damage endpoint have a
 1691 mechanistic basis wherever possible. Mechanistic information is detailed in the comments associated
 1692 with an alert and can include information on both the mechanism of action and biological target. The
 1693 mechanistic basis of the model was developed a priori by examining the active and inactive structures
 1694 before developing the structure-activity relationship. All references supporting the mechanistic basis
 1695 of an alert are detailed and available for inspection within the software.

1696 9. *Description, experimental data and predictions of possible structural analogues of the*
 1697 *substance (provided by the software or selected by the applicant)*

1698 The derivation of each alert is described in the alert comments along with supporting references and
 1699 example compounds where possible

1700 10. *Any additional information provided by the model, e.g. suggested mechanism of action,*
 1701 *uncertainties*

1702 Described above

1703 The model is published in the QMRF JRC Database: <http://qsardb.jrc.it/qmrf/>

1704
 1705 **Step 5.3: Description of results, toxicological analysis of predicted effects and applicability**
 1706 **domain**
 1707

1708 **Table 3** *Prediction of genotoxicity (gene mutation - CAESAR and DEREK Nexus Mutagenicity models*
 1709 *and chromosomal aberrations - Toxtree – in vivo micronucleus model and DEREK Nexus in*
 1710 *vitro human and mammalian chromosomal damage models) of minor rat and plant specific*
 1711 *metabolites by (Q)SAR*

Metabolite	CAESAR prediction of gene mutation (Applicability Domain)	DEREK Nexus prediction of gene mutation (no Applicability Domain evaluation is available)	Toxtree prediction of in vivo micronucleus (no Applicability Domain evaluation is available)	DEREK Nexus prediction of in vitro/in vivo Chromosome damage (human and mammalian)
Parent	Not applied	Not applied	Not applied	Not applied
M02	Negative (Could be out)	Negative	Negative	Nothing to report
M05	Negative (Could be out)	Negative	Negative	Nothing to report
M06	Negative (Out)	Negative	Positive alert	Equivocal
M07	Negative (In)	Negative	Positive alert	Nothing to report
M08	Negative (Could be out)	Negative	Negative	Nothing to report
M09	Negative (In)	Negative	Negative	Nothing to report
M11	Negative (In)	Negative	Negative	Nothing to report

Metabolite	CAESAR prediction of gene mutation (Applicability Domain)	DEREK Nexus prediction of gene mutation (no Applicability Domain evaluation is available)	Toxtree prediction of <i>in vivo</i> micronucleus (no Applicability Domain evaluation is available)	DEREK Nexus prediction of <i>in vitro/in vivo</i> Chromosome damage (human and mammalian)
M12	Positive (Could be out)	Negative	Negative	Nothing to report
M14	Negative (Could be out)	Negative	Negative	Nothing to report
M15	Negative (In)	Negative	Negative	Nothing to report
M16	Positive (Could be out)	Negative	Positive alert	Equivocal
M18	Negative (In)	Negative	Negative	Nothing to report

1712

1713

1714 CAESAR Mutagenicity model predicts 10 out of 12 metabolites as negative (non-mutagenic):
 1715 metabolites M02, M05, M06, M07, M08, M09, M11, M14, M15 and M18. One of the metabolites
 1716 M06 is out of the model applicability domain, four of them M02, M05, M08 and M14 could be out of
 1717 model applicability domain and five – M07, M09, M11, M15 and M18 are into model applicability
 1718 domain.

1719 Two of the metabolites – M12 and M16 are predicted as potential mutagenic. Both substances could
 1720 be out of the model applicability domain. Additional analysis of the six most similar substances from
 1721 the training set for the metabolite M16 shows that the similarity range is between 0.952 – 0.929. All of
 1722 them are primary aromatic amines with a different numbers of small alkyl (methyl or ethyl)
 1723 substituents in the aromatic ring. For all of them with one exception the experimental data are positive,
 1724 which gives additional confidence of the positive prediction.

1725 The same analyse for the metabolite M12 shows that in general similarity between the chemical of
 1726 interest and the most similar substances from the training set is lower but still high enough (0.896 –
 1727 0.854), but experimental value for all substances (with one exception which is an aromatic amine) are
 1728 non-mutagenic, which challenges the positive prediction for the metabolite M12.

1729 DEREK Nexus Mutagenicity model predicts all 12 metabolites as negative (non-mutagenic).

1730 Toxtree *in vivo* micronucleus model predicts 9 out of 12 metabolites as negative (there are not alerts
 1731 for micronucleus) – M02, M05, M08, M09, M11, M12, M14, M15 and M18. No additional
 1732 information is provided by the model.

1733 Three of the metabolites are predicted as positive (at least one positive alert for micronucleus assay
 1734 was found) – M06, M07 and M16. As a structural alert for the metabolite M06 and M16 is identified:
 1735 Primary aromatic amine, hydroxyl amine and its derived esters (with restrictions). This is an alert
 1736 related with potential DNA reactive agents who are known to be positive in the micronucleus assay.
 1737 For the metabolite M07, the identified alerts is H-acceptor-path3-H-acceptor. According to the authors
 1738 this alert represents a molecular framework that could account for non-covalent interactions with
 1739 proteins or DNA. Such interactions, as in the case of DNA intercalation or groove binding, are
 1740 potentially genotoxic. However, the positive prediction value of this alert reported by the authors
 1741 (Benigni, 2010) is low 34%.

1742 DEREK Nexus *in vitro* human and mammalian chromosomal damage models predict equivocal results
 1743 for the metabolites M06 and M16 due to an aniline or alkylaniline moieties in the molecule.

1744

1745

1746

1747

1748

1749 **Step 5.4: Conclusion**

1750

1751 (Q)SAR assessment identified a potential of metabolites M06, M07, M12 and M16 to provoke
1752 genotoxic effects. Metabolites M02, M05, M08, M09, M11, M14, M15 and M18 are predicted as
1753 negative from all models. All metabolites are moved to the next step – read across analyses.

1754

1755

1756 **Step 6: Read across (OECD toolbox)¹⁵**

1757

1758 Step 6.1: Read across

1759 Both endpoints, gene mutation and chromosomal aberrations, should be evaluated by read across for
1760 all metabolites.

1761 Molecular initiating events of relevance for this assessment are interaction with DNA and/or proteins.
1762 The profilers included in the OECD Toolbox which codified the structural alerts which are important
1763 for these two types of interactions are mechanistic profilers - DNA binding by OASIS v.1.3, DNA
1764 binding by OECD, Protein binding by OASIS v 1.3, Protein binding by OECD and endpoint specific
1765 profilers- DNA alerts for AMES, MN and CA by OASIS v1.3, In vitro mutagenicity (AMES test)
1766 alerts by ISS, In vivo mutagenicity (Micronucleus) alerts by ISS, Protein binding alerts for
1767 Chromosomal aberrations by OASIS v1.1.

1768 Above mentioned profilers have been applied to metabolites M02, M05, M06, M07, M08, M09, M11,
1769 M12, M14, M15, M16 and M18 as chemicals of interest and to the parent substance and all majors rat
1770 metabolites, which are considered characterised by the provided genotoxicity studies, as substances
1771 with known experimental genotoxic activity.

1772 In order to evaluate the structural similarity, in addition to the structural alerts related to the evaluated
1773 endpoints, organic functional group profiler has been applied. This additional step will provide
1774 information on the presence/ absence of other functional groups different to the structural alerts and
1775 will give indication for the potential influence of the remaining part of the molecule to the relevant
1776 structural alerts (i.e. electronic and structural influence).

1777 No structural alerts in the parents substance and in all evaluated metabolites were found by Protein
1778 binding by OASIS v 1.3, Protein binding by OECD, Protein binding alerts for Chromosomal
1779 aberrations by OASIS v1.1. profilers.

1780 The alerts found by DNA binding by OASIS v.1.3, DNA binding by OECD and endpoint specific
1781 profilers - DNA alerts for AMES, MN and CA by OASIS v1.3, In vitro mutagenicity (AMES test)
1782 alerts by ISS, In vivo mutagenicity (Micronucleus) alerts by ISS and organic functional group are
1783 presented in the Table 4.

¹⁵ <http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm>

Table 4 Genotoxicity profiling of isoproturon metabolites by OECD Toolbox

	DNA binding by OASIS v1.3		DNA binding by OECD			DNA alerts for AMES, MN and CA by OASIS v1.3		In vitro mutagenicity (AMES test) by ISS		in vivo mutagenicity (MN) by ISS		Organic functional groups					
	alert 1	alert 2	alert 3	alert 4	alert 5	alert 6	alert 7	alert 8	alert 9	alert 10	Alkyl arenes	Iso-propyl	Alcohol	Carboxylic acid	Aryl	Urea derivatives (SA)	Aniline
Parent			x	x					x		x	x			x	x	
M02				x					x		x	x			x	x	
M03				x					x					x	x	x	
M04				x					x					x	x	x	
M05				x					x					x	x	x	
M06	x	x			x	x	x	x						x	x		x
M07			x	x					x					x	x	x	
M08			x	x					x					x	x	x	
M09			x	x					x					x	x	x	
M10				x					x		x	x			x	x	
M11				x					x					x	x	x	
M12			x	x					x					x	x	x	
M13				x					x					x	x	x	
M14				x					x						x	x	
M15				x					x					x	x	x	
M16	x	x			x	x	x	x		x	x	x			x		x
M18			x	x					x					x	x	x	

alert 1- Radical mechanism via ROS formation (indirect): Single-ring substituted primary aromatic amines

alert 2- Nucleophilic attack after metabolic activation: Single-ring substituted primary aromatic amines

alert 3 - SN1: Iminium Ion Formation, Aliphatic tertiary amines

alert 4 - SN1: Nitrenium Ion formation, Aromatic phenylureas

alert 5 - Nitrenium ion formation: Primary aromatic amines

alert 6 - Radical mechanism via ROS formation (indirect): Single-ring substituted primary aromatic amines

alert 7 - Nucleophilic attack after metabolic activation: Single-ring substituted primary aromatic amines

alert 8 - Primary aromatic amines, hydroxyl amines and derived esters (genotox)

alert 9 - H-acceptor-path3-H-acceptor

alert 10 - Primary aromatic amines, hydroxyl amines and derived esters

bold: compounds covered in their genotoxicological properties by studies with parent

grey shaded: predicted as a potential mutagen by one of the two Ames/(Q)SAR models or predicted as potentially positive for chromosomal aberration from one of the two (Q)SAR model.

1 Analyses of the results from the read across for the metabolites predicted as negative by the (Q)SAR
2 models

3 Alerts 4 and 9 are present in all evaluated metabolites as well as in the parent substance and all major
4 rat metabolites (bold in Table 4). Alert 3 is present in three of the metabolites of evaluation M08, M09
5 and M18 and in the parent substance. Therefore the alerts are considered covered by the experimental
6 studies and not relevant for the metabolites in terms of the genotoxicity. No other alerts were
7 identified

8 Secondary profiler gives no hints on additional organic functional groups of concern. The changes in
9 the structural features are related with demethylation of the methylurea group (M02, M05, M11, M14
10 and M15) and/or hydroxylation (M02, M08, M09, M11 and M15) or carboxylation (M05, M14 and
11 M18) of the side alkyl chain on the 4th position. Demethylation and hydroxylation are observed in the
12 major rat metabolites and therefore the metabolites M02, M08, M09, M11 and M14 are considered
13 similar to the parent substance and the major rat metabolites, thus not of genotoxic concern. The
14 carboxyl group is not detected in any of the major rat metabolites but considering that the group is not
15 recognised as a structural alert for genotoxicity and it is outlying from the structural alert for
16 genotoxicity (methylurea group), it is considered that the group could not lead to activation of the
17 structural alert, therefore M05, M14 and M18 are not considered of genotoxic concern.

19 Analyses of the results from the read across for the metabolites predicted as positive by the (Q)SAR
20 models

21 Alerts 3, 4, and 9 present in the parent substance and the major rat metabolites are identified also in
22 the metabolites M07 and M12. No new alerts were identified. In both metabolites OH group(s)
23 appeared as a result of metabolism of the alkyl chain on the 4th position in comparison with the parent
24 substance. The organic functional hydroxy group of metabolites M07 and M12, which is not present in
25 the parent, is found in metabolites M03 and M04, both major in the rat (sum 75 % of AD). Based on
26 the read across analysis, metabolites M07 and M12 could be regarded as very similar to the parent
27 substance and its major rat metabolites. Metabolites M07 and M12 are concluded to be of no
28 genotoxicity concern.

29 Alerts 3, 4, and 9 present in the parent substance and the major rat metabolites are not present in the
30 metabolites M06 and M16, but almost all applied profilers identified aromatic primary amine present
31 in their structure as a potential alert for genotoxicity (DNA binding by OASIS v 1.3, DNA binding by
32 OECD, In vivo mutagenicity (Micronucleus) alerts by ISS, DNA alerts for AMES, MN and CA by
33 OASIS v1.3). This alert is not present neither in the parent substance nor in the major rat metabolites
34 and together with the positive prediction of the (Q)SAR models the possibility for genotoxic potential
35 cannot be excluded. To exclude an unacceptable dietary risk by potentially genotoxic metabolites,
36 either a combined exposure estimate and comparison against TTC can be performed (step 7) or
37 metabolites M06 and M16 would need to be tested (step 8).

38
39 **Step 6.2: Conclusion**

40 Metabolites M02, M05, M08, M09, M11, M14, M15 and M18 are not predicted to be of concern for
41 genotoxicity.

42 Metabolite M12 is predicted as a potential mutagen by one of the two Ames/(Q)SAR models.
43 Metabolite M07 is predicted as potential positive for chromosomal aberration from one of the two
44 (Q)SAR model. However, both metabolites (M12 and M07) are not considered of genotoxicity
45 concern following read-across analysis.

46 Metabolite M06 was predicted positive for *in-vivo* micronucleus and “equivocal” following prediction
47 for *in-vitro* chromosome aberration.

48 Metabolite M16 was predicted as a potential mutagen by one of the two Ames/(Q)SAR models and
 49 predicted positive for in-vivo micronucleus and “equivocal” following prediction for in-vitro
 50 chromosome aberration.

51 For **metabolites M06 and M16**, genotoxicity concern cannot be excluded following read-across
 52 analysis. In addition, both metabolites M06 and M16 are predicted to be of potential concern for the
 53 same end point of genotoxicity ie *in-vivo* micronucleus and *in-vitro* chromosome aberration; therefore,
 54 combined exposure for metabolites M06 and M16 should be calculated and assessed against TTC for
 55 genotoxicity (step7) and/or testing (step 8).

56

57 **Step 7: Generation of input data and combined exposure assessment against TTC_{genotoxicity}**

58

59 The uses in Table 5 are considered in the exposure estimate to be used in the TTC assessment.
 60 Regulatory decisions based on specific exposure estimates are therefore restricted to the particular
 61 GAP conditions considered.

62

63 **Table 5 Uses considered for exposure estimates**

Crop	Application			
	Growth stage	Number	kg as/ha	PHI
Cereals (wheat, barley, rye, triticale)	BBCH 00-32	1	1.5	not relevant

64

65

66 **Step 7.1: Derivation of residue input data for metabolites16**

67

68 a) Residue levels in primary crop (cereal) and in groundwater

69 – Metabolite identification was performed in winter wheat plant parts treated with
 70 ¹⁴C-isoproturon at 1.875 kg/ha (ca. 1.25 N rate) post-emergence 5 months after planting.

71 – Residue situation for pre-emergence use in cereals has been deemed addressed by the 30
 72 days plant-back interval investigated in the rotational crop study (see point b)

73 – Residues in grain are relevant for consumer and livestock exposure; residues in straw are
 74 relevant for livestock exposure calculation; residues in forage are not relevant for livestock
 75 exposure (restriction in the GAP for grazing livestock on the treated crop), chaff and
 76 stubble are neither relevant for quantitative consumer or livestock exposure calculation.

77 – Residue levels of metabolites in grain were adopted from the metabolism study, while
 78 values for straw were calculated by applying the parent/metabolite ratio of the metabolism
 79 study to field trial data for parent. A conversion factor can only be successfully applied if
 80 quantifiable parent residue values are available; this was not (or hardly) the case for the
 81 field trial data for grain, where in 82 out of 89 residue trials parent levels were below the
 82 LOQ. The untransformed metabolism data for grain were therefore considered more
 83 adequate for exposure estimation of metabolites, while for straw the field data were used
 84 to estimate exposure.

85 – Residues in groundwater were relevant for quantitative consumer exposure calculation and
 86 comparison against the TTC (if applicable)

87

¹⁶ Based on metabolism and residue data in the Assessment Report (Germany, 2014)

88

89 b) Residue levels in rotational crops

90 – Rotational crop metabolism study was performed at 1N rate (bare soil application) and
91 sowing of rotational crops at 30 day plant-back interval (PBI), 210 day PBI and 320 day
92 PBI.

93 – No field study is available; no conversion was required to account for differences in
94 application rate or accumulation (1N study). Thus, metabolite data were directly used for
95 exposure estimates.

96 – Crop groups covered: Cereals (grain, straw), root crops (turnip root and leaf), leafy crops
97 (Swiss chard; 210 and 320 d PBI only). Additional crop groups (oilseed; fruiting
98 vegetables) are not considered relevant.

99 – 30 day PBI (cereals): Data are considered suitable for the evaluation of GAP compliant
100 pre-emergence application due to the 1N application rate, bare soil application, and
101 sowing shortly after application. It is therefore considered appropriate to evaluate a
102 possible GAP residue situation, to derive the residue definition and to provide input values
103 for dietary risk assessment and livestock burden calculation.

104 – 30 day PBI (root/tuber and leafy crops): The case of crop failure in cereals upon herbicide
105 use could lead to a residue situation relevant for acute dietary exposure scenarios) and is
106 therefore relevant for genotoxicity screening. For general toxicity assessment, only the
107 chronic scenario is relevant for the consumer as no ARfD is proposed for isoproturon and
108 its metabolites.¹⁷ It is assumed that residues after crop failure in root/tuber and leafy crops
109 do not contribute to a significant long-term dietary burden of livestock animals relevant
110 for dietary risk assessment. Therefore, residues from 30 d PBI (root/tuber, leafy crops) do
111 not need to be considered for risk assessment.

112 – 214/312 day PBI (all crops): The rotation crop residue data represent realistic replanting
113 scenarios and are considered for exposure assessment.

114

¹⁷ The status of the evaluation of Isoproturon at the time of 2014 was considered during the development of the case. It is noted that an ARfD was set for Isoproturon later in 2015.

115
 116

Table 6 Residue levels of isoproturon and metabolites in a primary crop winter wheat metabolism study, in a field study and in groundwater for the relevant application rate

	Wheat, primary crop								
	Straw			Field data	Grain		Groundwater		
	Metabolism study 1.25 N		Metabolism study 1.25 N		Field data	PECgw FOCUS #			
	TRR		CF	HR/HRC	TRR		CF	STMR/HRC	
	%	mg [equ]/kg		mg [equ]/kg	%	mg [equ]/kg		mg [equ]/kg	µg/L
		5.197				0.088			
Parent	17.8	0.923	1.00	0.15	3.3	0.003	1.00	0.010	
M02									
M03	3.9	0.203	0.22	0.033					
M04	6.3	0.329	0.36	0.053	1.2	0.001	0.33	N/A	
M05	1.9	0.101	0.11	0.016	19.3	0.017	5.67	N/A	
M06	3.4	0.179	0.19	0.029	0.6	0.001	0.33	N/A	
M07	4.3	0.225	0.24	0.037	5.4	0.005	1.67	N/A	
M08	3.3	0.170	0.18	0.028	2.2	0.002	0.00	N/A	11.682
M09									2.634
M10	3.1	0.160	0.17	0.026					1.712
M11									
M12									
M13									
M14									
M15									
M16									
M18								7.227	6.310

 117
 118
 119

[equ] Isoproturon equivalents

PECgw - FOCUS modelling results (80th percentile annual average concentration at 1 m) – pre-emergence application in wheat of 1500 g a.s./ha; highest predicted concentration across all scenarios

Table 7 Residue levels of isoproturon metabolites in rotational crops following application of 1566 g a.s./ha (IN)

	Wheat									
	30 days		213 days		30 days		213 days		324 days	
	Grain		Grain		Straw		Straw		Straw	
	TRR 0.106 mg/kg		TRR 0.019 mg/kg		TRR 2.089 mg/kg		TRR 0.187 mg/kg		TRR 0.127 mg/kg	
	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg	%	mg/kg
Parent					0.3	0.006				
M02										
M03	3.6	0.004	3.7	0.0007	15.5	0.323	9.9*	0.019	13.7	0.017
M04										
M05										
M06										
M07a			1.6	0.0003	4.9	0.102	6.5	0.012	4.9	0.006
M07b					2.6	0.055			2.5	0.003
M08					1.1	0.023				
M09	5.1	0.005	1.5	0.0003	24.2	0.505	2.4	0.005	13.8	0.018
M10										
M11	4.4	0.005	7.5	0.0014	7.1	0.149	11.2	0.021	9.4	0.012
M12	2.6	0.003	4.3	0.0008	4.7	0.098	4.7	0.009	5.6	0.007
M13			1.6	0.0003	2.9	0.061	6.2	0.012	5.1	0.006
M14										
M15										
M16										
M18										

* Re-calculated 10.2% TRR based on the available values

Table 7 (cont.)

	Swiss chard				Turnip							
	213 days		324 days		30 days **				213 days		324 days	
	mature		mature		roots		leaves		roots		leaves	
	TRR 0.045 mg/kg		TRR 0.027 mg/kg		TRR 0.116 mg/kg		TRR 0.948 mg/kg		TRR 0.012 mg/kg		TRR 0.029 mg/kg	
	%	mg/kg	%	mg/kg								
Parent					2.9	0.003	0.4	0.004				
M02					1.2	0.001	0.7	0.006				
M03	22.5	0.010	14.6	0.004	3.9	0.005	36.2	0.343	2.3	<0.001 (0.0003)*	25.7	0.008
M04												
M05												
M06												
M07a	3.8	0.002					3.3	0.032			3.8	0.001
M07b	1.5	0.001			5.2	0.006	4.2	0.040	2.8	<0.001 (0.0003)*		
M08	3.7	0.002			1.4	0.002	1.2	0.011				
M09	15.7	0.007	24.5	0.007	28.9	0.034	36.8	0.348	12.2	0.002	16.1	0.005
M10												
M11	7.4	0.003	12.3	0.003	1.4	0.002	2.0	0.019	1.2	<0.001 (0.0001)*	10.8	0.003
M12	3.3	0.001					0.5	0.004			2.1	0.001
M13	5.4	0.002			2.9	0.003	2.9	0.027	2.3	<0.001 (0.0003)*	5.2	0.002
M14												
M15												
M16												
M18												

* calculated based on TRR

** considered only relevant in case of acutely toxic compounds. Not relevant for isoproturon at the status of the evaluation considered in this case study.

1 **Step 7.2: Combined exposure calculation for those metabolites, for which genotoxic effects**
 2 **cannot be excluded**

3 **Table 8 Exposure calculation¹⁸ and TTC assessment of metabolites with potential genotoxicity concern**

Metabolite	Root crops	Cereal grain	Leafy crops	Groundwater
	mg/kg	mg/kg	mg/kg	µg/L
M06	-	0.0010	-	-
M16	-	-	-	-
Sum of metabolites	-	0.0010	-	-

Chronic exposure (most critical diets)

Combined metabolite exposure for M06, M16

0.010 µg/kg bw/d (DK child)	= 413 % TTC _{genotoxicity}
0.009 µg/kg bw/d (WHO Cluster diet B)	= 356 % TTC _{genotoxicity}
0.007 µg/kg bw/d (WHO Cluster diet D)	= 288 % TTC _{genotoxicity}

Individual metabolite exposure

M06: 0.000-0.020 µg/kg bw/d	= 0-413 % TTC _{genotoxicity}
M16: No exposure.	= 0 % TTC _{genotoxicity}

Acute exposure	
Combined metabolite exposure for M06, M16	
0.0145 µg/kg bw (wheat, children)	= 578 % TTC _{genotoxicity}
0.0078 µg/kg bw (wheat, adults)	= 313 % TTC _{genotoxicity}
0.0072 µg/kg bw (barley, adults)	= 290 % TTC _{genotoxicity}
0.0049 µg/kg bw (rye, adults)	= 194 % TTC _{genotoxicity}
Individual max. metabolite exposure	
M06: 0.0145 µg/kg bw (wheat, children)	= 578 % TTC _{genotoxicity}
M16: No exposure.	= 0 % TTC _{genotoxicity}

6 **Step 7.3: Conclusion**

7 The combined exposure assessment for all metabolites, for which potential genotoxic effects cannot be
 8 excluded *a priori*, reveals an exceedance of the applicable TTC for genotoxicity of
 9 0.0025 µg/kg bw/d.

10 **Metabolite M06 individually exceeds the genotoxicity threshold for chronic as well as acute**
 11 **consumption data. Testing is required (step 8).**

12 Metabolite M16 does not contribute to the consumer exposure since its occurrence is limited to
 13 primary crop non-food intermediate commodities (cereal forage) that are also not destined for animal
 14 feed. No extrapolation to other crops is required. Testing of metabolite M16 is not required.

18 Exposure assessment performed with EFSA PRIMo rev.2

20 **Step 8: Genotoxicity testing**

21
22 No tests on metabolite M06 is available. As the prediction indicate a potential concern for the *in-vivo*
23 micronucleus and *in-vitro* chromosome aberration (equivocal), metabolite M06 is recommended to be
24 tested *in-vitro* to investigate structural and numerical chromosome aberration (e.g. TG 487). In
25 addition, although metabolite M06 was predicted as negative for point mutation the analysis was
26 considered potentially out of the chemical domain and the read-across showed a positive outcome for
27 some alerts of relevance for this end point; therefore an Ames test (TG471) is also recommended.

28
29
30 **Step 9: Genotoxicity concern**

31 Additional information on metabolite M06 is required.

32
33
34
35 **Step 10: General toxicity of metabolites characterized by studies with parent or by specific**
36 **studies**

37
38 **Step 10.1: Toxicological assessment of parent compound**

39 The ADI for the parent compound, isoproturon, was set at 0.015 mg/kg bw/d based on liver tumours in
40 the rat carcinogenicity study.
41 Based on the tumour effect observed in rat the parent substance is classified as carcinogen Cat.2
42 An ARfD was considered as not necessary.¹⁹

43
44
45 **Step 10.2: Toxicological assessment of metabolites**

46 Metabolites M03, M04, M10 and M13 are considered covered in their toxicological properties by the
47 studies with the parent. No further toxicological assessment is needed.

48
49
50 **Step 11: Combined exposure of all metabolites to assess general toxicity (optional)**

51 The TTC assessment is not applicable to the representative uses of isoproturon due to significant
52 residues in animal feed items that may create additional consumer intakes via food of animal origin.
53 Therefore, no comprehensive and sufficiently precise consumer exposure assessment can be
54 performed. Moreover, already the consumer exposure via groundwater that could be used as drinking
55 water exceeds the TTC for Cramer Class III.

56
57
58 **Step 12: Consideration on potency**

59 The ADI for the parent compound, isoproturon, was set at 0.015 mg/kg bw/d based on liver tumours in
60 the rat carcinogenicity study. Based on the ADI value (>0.01 mg/kg bw/d), isoproturon and its
61 metabolites are not considered of concern in terms of potency.

62 No additional consideration of potency is required.

¹⁹ The status of the evaluation of Isoproturon at the time of 2014 was considered during the development of the case. It is noted that an ARfD was set for Isoproturon later in 2015.

67 **Step 13: Assessment of major plant metabolites in food ($\geq 10\%$ TRR (and at least 0.01mg/kg)
68 OR ≥ 0.05 mg/kg)**

69
70 Metabolites M03 and M05 are candidates for inclusion into the residue definition from food (extracted
71 from Table 6 and 7), while M09 is a candidate only due to its occurrence in feed (see Step 7.1, point
72 b).

73
74 Metabolite M03 is covered in its toxicological properties by parent compound studies, because is
75 above 10% of AD in terms of total radioactive material recovered in the urine as detected in ADME
76 studies.

77
78 Metabolite M05 was only observed in primary crops and is present in the rat metabolism study at a
79 level in the urine of 8% of the administered dose. Toxicological assessment is needed (step 18)

80
81
82 **Step 14: Assessment of minor plant metabolites in food**

83
84 Based on the ADI value for parent (>0.01 mg/kg bw/d), metabolites defined as minor by their
85 insignificant presence in food commodities are not considered of concern. Minor metabolites of
86 substances not falling under the 'high potency' definition are usually not expected to significantly
87 contribute to the toxicological dietary burden at the levels observed and no further toxicological or
88 exposure assessment is needed. Metabolite M07 is a racemic mixture of two isomers. The sum of the
89 two isomers is $<10\%$ of the TRR and <0.01 mg/kg and thus M07 is considered a minor metabolite of
90 no concern.

91
92
93 **Step 15: Assessment of major plant metabolites in feed ($\geq 10\%$ TRR and ≥ 0.01 mg/kg)**

94
95 For the dietary burden calculation, only those compounds are considered that occur in at least one
96 relevant commodity at $\geq 10\%$ TRR (and at least 0.01 mg/kg)

97
98 This is the case for parent and metabolites M03, M05, M09 and M11 (see Table 6 and 7)

99
100 For the purpose of livestock dietary burden calculation the converted residue levels will be used, i.e.
101 the calculation is specific for the representative uses (see Table 5).

105 **Step 16: Potential of residue transfer from feed to livestock**

106

 107 The dietary burden calculation as decision tool for the requirement of an animal metabolism study has
 108 to consider highest likely residues of the relevant compounds in feed items. This is also required for
 109 MRL setting in food of animal origin.

110

 111 The residue situation for pre- and post-emergence use differs in terms of composition of the residue
 112 and the total amount. Both situations are considered equally relevant for the dietary burden
 113 calculation. Derivation of input data is described for primary crops in step 7.1 (incl. Table 6) and for
 114 rotational crops in step 7.2 (incl. Table 7).

115

 116 Post-emergence use

 117 The dietary burden calculation for the post-emergence scenario is summarised in Table 9a, consisting
 118 of field data (parent; grain/straw), values from the primary crop metabolism study (M05; grain) and
 119 converted field data (M05; straw). Rotational crop data are relevant for M03 (leafy crops; 213 d PBI).

120

 121 **Table 9a Dietary burden calculation for isoproturon and potentially relevant metabolites –**
 122 **post-emergence use scenario**

Compound	Primary/Rotational crops		Leafy	Contribution to livestock burden		
	Cereal grain	Cereal straw		Diet	mg/kg bw/d	%
	mg/kg	mg/kg		mg/kg		
Post-emergence scenario						
Isoproturon	0.010	0.150	-	Lamb	0.004	80
				Ewe	0.004	81
				Layer	0.002	55
M05	0.017	0.016	-	Lamb	0.001	14
				Ewe	0.001	15
				Layer	0.001	39
M03	-	-	0.010	Lamb	<0.001	5
				Ewe	<0.001	5
				Layer	<0.001	7
Sum	0.027	0.166	0.010	Lamb	0.005	100
				Ewe	0.004	100
				Layer	0.003	100

123

124

125

 126 Pre-emergence use

 127 The dietary burden calculation for pre-emergence scenario is summarised in Table 9b, consisting of
 128 wheat data from the rotational crop metabolism study, 30 day plant-back interval, as a surrogate for
 129 the assessed scenario (all compounds). Rotational crop data are relevant for M03 (leafy crops; 213 d
 130 PBI).

131
 132

Table 9b Dietary burden calculation for isoproturon and potentially relevant metabolites – pre-emergence use scenario

Compound	Primary/Rotational crops		Rotational crops Leafy mg/kg	Contribution to livestock burden		
	Cereal grain	Cereal straw		Diet	mg/kg bw/d	%
	mg/kg	mg/kg				
Pre-emergence scenario						
Isoproturon	-	0.006	-	Lamb	<0.001	<1
				Ewe	<0.001	<1
				Layer	<0.001	<1
M03	0.004	0.323	0.010	Lamb	0.009	32
				Ewe	0.007	33
				Layer	0.003	32
M09	0.005	0.505	0.007	Lamb	0.015	51
				Ewe	0.011	51
				Layer	0.004	50
M11	0.005	0.149	0.003	Lamb	0.004	15
				Ewe	0.003	15
				Layer	0.002	18
Sum	0.014	0.983	0.020	Lamb	0.028	100
				Ewe	0.022	100
				Layer	0.009	100

 133
 134

135 The trigger of 0.004 mg/kg bw/d for conduct of a livestock metabolism study is exceeded for
 136 ruminants (maximum 0.028 mg/kg bw/d) and poultry (maximum 0.009 mg/kg bw/d).

 137
 138
 139
 140
 141

142 It is concluded based on all the information, that a new ruminant metabolism study with parent
 143 isoproturon is required. In case that the potentially relevant feed metabolites are not found in the
 144 metabolic pathway of isoproturon in animals in the livestock metabolism studies, further metabolism
 145 data might be required if the dietary burden of these metabolites is still significant.

 146
 147
 148

149 **Step 17: Major animal metabolites >10% TRR in food**

 150
 151
 152
 153

154 No data available (data gap).

 155
 156
 157

158 **Step 18: Testing strategy, grouping and read-across**

 159
 160
 161

162 Metabolite M03 is covered in its toxicological properties by parent compound studies, because it is
 163 above 10% of AD in terms of total radioactive material recovered in the urine as detected in ADME
 164 studies.

 165
 166
 167

168 Metabolite M05 is considered structurally similar to the parent and to the major rat metabolite - M03.
 169 The structural difference with M03 is the presence of a carboxyl group instead of the hydroxyl group
 170 in alkyl chain at 4th position. A carboxylic group can potentially produce idiosyncratic reactions
 171 through formation of acyl glucuronide reaction (Bailey M, Dickinson R, Acryl glucuronide reactivity
 172 in perspective: biological consequences, 2003, *Chemico-Biological Interactions*, 145, 117-137).
 173 Idiosyncratic reactions are unlikely to be captured by any additional testing and as M05 is occurring at
 174 the level of 8% in the rat urine, the toxicological data provided by the parent are considered to cover
 175 the toxicological assessment of M05.

 176
 177
 178

164 Metabolite M09 is considered similar with the parent substance. The structural difference is a simple
 165 hydroxylation of the alkyl chain at 4th position; therefore parent reference values can be applied.

166
 167 Metabolite M11 is considered covered by the toxicological data provided for the parent and
 168 occurrence of a major rat metabolite – M10. The structural difference with M10 is a simple
 169 hydroxylation of the alkyl chain at 4th position; therefore parent reference values can be applied.

170

171

172 Step 19: Assessment of consumer toxicological burden

173

174 Besides parent isoproturon, metabolites M03 (via leafy rotational crops) and M05 are candidates for
 175 inclusion into the residue definition for plants as they all occur at levels exceeding ≥10 % TRR (and at
 176 least 0.01 mg/kg) OR ≥0.05 mg/kg in terms of absolute levels in at least one food commodity (see
 177 Table 6 and 7, step 7).

178 Additional major metabolites in cereal straw (M09, M11) might become relevant pending finalisation
 179 of the assessment of their relevance in feed items for transfer into food of animal origin (livestock
 180 metabolism studies required).

181 Results of exposure assessment for the use in cereals and rotational crops and comparison against the
 182 overall toxicological burden in plant products are presented in Table 10.

183

184 **Table 10 Residues of potential concern in food of plant and animal origin**

Metabolite	RPF	Cereals (pre-emergence)				Cereals (post-emergence)				Leafy RC (213 d)	
		Grain		Straw		Grain		Straw		Swiss chard	
		%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden
Parent	1			0.3	0	3.3	10	17.8	40		
M03	1	3.6	23 ^a	15.5	24					22.5	36
M05	1					19.3	60	1.9	4		
M09	1	5.1	32 ^a	24.2	38					15.7	25 ^a
M11	1	4.4	28 ^a	7.1	11					7.4	12 ^a
Other (minor)	1 ^b	2.6	17	16.2	27	32.0	30	20.4	56	17.7	27
Sum of relevant metabolites	1	Not relevant ^a		47.1	73	22.6	70	19.7	44	22.5	36
Sum of non-considered metabolites	1 ^b			16.2	27	32.0	30	24.3	56	40.8	64

185 ^a Not relevant for the residue definition as metabolite is minor in food (<0.01 mg/kg in grain)

186 ^b Default assumption; no characterisation of general toxicological required for minor metabolites

187

188 The post-emergence scenario is considered relevant for setting the residue definition with parent and
 189 metabolite M05 as major contributors to the overall toxicological burden (70%, considering RPF 1).
 190 Metabolite M03 is relevant due to its occurrence in rotational leafy crops.

191

192 Additional metabolites (M03, M09, M11) might become relevant pending information on their
 193 potential transfer from feed to food of animal origin.

194

195

196 **Step 20: Residue definitions**

197

198 The proposed residue definition for risk assessment (expressed as isoproturon) in plants is

199

200 **Cereals: Parent, M05 (primary crops, provisional, pending closure of data gaps)**

201 **Leafy crops: M03 (rotational crops only)**

202

203 No residue definition for risk assessment in livestock can be proposed (data gap).

204

205

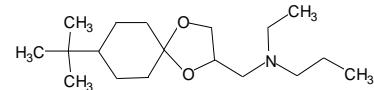
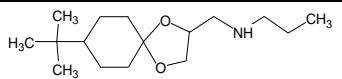
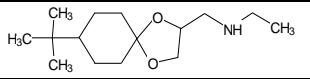
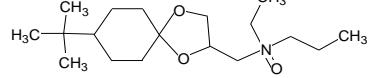
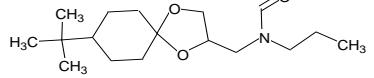
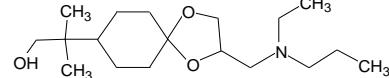
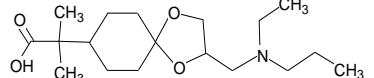
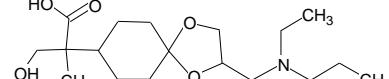
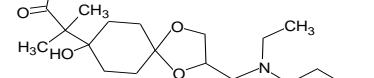
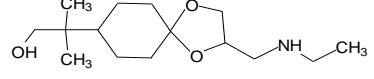
206 **Data gaps**

- 207 1. Genotoxic potential for metabolite M06 needs to be addressed by *in-vitro* test on structural
208 and numerical chromosome aberration (e.g. OECD 487) and Ames test (OECD 471).
- 209 2. The applicability of parent reference values for M05 has to be evidenced. Alternatively, non-
210 relevant exposure of M05 can be demonstrated by proven absence of residues under GAP
211 conditions (residues in field trials below LOQ of 0.01 mg/kg).
- 212 3. Livestock exposure is significant under GAP conditions (ruminant, poultry). No acceptable
213 livestock metabolism study with parent isoproturon is available to assess the potential for
214 residues and their nature in food of animal origin. Unless the nature and quantity of residues in
215 food of animal origin is known, no residue definition (animals) can be proposed.

216

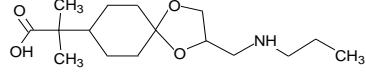
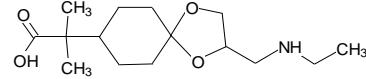
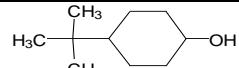
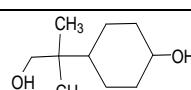
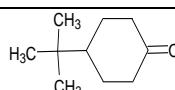
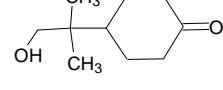
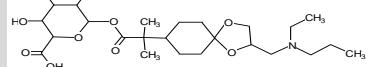
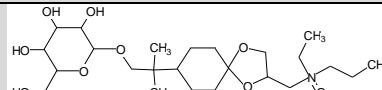
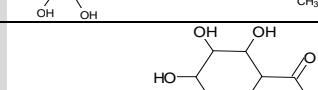
217 **Uncertainties of particular relevance for decision making**

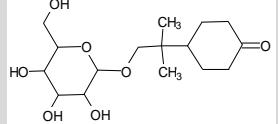
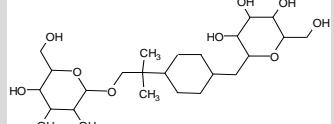
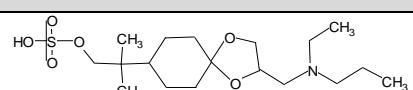
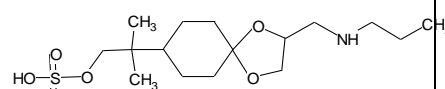
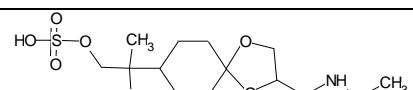
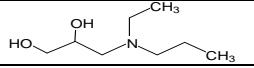
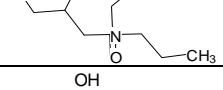
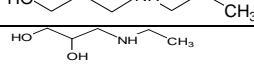
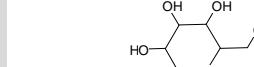
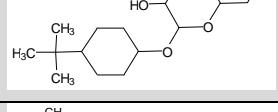
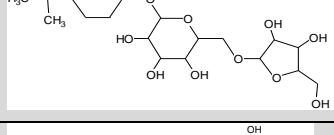
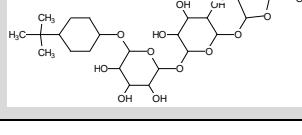
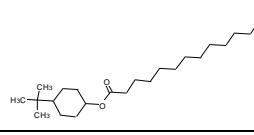
218 The finalisation of the evaluation of the uncertainties is underdevelopment pending adoption of the
219 Scientific Committee guidance on uncertainty in scientific assessment.

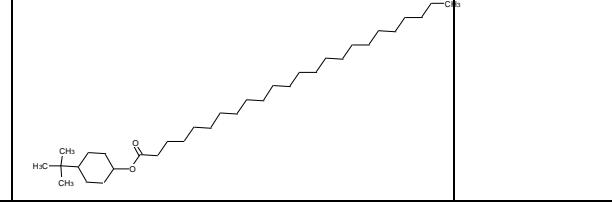
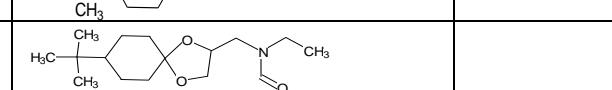
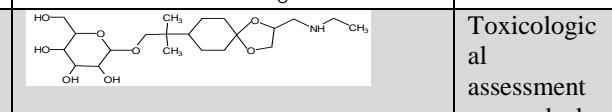
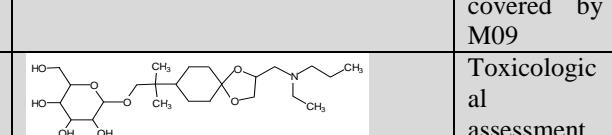
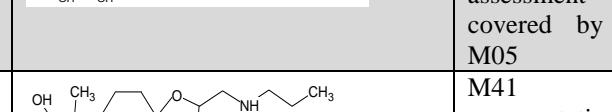
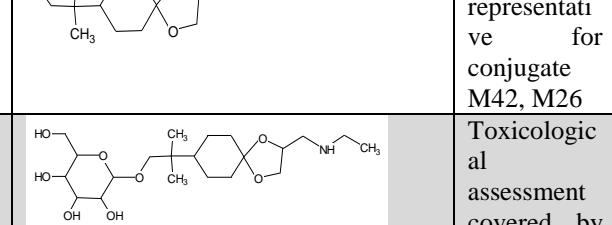
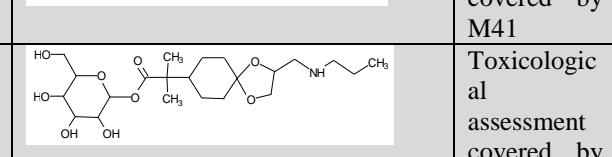
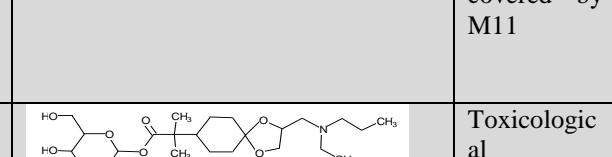
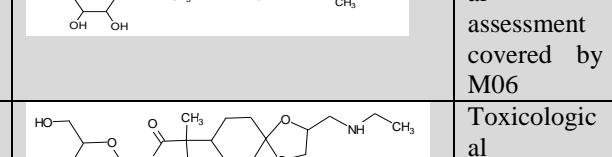










- 220 1. The residue definition in plants comprises 70 % of the total toxicological burden for consumer
221 (only food of plant origin considered; pending information on the transfer from feed to food of
222 animal origin). Although this is slightly below the target of 75% this has only a marginal
223 impact on the calculated dietary consumer risk.
- 224 2. Grouping of metabolites is based on criteria for similarity. However, these criteria are not
225 fully characterized. For genotoxicity endpoints, grouping on profiling and presence of
226 functional groups was considered suitable for the purpose of risk assessment. Grouping of
227 metabolites for section of representative substance for testing for general toxicity was based
228 on common moiety and similarity in the chemical reactivity and this was considered
229 appropriate for this purpose. However, some uncertainties still exist as no testing was
230 performed.
- 231 3. Limitations in the assessment of metabolites (e.g. containing a carboxylic group in the
232 structure) that can potentially produce reactive metabolites exist and this is recognized as an
233 uncertainty.
- 234 4. Genotoxic alerts indicated by (Q)SAR for metabolites M07 and M12 are considered not
235 relevant on the basis of read-across. This bears a higher uncertainty compared to *in vitro* results
236 according to the proposed testing scheme.
- 237 5. Groundwater exposure may increase the dietary intake of toxicologically relevant residues M08,
238 M09, M10 and M18. This is not considered to impact the proposal on which metabolites are
239 relevant in food of plant and animal origin.

240 **Appendix C. Case study – Spiroxamine (Germany, 2009)²⁰**

241 **Step 1: Metabolite identified at any level in nature-of-residue studies**










242 A list of metabolites detected in residue metabolism studies is given in Table 1. Conjugated
 243 metabolites (glycosides, glucuronides) are assumed to be covered in their toxicological properties by
 244 their respective aglycons²¹.














245 **Table 1 Spiroxamine metabolites**










Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
Parent	Spiroxamine CCCN(CC)CC1COC2(CCC(C(C)(C)C)CC2)O1		
M01	Desethyl CCCNCC1COC2(CCC(C(C)(C)C)CC2)O1		
M02	Despropyl CCNCC1COC2(CCC(C(C)(C)C)CC2)O1		
M03	N-oxide CCCN(=O)(CC)CC1COC2(CCC(C(C)(C)C)CC2)O1		
M04	N-formyl-desethyl CCCN(CC1COC2(CCC(C(C)(C)C)CC2)O1)C=O		
M05	Hydroxyl CCCN(CC)CC1COC2(CCC(C(C)(C)CO)CC2)O1		M05 representative for conjugate M40, M25
M06	Acid CCCN(CC)CC1COC2(CCC(C(C)(C)C(O)=O)CC2)O1		M06 representative for conjugates M19, M44
M07	Hydroxy acid CCCN(CC)CC1COC2(CCC(C(C)(CO)C(O)=O)CC2)O1		
M08	8-hydroxy acid CCCN(CC)CC1COC2(CCC(O)(C(C)(C)C(O)=O)CC2)O1		
M09	Hydroxy-despropyl CCNCC1COC2(CCC(C(C)(C)CO)CC2)O1		M09 representative for conjugate M39, M27
M10	Hydroxy-N-oxide CCCN(=O)(CC)C1COC2(CCC(C(C)(C)CO)CC2)O1		M10 representative for conjugates M20, M21

²⁰ Germany 2009. Assessment Report on the active substance spiroxamine prepared by the rapporteur Member State Germany in consultation with Hungary in the framework of Commission Regulation (EC) No 737/2007, September 2009. Available at <http://dar.efsa.europa.eu/dar-web/provision>

²¹ Greyed out in this table

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M11	Desethyl acid CCCNCC1COC2(CCC(C(C)(C)C(O)=O)CC2)O1		M11 representative for conjugate M43
M12	Despropyl acid CCNCC1COC2(CCC(C(C)(C)C(O)=O)CC2)O1		M12 representative for conjugate M45
M13	Cyclohexanol CC(C)(C)C1CCC(O)CC1		M13 representative for conjugates M22, M32, M33, M34, tentative for M35 and M36 (upon closing of data gap; step 20)
M14	Diol CC(C)(CO)C1CCC(O)CC1		M14 representative for conjugate M24
M15	Ketone CC(C)(C)C1CCC(=O)CC1		
M16	Hydroxy-ketone aglycon M23 CC(C)(CO)C1CCC(=O)CC1		M16 representative for conjugate M23
M19	Acid glucuronide CCCN(CC)CC1COC2(CCC(C(C)(C)C(=O)OC3C(O)C(O)C(O)C(C(O)=O)O3)CC2)O1		Toxicological assessment covered by M06
M20	Hydroxy-N-oxide glucoside CCCN(=O)(CC)CC1COC2(CCC(C(C)(C)COC3C(O)C(O)C(O)C(CO)O3)CC2)O1		Toxicological assessment covered by M10
M21	Hydroxy-N-oxide malonyl glucosid CCCN(=O)(CC)CC1COC2(CCC(C(C)(C)COC3C(O)C(O)C(COC(=O)CC(O)=O)O3)CC2)O1		Toxicological assessment covered by M10
M22	Cyclohexanol-glucuronide CC(C)(C)C1CCC(OC2C(O)C(O)C(O)C(C(O)=O)O2)CC1		Toxicological assessment covered by M13

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M23	Hydroxy-ketone-conjugate <chem>CC(C)(COC1C(O)C(O)C(O)C(CO)O1)C1CCC(=O)CC1</chem>		Toxicological assessment covered by M16
M24	Diol-diglycoside <chem>CC(C)(COC1C(O)C(O)C(O)C(CO)O1)C1CCC(C2C(O)C(O)C(O)C(CO)O2)CC1</chem>		Toxicological assessment covered by M14
M25	Sulfate <chem>CCCN(CC)CC1COC2(CCC(C(C)(C)COS(O)(=O)=O)CC2)O1</chem>		
M26	Desethyl-sulfate <chem>CCCNCC1COC2(COC(C(C)(C)COS(O)(=O)=O)OC2)O1</chem>		
M27	Despropyl-sulfate <chem>CCNCC1COC2(CCC(C(C)(C)COS(O)(=O)=O)OC2)O1</chem>		
M28	Aminodiol <chem>CCCN(CC)CC(O)CO</chem>		
M29	Aminodiol-N-oxide <chem>CCCN(=O)(CC)CC(O)CO</chem>		
M30	Desethyl-aminodiol <chem>CCCNCC(O)CO</chem>		
M31	Despropyl-aminodiol <chem>CCNCC(O)CO</chem>		
M32	Cyclohexanol glucoside <chem>CC(C)(C)C1CCC(OC2C(O)C(O)C(O)C(CO)O2)CC1</chem>		Toxicological assessment covered by M13
M33	Cyclohexanol - glucopyranosyl-pentose <chem>CC(C)(C)C1CCC(OC2C(O)C(O)C(O)C(COC3C(O)C(O)C(CO)O3)O2)CC1</chem>		Toxicological assessment covered by M13
M34	Cyclohexanol-glucopyranosyl-glucopyranosyl-pentose <chem>CC(C)(C)C1CCC(OC2C(O)C(O)C(O)C(OC3C(O)C(O)C(COC4C(O)C(O)C(CO)O4)O3)O2)CC1</chem>		Toxicological assessment covered by M13
M35	Docosanoic acid ester <chem>CCCCCCCCCCCCCCCCCCCC(=O)OC1CC(C(C)(C)C)CC1</chem>		

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M36	Tetracosanoic acid ester CCCCCCCCCCCCCCCCCCCCC(=O)OC1CCC(C(C)(C)C)CC1		
M37	Cyclohexenol CC(C)(C)C1CCC(O)C=C1		
M38	N-formyl-despropyl CCN(CC1COC2(CCC(C(C)(C)C)CC2)O1)C=O		
M39	Hydroxy despropyl glycoside CCNCC1COC2(CCC(C(C)(C)COC3C(O)C(O)C(O)C(CO)O3)CC2)O1		Toxicologic al assessment covered by M09
M40	Hydroxy glycoside CCCN(CC)CC1COC2(CCC(C(C)(C)COC3C(O)C(O)C(O)C(CO)O3)CC2)O1		Toxicologic al assessment covered by M05
M41	Hydroxy-desethyl CCNCC1COC2(CCC(C(C)(C)CO)CC2)O1		M41 representative for conjugate M42, M26
M42	Hydroxy-desethyl glycoside CCNCC1COC2(CCC(C(C)(C)COC3C(O)C(O)C(CO)O3)CC2)O1		Toxicologic al assessment covered by M41
M43	Desethyl acid glycoside CCNCC1COC2(CCC(C(C)(C)C(=O)OC3C(O)C(O)C(CO)O3)CC2)O1		Toxicologic al assessment covered by M11
M44	Acid glycoside CCCN(CC)CC1COC2(CCC(C(C)(C)C(=O)OC3C(O)C(O)C(CO)O3)CC2)O1		Toxicologic al assessment covered by M06
M45	Despropyl acid glycoside CCNCC1COC2(CCC(C(C)(C)C(=O)OC3C(O)C(O)C(CO)O3)CC2)O1		Toxicologic al assessment covered by M12

246

247 **Step 2: Exclusion of metabolites of no concern**

248 None.

249 **Step 3: Metabolite is known to be genotoxic**

250 No specific information on genotoxicity of metabolites is available.

251 **Step 4: Metabolites genotoxicologically characterised**

252 **Step 4.1: Assessment of metabolites whether they are covered by studies with parent (Table 2)**
 253 **or by specific studies.**

254 Genotoxicity studies on metabolite M03 indicated no genotoxic concern in the conditions described
 255 for *in vitro* testing conducted to explore genotoxicity endpoints i.e. point mutations and numerical
 256 and structural chromosome aberrations (DE, 2009).

257
 258 **Step 4.2: Conclusion**
 259 Proceed with metabolite genotoxicity assessment (steps 5 to 8) for all metabolites whose toxicological
 260 properties are not covered by parent compound (shaded in grey) or by specific studies.

261 **Table 2 Assessment of occurrence of spiroxamine metabolites in toxicological studies with parent**
 262 **compound – major and minor rat metabolites**

		Occurrence in rat metabolism (% administered dose)	Toxicological properties covered by studies with parent compound or by specific studies
Parent	Spiroxamine		Yes
M01	Desethyl		No
M02	Despropyl		No
M03	N-oxide		Yes (specific studies)
M04	N-formyl-desethyl		No
M05	Hydroxyl		No
M06	Acid	24.3	Yes
M07	Hydroxy acid		No
M08	8-hydroxy acid	3.6	No
M09	Hydroxy-despropyl		No
M10	Hydroxy-N-oxide		No
M11	Desethyl acid	6.1	No
M12	Despropyl acid	4	No
M13	Cyclohexanol		No
M14	Diol		No
M15	Ketone		No
M16	Hydroxy-ketone		No
M25	Sulfate	1.4	No
M26	Desethyl-sulfate	3.2	No
M27	Despropyl-sulfate	3.1	No
M28	Aminodiol		No
M29	Aminodiol-N-oxide		No
M30	Desethyl-aminodiol		No
M31	Despropyl-aminodiol		No
M35	Docosanoic acid ester		No
M36	Tetracosanoic acid ester		No
M37	Cyclohexenol	0.8	No
M38	N-formyl-despropyl		No
M41	Hydroxy-desethyl		No

263
 264 **Step 5: (Q)SAR prediction of genotoxicity**
 265 **Step 5.1: Description of (Q)SAR strategy**

266 To predict the genotoxic potential (gene mutation and chromosomal aberrations) of the minor rat and
 267 plant specific metabolites four models have been applied. The CAESAR Mutagenicity Model v 2.1.12
 268 - implemented in the VEGA software (v 1.0.8) and OASIS AMES Mutagenicity model (v08.08)
 269 implemented in the TIMES software (v2.27.13) for prediction of gene mutation; and a rule base model
 270 with the structural alerts for *in vivo* micronucleus- implemented in the Toxtree v.2.6.6. (Romualdo
 271 Benigni, Cecilia Bossa, Olga Tcheremenskaia and Andrew Worth, Development of structural alerts for
 272 the *in vivo* micronucleus assay in rodents", European Commission report EUR 23844) and OASIS

273 Chromosomal Aberration model (v08.08) implemented in the TIMES software (v2.27.13) for
274 prediction of chromosomal aberrations.

275 Independently of the predictions from (Q)SAR models, the metabolite(s) will be subject of read across
276 analysis (step 6).

277 **Step 5.2: Documentation of prediction models**

278 **Documentation of CAESAR Mutagenicity model (VEGA software)**

279 *xxi) Used model (title, name of authors, reference)*

280 CAESAR Mutagenicity Model v 2.1.12, Ferrari T., Gini G.

281 An open source multistep model to predict mutagenicity from statistical analysis and relevant
282 structural alerts.Ferrari T., Gini G.Chemistry Central Journal 2010, 4(Suppl 1):S2 (29 July 2010)

283 *xxii) Information about modelled endpoint (endpoint, experimental protocol)*

284 Ames Mutagenicity essay.

285 *xxiii) Used training set (number of the substances, information about the chemical diversity
286 of the training set chemicals)*

287 4204 compounds from the Kazius-Bursi mutagenicity database (Kazius J, McGuire R, Bursi R:
288 Derivation and validation of toxicophores for mutagenicity prediction.J Med Chem 2005, 48(1):312-
289 320.), 2348 classified as mutagenic and 1856 classified as non-mutagenic by Ames test. 80% of the
290 entire data set (3367 compounds) was used for the development of the model, while the other 20%
291 (837 compounds) was used as a test (validation set).

292 *xxiv) Information on the algorithm used for deriving the model and the molecular
293 descriptors (name and type of the descriptors used, software used for descriptor generation
294 and descriptor selection)*

295 A mutagenicity classifier has been arranged integrating two different techniques: a machine learning
296 algorithm from the Support Vector Machines (SVM) collection, to build an early model with the best
297 statistical accuracy, then an ad hoc expert system based on known *structural alerts* (SAs)(Benigni-
298 Bossa rule base), tailored to refine its predictions. The purpose is to prevent hazardous molecules
299 misclassified in first instance (*false negatives*) from being labelled as safe. The resultant classifier can
300 be presented as a cascading filters system: compounds evaluated as positive by SVM are immediately
301 labelled *mutagenic*, whereas the presumed negatives are further shifted through two consecutive
302 checkpoints for SAs with rising sensitivity. The first checkpoint (12 SAs) has the chance to enhance
303 the prediction accuracy by attempting a precise isolation of potential *false negatives* (FNs); the second
304 checkpoint (4 SAs) proceeds with a more drastic (but more prudent) FNs removal, as much as this
305 doesn't noticeably downgrade the original accuracy by generating too many *false positives* (FPs) as
306 well. To reinforce this distinction, compounds filtered out by the first checkpoint are
307 labelled mutagenic while those filtered out by the second checkpoint are labelled suspicious: this label
308 is a warning that denotes a candidate mutagen, since it has fired a SA with low specificity. Unaffected
309 compounds that pass through both checkpoints are finally labelled non-mutagenic.

310 *xxv) Internal statistics (performance of the model to the training set chemicals)- goodness-
311 of-fit, robustness and predictivity*

312 The authors reported accuracy of around 92% for the training set and around 82% for the test set.

313 *xxvi) External statistic, if available*

314 Not available

315 *xxvii) Information about the applicability domain (description of the applicability domain of*
316 *the model and method used to assess the applicability domain)*

317 The model provides evaluation of the reliability of the prediction which is in three steps scale:
318 Compound is in model Applicability Domain, Compound could be out of model Applicability Domain
319 and Compound is out of model Applicability Domain.

320 The Applicability Domain evaluation is based of combination of 5 Applicability Domain scores:

321 Similarity index – measure for the similarity between the predicted substance and training set
322 substances with known experimental value;

323 Concordance – the similar substances found in the training set have (or have not) experimental values
324 that are in agreement with the predicted value;

325 Accuracy – accuracy of prediction for similar molecules found in the training set

326 Atom centred fragments similarity check – all atom centred fragments of the substance are (are not)
327 found in the list of atom centred fragments of the training set substances.

328 Model descriptor range check – descriptors for the substance have (or have not) values inside the
329 descriptor range of the training set substances.

330 *xxviii) Mechanistic interpretation of the model*

331 Not available

332 *xxix) Description, experimental data and predictions of possible structural analogues of the*
333 *substance (provided by the software or selected by the applicant)*

334 The software provides six most similar substances from the training set with their experimental and
335 predicted values.

336 *xxx) Any additional information provided by the model, e.g. suggested mechanism of*
337 *action, uncertainties*

338 Not available

339 **Documentation of OASIS Ames Mutagenicity model (TIMES software)**

340 1. *Used model (title, name of authors, reference)*

341 OASIS AMES mutagenicity model v08.08, Laboratory of mathematical chemistry, Burgas University

342 R. Serafimova, M. Todorov, T. Pavlov, S. Kotov, E. Jacob, A. Aptula, O. Mekyan, Identification of
343 the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic
344 activation of chemicals. II. General Ames mutagenicity model. *Chem. Res. Toxicol.*, 20, (2007), pp.
345 662–676.

346 2. *Information about modelled endpoint (endpoint, experimental protocol)*

347 Ames Mutagenicity essay.

348 3. *Used training set (number of the substances, information about the chemical diversity of the*
349 *training set chemicals)*

350 The training set consists of 3489 chemicals (NTP database) separated in three groups: 641 mutagenic
351 chemicals as parents, 418 chemicals mutagenic after S9 metabolic activation (non mutagens as
352 parents), and 2430 non mutagenic chemicals. These three classes of chemicals were considered as
353 biologically dissimilar in the modeling process; i.e., chemicals being mutagenic as parents are
354 distinguished from chemicals, which were metabolically activated

355 4. *Information on the algorithm used for deriving the model and the molecular descriptors*
356 *(name and type of the descriptors used, software used for descriptor generation and*
357 *descriptor selection)*

358 The TIMES system combines in the same modelling platform metabolic activation of chemicals and
359 their interaction with target macromolecules. The reactivity Ames model (-S9) describing interactions
360 of chemicals with DNA was based on an alerting group approach. Only those toxicophores having
361 clear interpretation for the molecular mechanism causing the ultimate effect were included in the
362 model. The alerts were classified as direct acting and metabolically activated. The mechanistic
363 interrelation between alerts and related parametric ranges generalizing the effect of the rest of the
364 molecules on the alert is also considered. In the Ames model (+S9), the reactivity component was
365 combined with a metabolic simulator, which was trained to reproduce documented maps for
366 mammalian (mainly rat) liver metabolism for 260 chemicals. Parent chemicals and each of the
367 generated metabolites were submitted to a battery of models to screen for a general effect and
368 mutagenicity mechanisms. Thus, chemicals were predicted to be mutagenic as parents only, parents
369 and metabolites, and metabolites only.

370 5. *Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,*
371 *robustness and predictivity*

372 For 3489 chemicals, the Ames model (-S9) was able to predict correctly 82% of the Ames positive and
373 91% of the Ames negative training set chemicals. When metabolic activation is taken into account, the
374 Ames model (+S9) predicts 76% of the Ames positive and 76% of the Ames negative training set
375 chemicals.

376 6. *External statistic, if available*

377 Not available

378 7. *Information about the applicability domain (description of the applicability domain of the*
379 *model and method used to assess the applicability domain)*

380 The stepwise approach was used to define the applicability domain of the model. It consists of the
381 following sub-domain levels:

382

- 383 • General parametric requirements - includes ranges of variation log K_{ow} and MW,
- 384 • Structural domain - based on atom-centered fragments (ACFs).
- 385 • Interpolation space - estimates the population density of the parametric space defined by the
386 explanatory variables of the QSAR models by making use the training set chemicals.
- 387 • Domain of simulator of metabolism - determines the reliability of the simulated metabolism.

388
389 A chemical is considered In Domain if its log K_{ow} and MW are within the specified ranges and if its
390 ACFs are presented in the training chemicals. The information implemented in the applicability

391 domain is extracted from the correctly predicted training chemicals used to build the model and in this
392 respect the applicability domain determines practically the interpolation space of the model.

393
394 S. Dimitrov, G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlevisz, J. Niemela and O. Mekenyan, *J.*
395 *Chem. Inf. Model.* Vol. 45 (2005), pp. 839-849.

396
397 *8. Mechanistic interpretation of the model*

398 Each structural alert in the model is related with a suggested mechanism of action which is reported
399 together with the prediction.

400
401 *9. Description, experimental data and predictions of possible structural analogues of the
substance (provided by the software or selected by the applicant)*

402 Not available

403
404 *10. Any additional information provided by the model, e.g. suggested mechanism of action,
uncertainties*

405 The model provided suggested mechanism of action, examples of the substances documented to have
406 the mechanism of action, generation of metabolites and prediction for them, information for
407 experimental observed metabolites (if available).

408 **Documentation of rule based model on structural alerts for in vivo micronucleus assay (Toxtree
409 software)**

410 *11. Used model (title, name of authors, reference)*

411 Structural alerts for in vivo micronucleus implemented in the Toxtree v.2.6.6

412 Structural analysis and predictive value of the rodent in vivo micronucleus assay results. Benigni R,
413 Bossa C, Worth A, Mutagenesis.2010 Jul;25(4):335-41

414 *12. Information about modelled endpoint (endpoint, experimental protocol)*

415 A large majority of the data are based on the analysis of micronuclei in bone marrow cells [for
416 rationale of and details on the assay, see (Krishna, G. and Hayashi, M. (2000) In vivo rodent
417 micronucleus assay: protocol, conduct and data interpretation. *Mutat. Res.*, 455, 155–166.

418 Morita, T., Asano, N., Awogi.T et al. (1997) Evaluation of the rodent micronucleus assay in the
419 screening of IARC carcinogens (groups 1, 2A and 2B) the summary report of the 6th collaborative
420 study by CSGMT/JEMS MMS. Collaborative Study of the Micronucleus Group Test. Mammalian
421 Mutagenicity Study Group. *Mutat. Res.*, 389, 3–122.

422 Hayashi, M., MacGregor, J. T., Gatehouse, D. G. et al. (2000) In vivo rodent erythrocyte micronucleus
423 assay. II. Some aspects of protocol design including repeated treatments, integration with toxicity
424 testing, and automated scoring. *Environ. Mol. Mutagen.*, 35, 234–252.

425 Hayashi, M., MacGregor, J. T., Gatehouse, D. G. et al. (2007) in vivo erythrocyte micronucleus assay
426 III. Validation and regulatory acceptance of automated scoring and the use of rat peripheral blood
427 reticulocytes, with discussion of non-hematopoietic target cells and a single dose-level limit test.
428 *Mutat. Res.*, 627, 10–30.].

429
430 *13. Used training set (number of the substances, information about the chemical diversity of the
training set chemicals)*

431 690 chemicals from 'FDA SAR Genetox Database'; Leadslope Inc. 178 are micronucleus positive and
432 512 are micronucleus negative.

433 *14. Information on the algorithm used for deriving the model and the molecular descriptors*
434 *(name and type of the descriptors used, software used for descriptor generation and*
435 *descriptor selection)*

436 The model is based on both existing hypotheses on the mechanisms of toxic action (by e.g. checking
437 the relative influence on micronucleus induction of DNA reactivity and protein binding) and on a
438 structural analysis of the chemicals tested in the assay.

439 The rulebase consists of the Benigni-Bossa mutagenicity-carcinogenicity alerts, with the exclusion of
440 the alerts specific for non-genotoxic carcinogenicity – 30 alerts, and five additional alerts associated
441 with a few suggested mechanisms related with in vivo micronucleus (e.g. mitotic spindle poisoning,
442 topoisomerase II inhibition)

443 *15. Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,*
444 *robustness and predictivity*

445 The authors reported sensitivity 66%, specificity 54% and concordance (overall accuracy) around 57%

446 *16. External statistic, if available*

447 Not available

448 *17. Information about the applicability domain (description of the applicability domain of the*
449 *model and method used to assess the applicability domain)*

450 Not available

451 *18. Mechanistic interpretation of the model*

452 The structural alerts included in the model are related with suggested by the authors mechanisms of
453 action: DNA damaging, mitotic spindle poisoning or topoisomerase II inhibition. The latter effects are
454 likely related to interference with proteins.

455 *19. Description, experimental data and predictions of possible structural analogues of the*
456 *substance (provided by the software or selected by the applicant)*

457 Not available

458 *20. Any additional information provided by the model, e.g. suggested mechanism of action,*
459 *uncertainties*

460 Not available

461 The model is published in the QMRF JRC Database: <http://qsardb.jrc.it/qmrf/>

462 **Documentation of OASIS *in vitro* chromosomal aberration model (TIMES software)**

463 *1. Used model (title, name of authors, reference)*

464 OASIS *in vitro* chromosomal aberration model v08.08, Laboratory of mathematical chemistry, Burgas
465 University

466 O. Mekenyanyan, M. Todorov, R. Serafimova, S. Stoeva, A. Aptula, R. Finking, E. Jacob, Identifying the
467 structural requirements for chromosomal aberration by incorporating molecular flexibility and
468 metabolic activation of chemicals. *Chem. Res. Toxicol.* Vol. 20, (2007), pp. 1927–1941.

469 2. *Information about modelled endpoint (endpoint, experimental protocol)*

470 In vitro structural chromosomal aberrations

471 3. *Used training set (number of the substances, information about the chemical diversity of the*
472 *training set chemicals)*

473 The training set consists of 506 chemicals separated in three groups: 243 mutagenic chemicals as
474 parents, 77 chemicals mutagenic after S9 metabolic activation (non mutagens as parents), and 186 non
475 mutagenic chemicals

476 Sofuni, T., Ed. (1998). Data Book of Chromosomal Aberration Test in vitro, Revised Edition. Life-
477 Science Information Center, Tokyo, Japan.

478 4. *Information on the algorithm used for deriving the model and the molecular descriptors*
479 *(name and type of the descriptors used, software used for descriptor generation and*
480 *descriptor selection)*

481 Modeling the potential of chemicals to induce chromosomal damage has been hampered by the
482 diversity of mechanisms which condition this biological effect. The direct binding of a chemical to
483 DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity.
484 Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with
485 nuclear proteins associated with DNA (e.g., histone proteins) were identified as additional
486 mechanisms leading to CA. Reactivity component of the CA model (-S9) describing interactions of
487 chemicals with DNA and/or proteins was based on an alerting group approach. Only those
488 toxicophores having clear interpretation for the molecular mechanism causing the ultimate effect were
489 included in the model. Some of the specified alerts interact directly with DNA or nuclear proteins,
490 whereas others are applied in a combination of two-dimensional QSAR models assessing the degree of
491 activation of the alerts from the rest of the molecules. In the CA model (+S9), the reactivity
492 component was combined with a metabolic simulator, which was trained to reproduce documented
493 maps for mammalian (mainly rat) liver metabolism for 260 chemicals. Parent chemicals and each of
494 the generated metabolites were submitted to a battery of models to screen for a general effect and
495 mutagenicity mechanisms. Thus, chemicals were predicted to be mutagenic as parents only, parents
496 and metabolites, and metabolites only.

497 5. *Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit,*
498 *robustness and predictivity*

499 For 506 chemicals, the CA model (-S9) was able to predict correctly 79% of the CA positive and 87%
500 of the CA negative training set chemicals. When metabolic activation is taken into account, the CA
501 model (+S9) predicts 81% of the CA positive and 75% of the CA negative training set chemicals.

502 6. *External statistic, if available*

503 Not available

504 7. *Information about the applicability domain (description of the applicability domain of the*
505 *model and method used to assess the applicability domain)*

506 The stepwise approach was used to define the applicability domain of the model. It consists of the
 507 following sub-domain levels:

508

- 509 • General parametric requirements - includes ranges of variation log KOW and MW,
- 510 • Structural domain - based on atom-centered fragments (ACFs).
- 511 • Interpolation space - estimates the population density of the parametric space defined by the
 512 explanatory variables of the QSAR models by making use the training set chemicals.
- 513 • Domain of simulator of metabolism - determines the reliability of the simulated metabolism.

514

515 A chemical is considered In Domain if its log K_{ow} and MW are within the specified ranges and if its
 516 ACFs are presented in the training chemicals. The information implemented in the applicability
 517 domain is extracted from the correctly predicted training chemicals used to build the model and in this
 518 respect the applicability domain determines practically the interpolation space of the model.

519

520 S. Dimitrov, G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlevisz, J. Niemela and O. Mekenyan, *J.*
 521 *Chem. Inf. Model.* Vol. 45 (2005), pp. 839-849.

522

523 *8. Mechanistic interpretation of the model*

524 Each structural alert in the model is related with a suggested mechanism of action which is reported
 525 together with the prediction.

526

527 *9. Description, experimental data and predictions of possible structural analogues of the
 substance (provided by the software or selected by the applicant)*

528 Not available

529

530 *10. Any additional information provided by the model, e.g. suggested mechanism of action,
 uncertainties*

531 The model provided suggested mechanism of action, examples of the substances documented to have
 532 the mechanism of action, generation of metabolites and prediction for them, information for
 533 experimental observed metabolites (if available).

534 **Step 5.3: Description of results, toxicological analysis of predicted effects and applicability
 535 domain**

536 *Table 3. Prediction of genotoxicity (gene mutation - CAESAR and OASIS AMES model; chromosomal
 537 aberrations – rule based in vivo micronucleus and OASIS CA model) of minor rat and plant
 538 specific metabolites by (Q)SAR*

		CAESAR prediction of gene mutation (Applicability Domain)	OASIS prediction of gene mutation (Applicability Domain)	Rule based model for prediction of <i>in vivo</i> CA (Toxtree) (no Applicability Domain evaluation is available)	OASIS prediction of CA (Applicability Domain)
M01	Desethyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M02	Despropyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M04	N-formyl- desethyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M05	Hydroxyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)

		CAESAR prediction of gene mutation (Applicability Domain)	OASIS prediction of gene mutation (Applicability Domain)	Rule based model for prediction of <i>in vivo</i> CA (Toxtree) (no Applicability Domain evaluation is available)	OASIS prediction of CA (Applicability Domain)
M07	Hydroxy acid	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M08	8-hydroxy acid	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M09	Hydroxy-despropyl	Positive (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M10	Hydroxy-N-oxide	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M11	Desethyl acid	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M12	Despropyl acid	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M13	Cyclohexanol	Negative (In)	Negative (In)	Negative	Negative (out)
M14	Diol	Negative (In)	Negative (In)	Negative	Negative (In)
M15	Ketone	Negative (Could be out)	Negative (In)	Negative	Negative (out)
M16	Hydroxy-ketone	Negative (In)	Negative (In)	Negative	Negative (out)
M25	Sulfate	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M26	Desethyl-sulfate	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M27	Despropyl-sulfate	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M28	Aminodiol	Negative (In)	Negative (In)	Positive alert for CA	Negative (In)
M29	Aminodiol-N-oxide	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)
M30	Desethyl-aminodiol	Negative (Could be out)	Negative (In)	Positive alert for CA	Negative (out)
M31	Despropyl-aminodiol	Negative (In)	Negative (In)	Positive alert for CA	Negative (out)
M35	Docosanoic acid ester	Negative (Could be out)	Negative (In)	Negative	Negative (out)
M36	Tetracosanoic acid ester	Negative (Could be out)	Negative (In)	Negative	Negative (out)
M37	Cyclohexenol	Negative (In)	Negative (out)	Negative	Positive (In)
M38	N-formyl-despropyl	Negative (Could be out)	Negative (out)	Positive alert for CA	Negative (out)
M41	Hydroxy-desethyl	Negative (Out)	Negative (out)	Positive alert for CA	Negative (out)

539

540 CAESAR Mutagenicity model predicts 25 out of 26 metabolites as negative (non-mutagenic):
 541 metabolites M01, M02, M04, M05, M07, M08, M10, M11, M12, M13, M14, M15, M16, M25, M26,
 542 M27, M28, M29, M30, M31, M35, M36, M37, M38 and M41. Seven of the metabolites, M07, M10,
 543 M11, M12, M25, M29 and M41 are out of the model applicability domain, twelve M01, M02, M04,
 544 M05, M08, M15, M26, M27, M30, M35, M36 and M38 could be out of model applicability domain
 545 and six – M13, M14, M16, M28, M31 and M37 are into model applicability domain.

546 One metabolite M09 is predicted as potential mutagenic. The substance could be out of the model
547 applicability domain. Additional analysis of the 6 most similar substances from the training set shows
548 that the similarity is low between 0.795 – 0.773. All of them do not share the same functional groups
549 as the predicted substance. The most similar substance from the training set is mutagenic but it is an
550 epoxide..

551 OASIS Ames mutagenicity model predicts all 26 metabolites as negative (non-mutagenic). Seventeen
552 of the metabolites are out of the model applicability domain M01, M02, M04, M05, M07, M08, M09,
553 M10, M11, M12, M25, M26, M27, M29, M37, M38 and M41). Nine of the metabolites are in the
554 model applicability domain M13, M14, M15, M16, M28, M30, M31, M35 and M36.

555 Toxtree in vivo micronucleus model predicts 19 metabolites as positive (at least one positive alert for
556 micronucleus assay was found) – M01, M02, M04, M05, M07, M08, M09, M10, M11, M12, M25,
557 M26, M27, M28, M29, M30, M31, M38 and M41. H-acceptor-path3-H-acceptor is identified as a
558 structural alert. According to the authors this alert represents a molecular framework that could
559 account for non-covalent interactions with proteins or DNA. Such interactions, as in the case of DNA
560 intercalation or groove binding, are potentially genotoxic. However, the positive prediction value of
561 this alert reported by the authors (Benigni, 2010) is low 34%.

562 OASIS Chromosomal aberration model predicts 25 out of 26 metabolites as negative. Two of them
563 (M14 and M28) are in the model applicability domain and the rest are out of the model applicability
564 domain.

565 One metabolite (M37) is predicted as positive (could cause chromosomal aberrations). The analyses of
566 the prediction shows that the positive prediction is after metabolic activation and the predicted as a
567 positive metabolite is in the model applicability domain and the reliability of the prediction reported
568 by the model is high (more or equal to 60%). The identified alert is an alpha/beta-unsaturated
569 carbonyls and related compounds and it is related with the mechanism of action: Interactions with
570 topoisomerases / proteins.

571 **Step 5.4: Conclusion**

572 (Q)SAR assessment identified a potential of metabolites M01, M02, M04, M05, M07, M08,
573 M09, M10, M11, M12, M25, M26, M27, M28, M29, M30, M31 M37, M38 and M41 to
574 provoke genotoxic effects. Metabolites M13, M14, M15; M16, M35, M36 are predicted as
575 negative from all models. All metabolites are moved to the next step – read across analysis.

576

577 **Step 6: Read across (OECD toolbox)²²**

578 **Step 6.1: Read across**

579 Both endpoints gene mutation and chromosomal aberrations should be evaluated by read across for all
580 metabolites.

581 Molecular initiating events of relevance for this assessment are interaction with DNA and/or proteins.
582 The profilers included in the OECD Toolbox which codified the structural alerts which are important
583 for these two types of interactions are mechanistic profilers - DNA binding by OASIS v.1.3, DNA
584 binding by OECD, Protein binding by OASIS v 1.3, Protein binding by OECD and endpoint specific
585 profilers- DNA alerts for AMES, MN and CA by OASIS v1.3, In vitro mutagenicity (AMES test)
586 alerts by ISS, In vivo mutagenicity (Micronucleus) alerts by ISS, Protein binding alerts for
587 Chromosomal aberrations by OASIS v1.1.

588 Above mentioned profilers have been applied to metabolites M01, M02, M04, M05, M07, M08, M09,
589 M10, M11, M12, M13, M14, M15, M16, M25, M26, M27, M28, M29, M30, M31, M35, M36, M37,
590 M38 and M41 as chemicals of interest and to the parent substance, the major rat metabolite, which is
591 considered characterised by the provided genotoxicity studies and M03 for which studies were
592 provided, as substances with known experimental genotoxic activity.

²² <http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm>

593 In order to be evaluated, the structural similarity in addition to the structural alerts related with the
594 evaluated endpoints, an organic functional group profiler has been applied. This additional step
595 provides information of the presence/ absence of other functional groups different than the structural
596 alerts and gives indication for the potential influence of the rest part of the molecule to the relevant
597 structural alerts (i.e. electronic and structural influence).

598 No structural alerts in the parent substance and in all evaluated metabolites were found by the
599 profilers: DNA binding by OASIS v.1.3, Protein binding by OASIS v 1.3, Protein binding by OECD
600 and endpoint specific profilers- DNA alerts for AMES, MN and CA by OASIS v1.3, In vitro
601 mutagenicity (AMES test) alerts by ISS, Protein binding alerts for Chromosomal aberrations by
602 OASIS v1.1.

603 The alerts found by DNA binding by OECD, Protein binding by OECD and endpoint specific profiler
604 - In vivo mutagenicity (Micronucleus) alerts by ISS and Organic functional group are presented in the
605 Table 4.

Table 4 Genotoxicity profiling of Spiroxamine metabolites by OECD Toolbox

		DNA binding by OECD	in vivo mutagenicity (MN) by ISS	Protein binding by OECD	Organic functional groups																
					Acetates	Aliphatic amine, tertiary	Aliphatic amine, secondary	N-Oxide	Formyl amino	Alcohol	Carboxylic acid	Alkane branched with quaternary carbon	Alkane branched with tertiary carbon	Cycloalkane	Dioxolane	Ether, cyclic	Saturated heterocyclic fragment	Tert-butyl	Cyclo keton	Sulfate	Carboxylic acid ester
		SN1: Iminium Ion Formation, Aliphatic tertiary amines	Hacceptor-path3-Hacceptor																		
Parent*	Spiroxamine	X	X		X							X	X	X	X	X	X	X			
M01	desethyl		X			X						X	X	X	X	X	X	X			
M02	despropyl		X			X						X	X	X	X	X	X	X			
M03	N-oxide	X					X					X	X	X	X	X	X	X	X		
M04	N-formyl-desethyl	X	X					X				X	X	X	X	X	X	X	X		
M05	hydroxyl	X	X		X					X		X	X	X	X	X	X	X			
M06*	acid	X	X		X						X		X	X	X	X	X	X			
M07	hydroxy acid	X	X		X					X	X		X	X	X	X	X	X			
M08	8-hydroxy acid	X	X		X					X	X				X	X	X	X			
M09	hydroxy-despropyl		X			X				X		X	X	X	X	X	X	X			
M10	hydroxy-N-oxide		X				X			X		X	X	X	X	X	X	X			
M11	desethyl acid		X			X					X		X	X	X	X	X	X			
M12	despropyl acid		X			X					X		X	X	X	X	X	X			
M13	Cyclohexanol									X		X	X						X		
M14	Diol									X		X	X	X							
M15	ketone										X		X	X					X	X	
M16	hydroxy-ketone									X		X	X	X					X		
M25	sulfate	X	X		X							X	X	X	X	X	X	X		X	
M26	desethyl-sulfate		X			X						X	X	X	X	X	X	X		X	
M27	despropyl-sulfate		X			X						X	X	X	X	X	X	X		X	
M28	aminodiol	X	X		X					X											
M29	aminodiol-N-oxide		X		X			X		X											
M30	desethyl-		X			X			X		X										

		DNA binding by OECD	in vivo mutagenicity (MN) by ISS	Protein binding by OECD	Organic functional groups															
		SN1: Iminium Ion Formation, Aliphatic tertiary amines	Hacceptor-path3-Hacceptor	Acetates	Aliphatic amine, tertiary	Aliphatic amine, secondary	N-Oxide	Formyl amino	Alcohol	Carboxylic acid	Alkane branched with quaternary carbon	Alkane branched with tertiary carbon	Cycloalkane	Dioxolane	Ether, cyclic	Saturated heterocyclic fragment	Tert-butyl	Cyclo keton	Sulfate	Carboxylic acid ester
	aminodiol																			
M31	despropyl-aminodiol		x			x			x											
M35			x	x							x	x	x				x			x
M36			x	x							x	x	x				x			x
M37	cyclohexenol								x		x		x				x			
M38	N-formyl-despropyl	x	x					x			x	x	x	x	x	x	x			
M41	hydroxy-desethyl		x			x			x		x	x	x	x	x	x				

* Compounds covered in their genotoxicological properties by studies with parent

Grey shaded: predicted as a potential mutagen by one of the two Ames/(Q)SAR models or predicted as potentially positive by one of the two chromosomal aberration/(Q)SAR model

1 Both alerts aliphatic tertiary amine and Hacceptor-path3-H-acceptor present in the parent substance
2 and in the major rat metabolite (M06) are identified also in the metabolites M04, M05, M07, M08,
3 M25 and M38. No new alerts were identified. In metabolites M04 and M38 the N-formyl amino group
4 appeared as a result of metabolism of ethyl or propyl chain of the tertiary amine. OH group (in
5 metabolites M05, M07 and M08), a carboxylic group (M07 and M08) and a sulphate group (M25)
6 appeared as a result of the metabolism of t-butyl group. Therefore, based on the read across analysis
7 metabolites M04, M05, M07, M08, M25 and M38 could be considered very similar to the parent
8 substance and metabolite M06 and are not of genotoxicity concern.

9 Aliphatic tertiary amine as an alert has disappeared in metabolites M01, M02, M03, M09, M10, M11,
10 M12, M26, M27 and M41, the second alert - Hacceptor-path3-Hacceptor, is present in all of them. No
11 new alerts were identified. The changes in the rest part of the molecules compare with the parent
12 substance and are related with metabolism of the ethyl or propyl chain of the tertiary amine with
13 forming of N-oxide (M03 and M10) and secondary amine (M01 M02, M9, M11, M12, M26, M27 and
14 M41); and oxidation or sulphation of the t-butyl group with forming: an alcohol (M09, M10 and M41)
15 a carboxylic acid (M11 and M12) and a sulphate (M26 and M27). Based on the read across analysis
16 metabolites M01, M02, M09, M11, M12, M26, M27 and M41 could be considered similar to the
17 parent substance and the major rat metabolite; and are not of genotoxicity concern. Experimental data
18 for the metabolite M03 –N-oxide are available. No evidence for a genotoxic potential was identified in
19 the submitted in vitro studies (Ames test, HPRT gene mutation assay, chromosome aberration assay;
20 Ref: Spiroxamine_AR_09_Vol3_B6_16-09-2009). Metabolite M10 is also an N-oxide with oxidised t-
21 butyl group, therefore could be considered very similar to metabolite M03 and the genotoxic potential
22 for it could be excluded.

23 Metabolite M28 has both structural alerts - aliphatic tertiary amine and Hacceptor-path3-Hacceptor but
24 in general the substance is significantly different than the parent substance and the major rat
25 metabolite. It is a smaller aliphatic molecule, and a different behaviour could be expected. Structurally
26 similar to metabolite M28 are also metabolites M29, M30 and M31. The difference is that in them the
27 structural alert aliphatic tertiary amine disappears forming N-oxide, and secondary amine. Hacceptor-
28 path3-Hacceptor is present in three of them. No new alerts were identified. Taken into account the
29 positive prediction from the (Q)SAR models for these metabolites and since they are rather different
30 from the parent substance and the major rat metabolite, concern of genotoxicity cannot be excluded. To
31 exclude an unacceptable dietary risk by potentially genotoxic metabolites, either a combined exposure
32 estimate and comparison against TTC can be performed (step 7) or metabolites M28, M29, M30 and
33 M31 would need to be tested (step 8). The metabolite M28 contains both structural alerts and could be
34 tested as representative for the other three metabolites.

35 In metabolites M35 and M36 the structural alert aliphatic tertiary amine has disappeared, H-acceptor-
36 path3-H-acceptor is still present and a new alert is identified (direct acylation involving leaving group
37 – acetates; protein binding by OECD). Based on the new alert, the concern of genotoxicity of
38 metabolites M35 and M36 cannot be excluded. To exclude an unacceptable dietary risk by potentially
39 genotoxic metabolites, both a combined exposure estimate and comparison against TTC can be
40 performed (step 8), or metabolites M35 and/or M36 would need to be tested for genotoxicity (step 9).
41 As the genotoxic concern for metabolites M35 and M36 is due to the presence of the ester bond, they
42 should be grouped as stand-alone. Alternatively, hydrolysis data across a range of physiological
43 conditions (pH 3 to pH 6) could be provided. Should these data be indicative of a fast hydrolysis
44 resulting in the metabolite M13 and carboxylic acid, the carboxylic acid should be assessed through, at
45 least initially, (Q)SAR and read across (see data gap).

46 In metabolites M13, M14, M15, M16 and M37 the structural alerts aliphatic tertiary amine and
47 Hacceptor-path3-Hacceptor have disappeared. The substances are different than the parent substance
48 and the major rat metabolite. They are cyclic aliphatic alcohols (M13, M14 and M37) and cyclic
49 aliphatic ketones (M15 and M16). In metabolites M14 and M16 additional OH group is appeared in the
50 t-butyl group. No new alerts were identified.

51 Although no new alerts were identified for the metabolite M37 based on the high reliable positive
 52 (Q)SAR prediction (TIMES model for chromosomal aberration) the concern of genotoxicity for
 53 metabolite M37 cannot be excluded.

54 Metabolites M13, M14, M15 and M16 are predicted as negative by all (Q)SAR models though the
 55 prediction was not reliable for one model for CA, while the applicability domain was not defined for
 56 the second CA model leading to uncertainty on the prediction for CA. They are very similar to
 57 metabolite M37, however in all of them there is no a double bond in the cycle which leads to different
 58 chemical reactivity and it is crucial for forming of the structural features (alpha, beta-unsaturated
 59 carbonyl substance) which has a potential to interact with topoisomerases / proteins (suggested
 60 mechanism of action by the authors of the (Q)SAR model).

61

62 **Step 6.2: Conclusion**

63 Metabolites M13, M14, M15 and M16 are predicted as negative by all (Q)SAR models and no new
 64 alerts are identified by read-across, hence they are not of concern for genotoxicity.

65 Metabolites M01, M02, M04, M05, M07, M08, M09, M10, M11, M12, M38 and M41, although
 66 predicted as potential genotoxicant by (Q)SAR models, analysis are not of concern for genotoxicity
 67 after read across.

68 For metabolites M28, M29, M30 and M31, a genotoxicity concern cannot be excluded, therefore they
 69 should be subject of exposure assessment and comparison against TTC (step 8) and/or testing (step 9).
 70 Metabolite M28 could potentially be tested as a representative for all of them.

71 For metabolites M35 and M36 genotoxicity concerns cannot be excluded, therefore they should be
 72 subject to exposure assessment and comparison against TTC (step 8) and/or testing (step 9).
 73 Alternatively, hydrolysis data across a range of physiological conditions (pH 3 to pH 6) could be
 74 provided. Should these data indicate a fast hydrolysis resulting in the metabolite M13 and carboxylic
 75 acid, the carboxylic acid should be assessed through, at least initially, (Q)SAR and read across.

76 For metabolite M37 genotoxicity concern cannot be excluded, therefore it should to be subject of
 77 exposure assessment and comparison against TTC (step 8) and/or testing (step 9).

78

79 **Step 7: Combined exposure assessment (optional)**

80 The representative uses in Table 5 are considered in the exposure estimate. Regulatory decisions based
 81 on exposure estimates are therefore restricted to these GAP conditions.

82 *Table 5 Uses considered for exposure estimates*

Crop	Application			
	Growth stage	Number	kg as/ha	PHI
Cereals (wheat, rye, triticale)	BBCH 30-69	2	0.375	not relevant
Cereals (barley, oats)	BBCH 30-61	2	0.375	not relevant
Grape	BBCH 13-85	5	0.200-0.400	14 (table) 35 (wine)
Banana	-	12	0.320	0

83 PHI pre-harvest interval

84

85 **Step 7.1: Derivation of residue input data for metabolites²³**

86

87 a) Residue levels of in primary crops

²³ Based on metabolism and residue data in Assessment Report (2009)

88 Residue levels of metabolites in primary crops wheat, grapes (wine, table) and banana were derived
89 from metabolism studies and attributed to parent spiroxamine values from field trials where
90 appropriate via conversion factors. Samples analysed for a common moiety were not used for the
91 recalculation of individual metabolite levels.

92 Residues in cereal grain, grapes and banana (fruit) are relevant for consumer exposure; residues in
93 cereal grain and straw are relevant for livestock burden calculation; residues in cereal forage, chaff and
94 stubble and banana (peel) are neither relevant for quantitative consumer nor livestock exposure
95 calculation (no feed items).

96 Residues in grain are listed in Table 6; metabolite residue levels are adopted from the metabolism
97 study with cyclohexyl label since in the vast majority of field trials no quantifiable residues were
98 detected (<LOQ).

99 Residues in table grapes were calculated by applying the maximum conversion factor for every
100 metabolite from grape metabolism (on day 35) to the respective worst case field data (PHI 14 d or
101 35 d).

102 Residues in banana were calculated for pulp as edible commodity and as metabolite analysis was
103 performed for peel/pulp separately.

104

105 b) Residue levels in rotational crops

106 A rotational crop metabolism and a field study are available. In the field rotational crop study, no
107 significant residues (LOQ 0.05 mg/kg) were detected with a total residue method covering large parts
108 of total residues (validated for parent and metabolites M01, M02 and M03). However, although
109 appreciable exposure from metabolites in rotational crops can be largely excluded, the LOQ level and
110 the limited number of analytes of the analytical method do not allow to expand the conclusions to the
111 very low residue levels required to provoke unacceptable genotoxic effects (TTC_{genotox} 0.0025 µg/kg
112 bw/d).

113 A genotoxicity assessment by (Q)SAR and read-across revealed that a potential for such effects could
114 not be excluded for the group of metabolites M28-M31, M35, M36 and M37. Therefore, residue levels
115 in rotational crops from metabolism studies are summarised in Table 7 for those compounds that
116 require further genotoxicity assessment (exposure; TTC). Further residue data on metabolites in food
117 and feed items are listed to assess the relevance for consumer and livestock exposure.

Table 6 Residue levels of spiroxamine metabolites in primary crop metabolism and converted field data

Grape, 35 day PHI	Cyclohexyl-1- ¹⁴ C label (IN)			1,3-dioxolane-4- ¹⁴ C label (IN)			Overall CF		Measured field data (table/wine grape) ^a		Converted field data ^b		
	% TRR	mg/kg	CF	% TRR	mg/kg	CF	mean	max			Table grape	Wine grape	
Spiroxamine, parent compound	24.6	0.84	1.00	45.6	5.96	1.00	1	1	0.19/0.13	0.33/n.r.	0.190	0.330	0.100
Desethyl (M01)	1.1	0.04	0.05	2.1	0.27	0.05	0.05	0.05			0.009	0.015	0.005
Despropyl (M02)	0.5	0.02	0.02	1.5	0.20	0.03	0.03	0.03			0.006	0.011	0.003
N-oxide (M03)	2.9	0.10	0.12	4.7	0.61	0.10	0.11	0.12			0.022	0.039	0.012
Hydroxy (M05)	n.d.	n.d.	n.d.	0.3	0.04	0.007	-	0.007			0.001	0.002	0.001
Diol (M14)	13	0.44	0.53	n.d.	n.d.	n.d.	-	0.53			0.100	0.174	0.053
Tert.butylketone (M15)	1.3	0.04	0.05	n.d.	n.d.	n.d.	-	0.05			0.010	0.017	0.005
Hydroxyketone (M23)	0.5	0.02	0.02	n.d.	n.d.	n.d.	-	0.02			0.004	0.007	0.002
Aminodiol (M28)*	n.d.	n.d.	n.d.	37.5	4.91	0.82	-	0.82			0.156	0.271	0.082
Aminodiol-N-oxide (M29)*	n.d.	n.d.	n.d.	0.1	0.01	0.002	-	0.002			<0.001	<0.001	<0.001
Desethyl-aminodiol (M30)*	n.d.	n.d.	n.d.	1.1	0.14	0.02	-	0.02			0.005	0.008	0.002
Despropyl-aminodiol (M31)*	n.d.	n.d.	n.d.	1.2	0.16	0.03	-	0.03			0.005	0.009	0.003
Cyclohexanol conj. (M33, M34)	25.3	0.86	1.03	n.d.	n.d.	n.d.	-	1.03			0.195	0.339	0.103
Docosanoic acid ester (M35) *	13	0.44	0.53	n.d.	n.d.	n.d.	-	0.53			0.100	0.174	0.053
Tetracosanoic acid ester (M36) *	4.2	0.14	0.17	n.d.	n.d.	n.d.	-	0.17			0.032	0.056	0.017
Cyclohexenol (M37)*	3.2	0.11	0.13	n.d.	n.d.	n.d.	-	0.13			0.025	0.043	0.013

^a based on untransformed field data (Southern-EU data for table and wine grapes (STMR) and Northern-EU data for table grapes (HR) as reported in RAR 2009

^b based on max CF x parent (measured residues only; no recalculation from total residues)

CF: Conversion factor

** Metabolites of potential genotoxic concern

Banana pulp, 35 day PHI (no further metabolites identified in peel)	Cyclohexyl-1- ¹⁴ C label (IN)			1,3-dioxolane-4- ¹⁴ C label (IN)			Overall CF		Measured field data ^a		Converted field data ^b	
	% TRR	mg/kg	CF	% TRR	mg/kg	CF	mean	max	STMR	HR	STMR	HR
Spiroxamine, parent compound	44.9	0.20	1.00	60.0	0.333	1.00	1	1	0.07	0.08	0.07	0.08
Desethyl (M01)	1.1	0.005	0.02	0.9	0.005	0.02	0.02	0.02			0.002	0.002
Despropyl (M02)	0.5	0.002	0.01	0.4	0.002	0.007	0.009	0.01			0.001	0.001
N-oxide (M03)	0.8	0.003	0.02	1.2	0.007	0.02	0.02	0.02			0.001	0.002
Diol-[hexose-pentose] (M24)	9.2	0.041	0.21	n.d.	n.d.	n.d.	-	0.21			0.014	0.016
Aminodiol (M28)*	n.d.	n.d.	n.d.	31.2	0.173	0.52	-	0.52			0.036	0.042
Desethyl-aminodiol (M30)*	n.d.	n.d.	n.d.	0.6	0.003	0.01	-	0.01			0.001	0.001
Despropyl-aminodiol (M31)*	n.d.	n.d.	n.d.	0.6	0.003	0.01	-	0.01			0.001	0.001
Cyclohexanol-[hexose-hexose] (M33a)	10.4	0.046	0.23	n.d.	n.d.	n.d.	-	0.23			0.016	0.018
Cyclohexanol-[hexose-pentose] (M33)	3.2	0.014	0.07	n.d.	n.d.	n.d.	-	0.07			0.005	0.006

^a pulp data

^b based on max CF x parent (measured residue)

* Metabolites of potential genotoxic concern

Wheat, 56-61 day PHI	Cyclohexyl-1- ¹⁴ C label (I.IN)			1,3-dioxolane-4- ¹⁴ C label (2.2N)			CF		Measured field data ^a		Converted field data ^b	
	% TRR	mg/kg	CF	% TRR	mg/kg	CF	mean	max	STMR	HR	STMR	HR
Grain												
Spiroxamine, parent compound	14.3	0.010	1.00	2.8	0.013	1.00	1	1	0.05	0.05	n.a. ^d	n.a. ^d
Desethyl (M01)	0.5	<0.001	0.03	n.d.	n.d.	-	-	0.03				
Despropyl (M02)	3.0	0.002	0.21	n.d.	n.d.	-	-	0.21				
N-oxide (M03)	17.8	0.012	1.24	1.2	0.005	0.43	0.84	1.24				
N-formyl-desethyl (M04)	6.9	0.005	0.48	n.d.	n.d.	-	-	0.48				
Hydroxy (M05)	1.6	0.001	0.11	n.d.	n.d.	-	-	0.11				
Straw												
Spiroxamine, parent compound	25.1	8.76	1.00	20.6	17.01	1.00	1	1	0.53	2.0	0.53	2.0
Desethyl (M01)	2.0	0.70	0.08	n.d.	n.d.	-	-	0.08			0.04	0.16
Despropyl (M02)	3.2	1.12	0.13	4.2	3.48	0.20	0.17	0.20			0.11	0.41
N-oxide (M03)	22.0	7.68	0.88	20.9	17.26	1.01	0.95	1.01			0.54	2.03
N-formyl-desethyl (M04)	7.5	2.62	0.30	9.7	8.06	0.47	0.38	0.47			0.25	0.94
Hydroxy (M05)	2.4	0.84	0.10	n.d.	n.d.	-	-	0.10			0.05	0.19
Hydroxy-despropyl (M09)	0.3	0.11	0.01	0.4	0.35	0.02	0.02	0.02			0.01	0.04
Hydroxy-N-oxide glucoside (M20)	2.0	0.70	0.08	n.d.	n.d.	-	-	0.08			0.04	0.16
Malonic acid glucoside (M21)	1.9	0.67	0.08	3.1	2.57	0.15	0.11	0.15			0.08	0.30
Hydroxy-ketone conj (M23)	1.8	0.63	0.07	n.d.	n.d.	-	-	0.07			0.04	0.14
Desethyl (M01)+ Hydroxy (M05)	-	-	-	5.2	4.32	- ^c	-	-			-	-

^a based on untransformed field data (wheat, S-EU as critical case for cereal straw; wheat grain data applicable to barley)

^b based on max CF x parent

^c not used; individual values for M01 and M05 available

^d not used; number of non-detects too high (10/12)

Table 7 Residue levels of spiroxamine metabolites in rotational crop metabolism (food and feed)

	Cyclohexyl-1- ¹⁴ C label (2N rate)				1,3-dioxolane-4- ¹⁴ C label (2N rate)					
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
	30 days	161 days	30 days	193 days	294 days					
Swiss chard (immature)	No data						TRR = 0.846 mg/kg	TRR = 0.410 mg/kg	TRR = 0.204 mg/kg	
Despropyl-aminodiol (M31)*					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Aminodiol-N-oxide (M29)*					1.0	0.008	5.2	0.021	n.d.	n.d.
Aminodiol (M28)*					1.8	0.016	2.4	0.010	n.d.	n.d.
Desethyl-aminodiol (30)*					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Cyclohexenol (M37)*					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Parent					9.4	0.080	2.4	0.010	8.2	0.017
M01					6.6	0.056	3.1	0.012	12.6	0.026
M02					15.0	0.127	11.0	0.045	50.0	0.102
M03					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M04					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M05					17.2	0.146	1.9	0.008	2.7	0.005
M38					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M39					2.0	0.017	n.d.	n.d.	n.d.	n.d.
M40					4.7	0.040	0.8	0.003	n.d.	n.d.
M42					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M43					1.8	0.015	n.d.	n.d.	n.d.	n.d.
M44					2.2	0.019	4.6	0.019	3.3	0.007
M45					3.5	0.029	6.0	0.025	2.6	0.005
Swiss chard (mature)	TRR = 0.150 mg/kg		TRR = 0.07 mg/kg		TRR = 0.676 mg/kg		TRR = 0.348 mg/kg		TRR = 0.104 mg/kg	
Despropyl-aminodiol (M31)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Aminodiol-N-oxide (M29)*	n.d.	n.d.	n.d.	n.d.	0.8	0.006	n.d.	n.d.	n.d.	n.d.
Aminodiol (M28)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	3.9	0.014	n.d.	n.d.
Desethyl-aminodiol (30)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Cyclohexenol (M37)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Parent	40.8	0.061	8.8	0.006	9.4	0.064	3.3	0.011	10.0	0.010
M01					9.0	0.061	4.0	0.014	12.3	0.013
M02	7.5	0.011	14.2	0.010	19.7	0.133	19.0	0.066	51.2	0.053
M03	6.1	0.009	14.2	0.010	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M04	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M05					12.8	0.086	1.5	0.005	n.d.	n.d.
M05/M01 ^a	11.6	0.017	12.1	0.008						
M20	2.5	0.004	n.d.	n.d.						
M21	1.6	0.002	n.d.	n.d.						
M23	2.2	0.003	n.d.	n.d.						

	Cyclohexyl-1- ¹⁴ C label (2N rate)				1,3-dioxolane-4- ¹⁴ C label (2N rate)					
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
	30 days	161 days	30 days	193 days	294 days					
M24	3.0	0.005	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M38					2.8	0.019	n.d.	n.d.	n.d.	n.d.
M39					3.8	0.025	0.8	0.003	n.d.	n.d.
M40					0.4	0.003	1.6	0.005	n.d.	n.d.
M42					0.6	0.004	n.d.	n.d.	n.d.	n.d.
M43					3.1	0.021	2.4	0.008	n.d.	n.d.
M44					1.8	0.012	5.5	0.019	2.8	0.003
M45										
Turnip roots	TRR = 0.040 mg/kg		TRR = 0.020 mg/kg		TRR = 0.101 mg/kg		TRR = 0.026 mg/kg		TRR = 0.012 mg/kg	
Despropyl-aminodiol (M31)*	n.d.	n.d.	n.d.	n.d.	6.1	0.006	n.d.	n.d.	No data	
Aminodiol-N-oxide (M29)*	n.d.	n.d.	n.d.	n.d.	4.8	0.005	4.7	0.001		
Aminodiol (M28)*	n.d.	n.d.	n.d.	n.d.	4.9	0.005	n.d.	n.d.		
Desethyl-aminodiol (30)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
Cyclohexenol (M37)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.		
Parent	45.8	0.018	27.4	0.005	3.5	0.003	n.d.	n.d.		
M01					1.5	0.001	n.d.	n.d.		
M02	2.6	0.002	3.3	0.001	2.9	0.003	n.d.	n.d.		
M03	2.8	0.001	3.5	0.001	n.d.	n.d.	n.d.	n.d.		
M04	n.d.	n.d.	n.d.	0.001	n.d.	n.d.	n.d.	n.d.		
M05					0.8	0.001	n.d.	n.d.		
M05/M01 ^a	4.4	0.002	3.7	0.001						
M20	n.d.	n.d.	n.d.	n.d.						
M21	n.d.	n.d.	n.d.	n.d.						
M23	8.1	0.003	n.d.	n.d.						
M24	7.8	0.003	n.d.	n.d.						
M38					n.d.	n.d.	n.d.	n.d.		
M39					n.d.	n.d.	n.d.	n.d.		
M40					n.d.	n.d.	n.d.	n.d.		
M42					2.8	0.003	n.d.	n.d.		
M43					2.6	0.003	n.d.	n.d.		
M44					1.9	0.002	n.d.	n.d.		
M45					3.7	0.004	9.1	0.002		
Wheat straw	TRR = 1.070 mg/kg		TRR = 1.270 mg/kg		TRR = 3.178 mg/kg		TRR = 2.631 mg/kg		TRR = 0.986 mg/kg	
Despropyl-aminodiol (M31)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	1.4	0.037	1.8	0.018
Aminodiol-N-oxide (M29)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Aminodiol (M28)*	n.d.	n.d.	n.d.	n.d.	0.2	0.008	n.d.	n.d.	n.d.	n.d.
Desethyl-aminodiol (30)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Cyclohexenol (M37)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

	Cyclohexyl-1- ¹⁴ C label (2N rate)				1,3-dioxolane-4- ¹⁴ C label (2N rate)				
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
	30 days	161 days	30 days	193 days	294 days				
Parent	6.8	0.073	4.0	0.051	15.2	0.485	3.0	0.078	4.2
M01					15.1	0.479	6.2	0.163	5.6
M02	3.5	0.037	2.9	0.037	17.4	0.553	14.3	0.376	17.4
M03	12.7	0.136	12.1	0.154	7.4	0.235	5.0	0.132	1.4
M04	9.2	0.098	7.5	0.095	6.4	0.204	2.8	0.075	n.d.
M05					n.d.	n.d.	n.d.	n.d.	n.d.
M05/M01 ^a	4.5	0.048	2.4	0.030					
M20	2.1	0.022	2.6	0.033					
M21	1.5	0.016	2.4	0.030					
M23	2.2	0.024	1.9	0.024					
M24	n.d.	n.d.	4.4	0.056					
M38					7.6	0.243	6.9	0.181	3.4
M39					0.5	0.015	1.6	0.043	n.d.
M40					2.8	0.088	0.9	0.024	12.6
M42					0.8	0.025	4.7	0.124	n.d.
M43					0.5	0.017	3.4	0.088	n.d.
M44					1.0	0.032	3.9	0.104	10.5
M45					0.6	0.018	2.8	0.075	2.8
									0.027
Wheat grain		TRR = 0.060 mg/kg	TRR = 0.050 mg/kg		TRR = 0.131 mg/kg	TRR = 0.223 mg/kg	TRR = 0.092 mg/kg		
Despropyl-aminodiol (M31)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Aminodiol-N-oxide (M29)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Aminodiol (M28)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Desethyl-aminodiol (30)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Cyclohexenol (M37)*	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
Parent	n.d.	n.d.	n.d.	n.d.	2.7	0.004	n.d.	n.d.	n.d.
M01					2.9	0.004	n.d.	n.d.	n.d.
M02	n.d.	n.d.	n.d.	n.d.	4.8	0.006	n.d.	n.d.	n.d.
M03	n.d.	n.d.	n.d.	n.d.	4.3	0.006	n.d.	n.d.	n.d.
M04	n.d.	n.d.	n.d.	n.d.	1.5	0.002	n.d.	n.d.	n.d.
M05					n.d.	n.d.	n.d.	n.d.	n.d.
M05/M01 ^a	n.d.	n.d.	n.d.	n.d.					
M20	n.d.	n.d.	n.d.	n.d.					
M21	n.d.	n.d.	n.d.	n.d.					
M23	n.d.	n.d.	n.d.	n.d.					
M24	n.d.	n.d.	n.d.	n.d.					
M38					2.7	0.003	n.d.	n.d.	n.d.
M39					n.d.	n.d.	n.d.	n.d.	n.d.
M40					n.d.	n.d.	n.d.	n.d.	n.d.
M42					n.d.	n.d.	n.d.	n.d.	n.d.

	<i>Cyclohexyl-1-¹⁴C label (2N rate)</i>				<i>1,3-dioxolane-4-¹⁴C label (2N rate)</i>					
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
	30 days	161 days	30 days	193 days	294 days					
M43					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M44					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
M45					n.d.	n.d.	n.d.	n.d.	n.d.	n.d.

* Metabolites of potential genotoxic concern

^a not used for assessment; individual values for M01 and M05 available

1 **Step 7.2: Exposure calculations for those metabolites, for which genotoxic effects cannot be
2 excluded**

3 **Table 8 Exposure calculation²⁴ and TTC assessment of metabolites with potential genotoxicity concern**

	Wine grape	Table grape		Banana		Cereal grain	Root crops	Leafy crops
	STMR	STMR	HR	STMR	HR	Metabolism data		
	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg	mg/kg
Metabolite M28	0.082	0.156	0.271	0.036	0.042	nd	0.005	0.010
Metabolite M29	0.001	0.0004	0.001	nd	nd	nd	0.005	0.021
Metabolite M30	0.002	0.005	0.008	0.001	0.001	nd	nd	nd
Metabolite M31	0.003	0.005	0.009	0.001	0.001	nd	0.006	nd
Sum of metabolites	0.088	0.166	0.289	0.038	0.044	-	0.016	0.031
Metabolite M35	0.053	0.100	0.174	nd	nd	nd	nd	nd
Metabolite M36	0.017	0.032	0.056	nd	nd	nd	nd	nd
Sum of metabolites	0.070	0.132	0.230	-	-	-	-	-
Metabolite M37	0.013	0.025	0.043	nd	nd	nd	nd	nd
Sum of metabolites	0.013	0.025	0.043	-	-	-	-	-

Chronic exposure (most critical; metabolite groups)

M28-M31:	0.419 µg/kg bw/d (FR all population)	= >10000 % TTC _{genotoxicity}
M35-M36:	0.294 µg/kg bw/d (FR all population)	= >10000 % TTC _{genotoxicity}
M37:	0.087 µg/kg bw/d (FR all population)	= 3480 % TTC _{genotoxicity}

Acute exposure (most critical; metabolite groups)

M28-M31:	18.9 µg/kg bw/d (table grapes, children)	= >10000 % TTC _{genotoxicity}
M35-M36:	15.1 µg/kg bw/d (table grapes, children)	= >10000 % TTC _{genotoxicity}
M37:	2.82 µg/kg bw (table grapes, children)	= >10000 % TTC _{genotoxicity}

4

5 **Step 7.3: Conclusion**

6 The combined as well as the individual exposure assessment for all metabolites, for which an
7 unacceptable risk of genotoxic effects cannot be excluded *a priori* (M28-31; M35-36; M37), reveals
8 an exceedance of the acceptable TTC threshold for genotoxicity of 0.0025 µg/kg bw/d, see table 8.

9

10 Additional exposure by food of animal origin via rotational crops cannot be excluded for M28-M31.
11 The reliability of the exposure estimate is, although limited with regard to the upper bound, reliable for
12 the lower bound high exposure (exceedance of TTC).

13

14 Metabolite M28 has the highest exposure potential within the group of metabolites M28-M31. It is in
15 this respect a suitable candidate for genotoxicity testing.

16

17 Potential genotoxic effects (indicated during genotoxicity hazard assessment) cannot be excluded for
18 metabolite group M35/M36 and for M37 based on exposure estimates, which do not provide
19 indications of dietary non-relevance. Genotoxicity concerns should be addressed for M35/M36 and
20 M37 either by testing according to step 9 or by hydrolysis experiments under physiological conditions
21 combined with QSAR assessment (M35/M36 only).

22

23

24

²⁴ Exposure assessment performed with EFSA PRIMo rev.2

25 **Step 8: Genotoxicity testing**

26 Metabolite M28, selected as representative for metabolites M28 - M31, should be tested for the
27 exclusion of genotoxicity (data gap; see step 20).

28 Metabolite M37 should be tested for the exclusion of genotoxicity (data gap; see step 20).

29 Genotoxicity endpoints (point mutations, structural and numerical chromosome aberrations) should be
30 investigated. In-vitro studies (e.g. Ames test (TG 471) and in vitro micronucleus assay (TG 487)) are
31 considered suitable for the exploration of the above mentioned genotoxicity endpoints.

32 Similar testing strategy should be applied for the selected group representative for metabolites M35
33 and M36 or by hydrolysis experiments under physiological conditions combined with QSAR
34 assessment (data gap; see step 20).

35
36 **Step 9: Genotoxicity concern**

37 None (pending additional information on metabolites M28, M35 and M36, M37).

38
39 **Step 10: General toxicity of metabolites characterized by studies with parent or by specific
40 studies**

41 **Step 10.1: Toxicological assessment of parent compound**

42 The ADI for the parent compound, spiroxamine, was set at 0.025 mg/kg bw per day based on the
43 effects observed on the liver and the eye in the dog toxicity studies (NOAEL of 2.5 mg/kg bw per day,
44 UF 100; EFSA, 2010).

45 The ARfD for the parent compound was set at 0.1 mg/kg/bw based on unspecific toxicity in the rat
46 neurotoxicity study (NOAEL 10 mg/kg bw; UF of 100; EFSA, 2010).

47 Malformations (i.e. cleft palate) were observed at 100 mg/kg bw per day in the developmental toxicity
48 in rats leading to a proposal for classification with R63 “Possible risk of harm to the unborn child”
49 (EFSA, 2010). The developmental NOAEL in rats was 30 mg/kg bw per day.

50
51 The liver and gastrointestinal tract were the target organs of toxicity in the 28-day and 90-day toxicity
52 studies conducted with the parent in rats with an established NOAEL of 3.4 and 1.9 mg/kg bw per day
53 respectively (DE, 2009).

54
55 **Step 10.2: Toxicological assessment of metabolites**

56 Metabolites M06 is considered covered in its toxicological properties by the studies with the parent
57 (i.e. above the threshold of 10% of the administered dose in terms of total radioactive material
58 recovered in the urine as detected in ADME studies; see Table 2). No further toxicological assessment
59 is needed.

60 Toxicological studies on M03 showed that M03 has an acute oral toxicity to rats (LD50 oral: ~707
61 mg/kg bw). The liver and gastrointestinal tract were the target organs of toxicity in the 28-day and 90-
62 day toxicity studies in rats. The NOAEL were 12.9 and 8.8 mg/kg bw/day respectively (DE, 2009).
63 Further toxicological assessment is not needed (step 18).

64
65 **Step 11: Combined exposure of all metabolites to assess general toxicity (optional)**

66 The TTC assessment is only of limited applicability to the representative uses of spiroxamine due to
67 the level of uncertainties linked to the multiple uses, the number of metabolites and their grouping as
68 well as possible exposure scenarios considering residues from treated plant commodities as well as
69 livestock animals. Therefore, TTC assessment is not an adequate assessment tool and the exposure
70 assessment is not conducted.

71
72 **Step 12: Consideration on potency**

73 The ADI for the parent compound, spiroxamine, was set at 0.025 mg/kg bw per day based on the
74 effects observed on the liver and the eye in the dog toxicity studies. Based on the ADI value
75 (>0.01 mg/kg bw/d), spiroxamine is not considered of concern in terms of potency.

76
77

78 **Step 13: Assessment of major plant metabolites in food ($\geq 10\%$ TRR and ≥ 0.01 mg/kg OR
79 ≥ 0.05 mg/kg)**

80 The metabolite spectra for cereals and fruits are considered dissimilar and justify separate residue
81 definitions, if necessary (pending closure of data gaps).

82 For cereals and rotational crops (food items only), parent, metabolites M01, M02, M03 and M05 are
83 candidates for inclusion into the residue definition for plants (Table 6 and 7).

84 For fruits, parent, metabolites M01, M02, M03, M14, M28, M30, M31, M33 (=M13 conj.), M34
85 (=M13 conj.), M35, M36 and 37 are candidates for inclusion into the residue definition for plants
86 (Table 6 and 7).

87 Metabolite M03 is considered toxicologically characterised by specific studies (see step 10.2).

88 Metabolites M01, M02, M05, M14, M28, M30, M31, M33 (=M13 conj.), M34 (=M13 conj.),
89 M35, M36 and M37 are below the threshold of 10% of the AD in terms of total radioactive material
90 recovered in the urine as detected in ADME studies. Consequently, further toxicological and exposure
91 considerations are needed (step 18).

92 Metabolites M33 and M34 are sugar conjugates and they likely result in metabolite M13 after
93 hydrolysis; therefore, the assessment will be conducted on M13.

94 Metabolites M(35) and M(36) are esters of M13 and docosanoic and tetracosanoic acid and they need
95 to be assessed.

96 **Step 14: Assessment of minor plant metabolites in food ($<10\%$ TRR AND <0.05 mg/kg)**

97 Based on the ADI value for parent (>0.01 mg/kg bw/d) the minor metabolites are not considered of
98 concern in terms of potency in relationship to parent. Minor metabolites are not expected to
99 significantly contribute to the toxicity burden and no further toxicological or exposure assessment is
100 needed.

102 **Step 15: Assessment of major plant metabolites in feed ($\geq 10\%$ TRR and ≥ 0.01 mg/kg)**

103 For dietary burden calculation, those compounds are considered that occur at 1N rate in at least one
104 feed commodity at $\geq 10\%$ TRR (and at least 0.01 mg/kg).

105 These are parent, metabolites M01, M02, M03, M05, M40 (conjugate of M05), and M44 (conjugate of
106 M06).

107 Grape and banana are not considered as feed items.

109 **Step 16: Potential of residue transfer from feed to livestock**

110 The dietary burden calculation for requiring an animal metabolism study and further define the
111 relevance of metabolites, has to consider the highest likely residues of major residues in feed items, if
112 they exceed the triggers in at least one food commodity (Table 9).

113 Using input data of parent and all major feed metabolites for the dietary burden calculation, the trigger
114 of 0.004 mg/kg bw/d for requirement of a livestock metabolism study is exceeded for ruminants and
115 poultry.

116 Parent (including the group of related metabolites) and metabolite M03 are considered separately due
117 to structural dissimilarity that may lead to a different kinetic ADME behaviour in livestock
118 (assessment based on structural similarities; see step 18).

119 Metabolism of spiroxamine is addressed by radiolabelled studies in goats and laying hens (step 17).

120 Metabolism of lead compound M03 in ruminants and poultry is not characterised. The dietary risk
121 associated with the potential transfer of metabolite M03 into animal commodities cannot be assessed
122 by means of the parent residue profile and levels. Since M03 exceeds the trigger of 0.004 mg/kg bw/d,
123 it is concluded on base of all information, that a new ruminant and poultry metabolism study with lead
124 compound M03 is required (data gap).

125
126
127

128

129

Table 9 Input data and dietary burden calculation for spiroxamine and potentially relevant metabolites²⁵

Compound	Primary/Rotational crops		Rotational crops		Contribution to livestock burden		
	Cereal grain	Cereal straw	Leafy	Root			
	mg/kg	mg/kg	mg/kg	mg/kg	Diet	mg/kg bw/d	%
Spiroxamine group							
Spiroxamine	0.010	2.0	0.061	0.018	Lamb	0.060	41
					Ewe	0.047	41
					Layer	0.017	38
M01	0.001	0.16	0.031	n.d.	Lamb	0.005	3
					Ewe	0.004	3
					Layer	0.001	3
M02	0.002	0.41	0.067	0.002	Lamb	0.012	8
					Ewe	0.009	8
					Layer	0.003	6
M05	0.001	0.19	0.073	n.d.	Lamb	0.005	4
					Ewe	0.004	4
					Layer	0.002	4
M40 (conjugated M5)	n.d.	0.062	0.020	n.d.	Lamb	0.002	1
					Ewe	0.001	1
					Layer	0.000	1
M44 (conjugated M06)	n.d.	0.052	0.010	0.001	Lamb	0.002	1
					Ewe	0.001	1
					Layer	0.000	1
M03	0.012	2.0	0.005	0.001	Lamb	0.060	41
					Ewe	0.047	41
					Layer	0.022	47
Sum					Lamb	0.120	100
					Ewe	0.094	100
					Layer	0.039	100

130

131

Step 17: Major animal metabolites \geq 10% TRR in food
Ruminants

132 Radiolabelled metabolism studies with spiroxamine as lead compound serve as basis for the proposal
 133 of a residue definition for risk assessment (applicable for feed metabolites of the spiroxamine group;
 134 Table 9). After administration of spiroxamine to lactating ruminants, the identified metabolite spectra
 135 in goat contains 10 metabolites (Table 10). Metabolite M06, its glucuronide M19 and M07 occur as
 136 major metabolites of parent compound at levels exceeding each 10% of TRR and need further
 137 assessment.

138 Parent, M06, M07 and M19 make up between 40-67% of TRR and 59-84% of identified residues.

139 Other significant feed metabolites included in the dietary burden calculation within the parent group
 140 are considered assessable by available metabolism and feeding data, even if they were not observed in
 141 livestock metabolism (e.g. M01, M02 in ruminant feed are covered by their sulfate conjugates M26
 142 and M27) (DE, 2009).

143

144

145

²⁵ EFSA livestock burden calculator considering OECD feeding table.

146

Table 10: Metabolite levels in a ruminant metabolism study after administration of spiroxamine (85N rate)

Residue component	Kidney		Liver		Muscle	
	mg/kg	% of TRR	mg/kg	% of TRR	mg/kg	% of TRR
Parent	0.028	0.2	1.10	5.0	nd	nd
<i>M06</i>	1.48	10.4	4.33	19.6	0.500	48.3
<i>M07</i>	2.27	16.0	0.38	1.7	0.106	10.3
<i>M08</i>	0.33	2.3	0.26	1.2	nd	nd
<i>M11</i>	0.82	5.8	0.84	3.8	0.066	6.4
<i>M12</i>	1.28	9.0	0.7	3.5	0.070	6.8
<i>M19</i>	1.89	13.3	7.22	32.7	0.082	7.9
<i>M22</i>	0.06	0.4	nd	nd	nd	nd
<i>M25</i>	0.23	1.6	0.49	2.2	nd	nd
<i>M26</i>	0.46	3.2	0.42	1.9	nd	nd
<i>M27</i>	0.82	5.8	1.04	4.7	nd	nd

Residue component	Fat		Milk	
	mg/kg	% of TRR	mg/kg	% of TRR
Parent	nd	nd	nd	nd
<i>M06</i>	0.199	30.5	0.496	53.3
<i>M07</i>	0.063	9.7	0.101	10.9
<i>M08</i>	nd	nd	nd	nd
<i>M11</i>	0.028	4.3	0.051	5.5
<i>M12</i>	0.041	6.2	nd	nd
<i>M19</i>	0.101	15.4	nd	nd
<i>M22</i>	nd	nd	nd	nd
<i>M25</i>	nd	nd	0.076	8.2
<i>M26</i>	0.023	3.5	nd	nd
<i>M27</i>	0.023	3.5	nd	nd

147

148 No final conclusion can be made for metabolites following administration of the second lead
 149 compound M03 to ruminants.

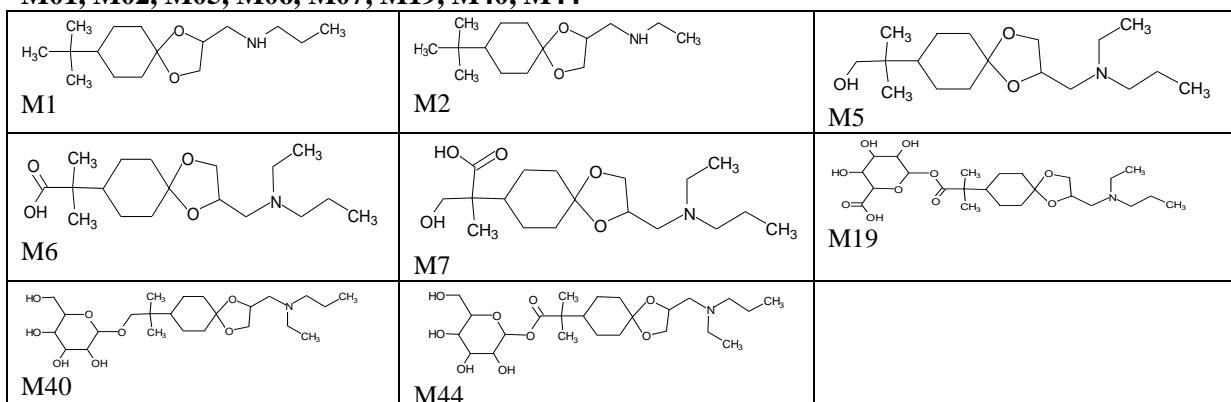
Poultry

151 A radiolabelled metabolism study is available. Residues found in the metabolism study comprise the
 152 major compounds parent, M06, M01 and M02 (all >10% TRR in at least one edible matrix; no further
 153 metabolites identified). Quantitative transfer into animal matrices at 1N cannot be excluded *a priori*.

154 Table 11 Metabolite levels in a poultry metabolism study after administration of spiroxamine (300N rate)

Residue component	Liver		Muscle		Fat		Eggs	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
Spiroxamine	2.324	13.3	0.430	17.8	9.562	77.4	0.100	11.8
M06	1.486	8.5	0.901	37.3	0.210	1.7	0.317	37.4
M02	3.793	21.7	0.273	11.3	0.420	3.4	0.086	10.2
M01	3.723	21.3	0.225	9.3	1.038	8.4	0.097	11.5
Identification rate	11.326	64.8	1.829	75.7	11.230	90.9	0.600	70.9

155


156 No conclusion can be made for metabolites following administration of metabolite M03 (data gap).
 157 Other significant feed metabolites, although not observed in livestock metabolism, are considered as
 158 covered by available data. M44 is a conjugate of M06, and M05 is considered an intermediate in
 159 parent metabolism to M06 (DE, 2009).

160 **Step 18: Testing strategy, grouping and read-across**

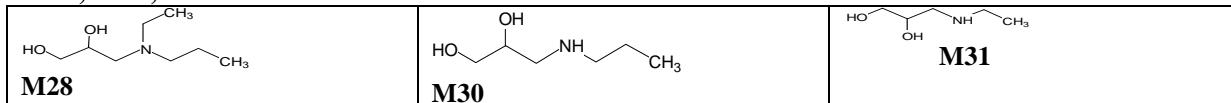
161 Proposal for grouping based on structural similarities:

162 **Group A (parent similar metabolites):**

163 **M01, M02, M05, M06, M07, M19, M40, M44**

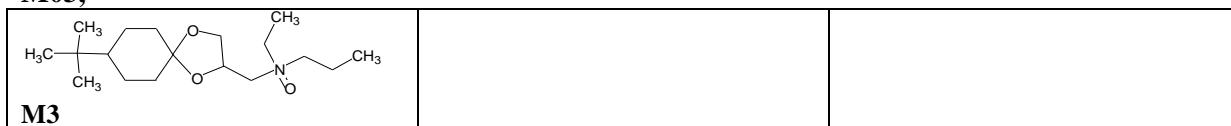
164

165 **Group B**


166 **M14, M33 (conjugate M13), M34 (conjugate M13), M35, M36, M37,**

167

168 **Group C - aminodiol**


M28, M30, M31

169

170 **Group D – oxide**

171 **M03,**

172

173 **Group A: (parent similar metabolites)**

174 **Toxicological assessment of metabolites M01 and M02**

175 Metabolites M01 and M02 at first instance are considered as similar to the parent substance, the
176 difference is that they are secondary amines while the parent is a tertiary amine, therefore parent
177 reference values can be applied.

178 **Toxicological assessment of metabolite M05 and its conjugate M40**

179 Metabolite M05 is considered similar to the parent substance. The structural difference is a simple
180 hydroxylation of the t-butyl group, therefore parent reference values can be applied.

181 Toxicological assessment of metabolite M06 and its conjugates M19 and M44

182 Metabolite M06 is covered in its toxicological properties by parent compound studies, because it is
183 above 10% of AD in terms of total radioactive material recovered in the urine as detected in ADME
184 studies.

185 Toxicological assessment of metabolite M07

186 Metabolite M07 is very similar with M06. The structural difference is an additional hydroxyl group in
187 the t-butyl group, therefore no further toxicological consideration is needed.

188 **Group B:**

189 Toxicological assessment of metabolite M13 and its conjugates M33, M34

190 Metabolite M13 is identified in conjugated form (M33 and M34) as a major plant metabolite in fruits.
191 Additional testing is recommended in order to establish adequate toxicological reference values
192 (relevant for representative uses grapes and banana). M13 is lead compound for M33, M34 and M14.
193 Metabolites M33 and M34 are considered sugar conjugates and they likely result in metabolite M13
194 after hydrolysis. The 28 days rat toxicity study should be performed following the study design as
195 recommended in the guidance document (chapter 3.1). In addition, as spiroxamine is proposed for
196 classification (cat.2) due to the concern on developmental toxicity, a tiered approach should be
197 considered by first addressing the hazard characterization and the reference potency factor for
198 potential waiving of testing for developmental toxicity. Alternatively, as recommended in section 3.4
199 of the guidance, if the metabolite M13 is common to other active substances and already characterised,
200 these data could be considered, if relevant, for the risk assessment.

201 Toxicological assessment of metabolite M14

202 Metabolite M14 is very similar with metabolite M13, the difference is a hydroxyl group in the t-butyl
203 group, therefore the metabolite could be grouped with M13.

204 Toxicological assessment of metabolites M35 and M36

205 Metabolites M35 and M36 are esters of M13 and docosanoic and tetracosanoic acid data on hydrolysis
206 are not available. Should hydrolysis data demonstrate hydrolysis of the ester bond, the two resulting
207 alcohols can be grouped based on chemical similarity of the moiety and represented by the lead
208 compound (M13). However, the resulting acids need to be assessed separately. Similarly, if hydrolysis
209 cannot be demonstrated, the two esters (M35 and M36) should be assessed as such.

210 Toxicological assessment of metabolite M37

211 Metabolite M37 contains the same general structural moiety as M13, however there is a double bound
212 in the cycle which could lead to a different chemical reactivity and similarity in the toxicological
213 properties cannot be assumed.

214 The 28 days rat toxicity study should be performed following the study design as recommended in the
215 guidance document (chapter 3.1). In addition, as spiroxamine is proposed for classification (cat.2) due
216 to the concern on developmental toxicity, a tiered approach should be considered by first addressing
217 the hazard characterization and the reference potency factor for potential waiving of testing for
218 developmental toxicity. Alternatively, as recommended in section 3.4 of the guidance, if the
219 metabolite M37 is common to other active substances and already characterised, these data could be
220 considered, if relevant, for the risk assessment.

221 **Group C (aminodiols)**

222 Toxicological assessment of metabolites M28, M30 and M31

223 Additional testing is recommended for metabolite M28 (e.g. selection criteria based on the relevant
224 exposure) to establish adequate toxicological reference values. Initially, the 28 days rat toxicity study
225 should be performed. In addition, as spiroxamine is proposed for classification (cat.2) due to the
226 concern on developmental toxicity, a tiered approach should be considered by first addressing the
227 hazard characterization and the reference potency factor for potential waiving of testing for
228 developmental toxicity.

229 **Group D - oxide**

230 Toxicological assessment of metabolite M03

231 In principle based on the results above, additional testing would be needed for metabolite M03 in
232 order to establish adequate toxicological reference. However, adequate 28 day and 90-day rat toxicity
233 studies are available (DE, 2009). As spiroxamine is proposed for classification (cat.2) due to the
234 concern on developmental toxicity, this hazard needs to be assessed for metabolite M03. With the
235 parent compound, spiroxamine, developmental toxicity effect was observed at doses higher than the
236 one used as a point of departure for the establishment of the reference values. Additionally, in the 28
237 and 90 day rat toxicity studies the metabolite M03 was less potent than the parent. For these reasons
238 testing for developmental toxicity with the metabolite M03 can be waived. In this case the
239 development hazard characterisation will be the same as for the parent.
240 No further toxicological testing required.
241

242 **Step 19: Assessment of toxicological burden**

243 The following major compounds of (qualitative) toxicological relevance were identified in food and
244 feed of plant origin and require further assessment: Parent, M01, M02, M03, M05 (including its
245 conjugate M40), M44 (conjugate of M6), M14, M28, M30, M31, M33 (conjugate of M13), M34
246 (conjugate of M13), M35, M36 and M37.

247 Their quantitative occurrence is expressed in Table 12 and Table 13 in terms of %TRR (as determined
248 in metabolism studies) and in % of toxicological burden, which is meant as percentage of identified
249 residue compounds on the total identified compounds of toxicological relevance.

250 The following compounds are quantitatively relevant for risk assessment:

251

252 Cereals: Parent, M03 and additionally (for rotational crops only) M01, M02 and M05 (free and
253 conjugated)

254 Root crops: Parent; rotational crops only

255 Leafy crops: Parent, M01, M02, M05 (free and conjugated); rotational crops only

256 Fruit crops: Parent, M14, M28, M33 and M34 (conjugates of M13), M35 (provisionally; open data
257 requirements)

258

259 In primary crops, the coverage of the toxicological burden is between 85-97% for fruit crops
260 (provisionally) and 70-73% for cereals.

261

Table 12 Residue input data for residues of potential concern in food and feed of plant origin (primary crops)

		Cereals				Fruits							
		Grain (C) ^a		Straw (C) ^a		Grapes (C)		Grapes (D)		Banana (C)		Banana (D)	
Metabolite	RPF	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden
Parent	1	14.3	32.4	25.1	36.8	24.6	27.5	45.6	48.5	44.9	64.1	60.0	60.9
M01	1	0.5	1.1	2.0	3.8	1.1	1.2	2.1	2.2	1.1	1.6	0.9	0.9
M02	1	3.0	6.8	3.2	6.1	0.5	0.6	1.5	1.6	0.5	0.7	0.4	0.4
M03	1	17.8	40.4	22.0	33.6	2.9	3.2	4.7	5.0	0.8	1.1	1.2	1.3
M14 (incl. conj. M24)	1 ^b					13.0	14.5			9.2	13.1		
M28	1 ^b							37.5	39.9			31.2	31.6
M30	1 ^b							1.1	1.2			0.6	
M31	1 ^b							1.2	1.3			0.6	
M13 (incl. conj. M33, M34)	1 ^b					25.3	28.2			13.6	19.4		
M35	1 ^b					13.0	14.5						
M36	1 ^b					4.2	4.7						
M37	1 ^b					3.2	3.6						
Other (minor)		8.5		15.9		1.8		0.4		0		0	
Sum of relevant metabolites		32.1	72.8	47.1	70.4	75.9	84.7 ^b	83.1	88.4 ^b	67.7	96.6 ^b	91.2	92.5 ^b
Sum of non-considered metabolites		12.0		21.1		3.4		11.0		2.4		3.7	

^a The residue situation in cereal D-label is covered by assessment of C-label

^b Provisional; toxicological characterisation not finalised

Table 13 Residue input data for major residues of potential concern in food of plant origin (rotational crops)

Metabolite	RPF	30 d PBI				294d ^a		30 d PBI		30 d PBI		161 d PBI ^a	
		Straw (C)		Straw (D)		Straw (D)		Turnip roots (C)		Swiss chard (D)		Swiss chard (C)	
		% TR R	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden
Parent	1	6.8	16.0	15.2	20.0	4.2	7.0	45.8	64.1	9.4	14.4	8.8	15.0
M01	1	n.d.	n.d.	15.1	19.8	5.6	9.4	4.4	6.2	9.0	14.0	12.1	20.6
M02	1	3.5	8.2	17.4	22.9	17.4	29.1	2.6	3.6	19.7	30.7	14.2	24.2
M03	1	12.7	29.9	7.4	9.7	1.4	2.3	2.8	3.9			14.2	24.2
M05 (+conj. M40)	1	4.5	10.6	2.8	3.7	12.6	21.1			16.6	25.8	-	-
M06 (+ conj. M44)	1			1.0	1.3	10.5	17.6			3.1	4.8		
Sum of relevant metabolites		27.5	64.7	58.9	78.0	51.7	86.6	45.8	64.1	54.7	84.9	49.3	84.1
Sum of non-considered metabolites		15.0	35.3	16.6	22.0	8.0	13.4	25.7	35.9	9.5	15.1	9.3	15.9

^a 30d PBI is critical due to higher exposure potential; no higher toxicity is assumed for compounds identified as major at later PBIs (therefore non-consideration of M06 (free+conjugated) for cereals and M03 for Swiss chard)

1 Livestock

 2 The following major residue compounds are considered as candidates for inclusion into the residue
 3 definition for livestock: Parent spiroxamine, M01 (poultry), M02 (poultry), M06 (including its
 4 glucuronide conjugate M19; goat and poultry), M07 (goat).

 5 Their quantitative occurrence is expressed in Table 14 (for ruminants) and Table 15 (for poultry) in
 6 terms of %TRR (as determined in metabolism studies) and in % of toxicological burden, which is
 7 meant as percentage of identified residue compounds.

 8 **Table 14 Residues of concern for food of animal origin following administration of spiroxamine:
 9 Ruminants ($\geq 10\% \text{TRR}$ and at least 0.01 mg/kg)**

Metabolite	RPF	Kidney		Liver		Muscle		Fat		Milk	
		%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden
Parent	1	0.2	0.3	5.0	6.6	nd	-	nd	-	nd	-
M06 (incl conjug. M19)	1	23.7	34.9	52.3	68.6	56.2	70.5	45.9	62.8	53.3	68.4
M07	1	16.0	23.5	1.7	2.2	10.3	10.3	9.7	9.7	10.9	14.0
Sum of relevant metabolites		39.9	58.7	59.0	77.4	66.5	70.8	55.6	72.5	64.2	84.4
Sum of non-considered metabolites (all minor)		28.1		17.3		13.2		17.5		77.9	

 11 **Table 15 Residues of concern for food of animal origin following administration of spiroxamine:
 12 Poultry ($\geq 10\% \text{TRR}$ and at least 0.01 mg/kg)**

Metabolite	RPF	Liver		Muscle		Fat		Eggs	
		%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden	%TRR	% tox burden
Parent	1	13.3	20.5	17.8	23.5	77.4	85.1	11.8	16.6
M01	1	21.3	32.9	9.3	12.3	8.4	9.2	11.5	16.2
M02	1	21.7	33.5	11.3	14.9	3.4	3.7	10.2	14.4
M06	1	8.5	13.1	37.3	49.3	1.7	1.9	37.4	52.8
Sum of relevant metabolites		64.8	100	75.7	100	90.9	100	70.9	100
Sum of non-considered metabolites		0	0	0	0	0	0	0	0

 14 The fate of parent and feed metabolites M01, M02 and M05 in ruminants and poultry is considered as
 15 covered by available studies with parent.

16 The following compounds in food of animal origin are relevant for risk assessment:

 17 **Ruminants: Parent, M06 (free and conjugated), M07**

 18 **Poultry: Parent, M01, M02, M06**

 19 No final conclusion is possible unless information on the metabolic fate of feed metabolite M03 in
 20 ruminants and poultry is available (data gap).

21

23 **Step 20: Residue definition for risk assessment**

24 Plants

25 Due to the different metabolism of spiroxamine in cereals, grapes and rotational crops, the following
26 separate residue definitions are proposed (all expressed as spiroxamine).

27 **Cereals:** **Parent, M03 (primary crops)**
28 **Parent, M03, M01, M02, M05 (free and conjugated); rotational crops only**

29 **Root crops:** **Parent; rotational crops only**

30 **Leafy crops:** **Parent, M01, M02, M05 (free and conjugated); rotational crops only**

31 **Fruit crops:** **Parent, M14, M28, M33 and M34 (conjugates of M13), M35 (open data requirements)**

33

34 The residue definition for fruit crops is provisional pending full toxicological assessment of
35 metabolites of group B and C (see step 18; data requirement). Separate risk assessments or the
36 application of RPFs might be indicated for the different metabolite groups.

37 Although the relevance of M03 in food for direct human consumption is low, it is proposed to include
38 M03 into the residue definition based on the toxicological properties of M03, the exposure potential
39 for livestock and human exposure via food of animal origin and uncertainties for isomers composition.

40

41 Animals

42 The following residue definition is proposed for ruminants, pigs and horses (provisional pending
43 addressing of the data gap in livestock animals):

44 **Ruminants:** **Parent, M06 (free and conjugated), M07**

45 **Poultry:** **Parent, M01, M02, M06**

46

47 **Data gaps**

48 • Genotoxicity studies for M28 and M37 should be provided. The testing battery should as a
49 minimum include two in vitro tests, covering all three genetic endpoints, i.e. gene mutations,
50 structural and numerical chromosomal alterations.

51 • Adequate toxicological references should be provided for M28 or other representative
52 substance for Group C (M28, M30 and M31), M13 (as a group representative metabolite for
53 M14, M33 and M34) and M37. The 28 day rat study is recommended as a first tier approach.

54 • Hydrolysis study demonstrating cleavage of M35 and M36 under physiological conditions,
55 followed by a(Q)SAR/ Read across for the exclusion of genotoxicity and followed by the
56 general toxicological assessment or testing for the ester compounds..

57 • Ruminant and poultry metabolism of metabolite M03 in feed has to be addressed.

58

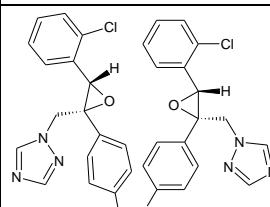
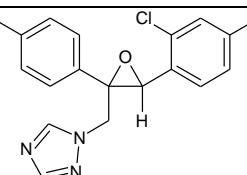
59 **Uncertainties of particular relevance for decision making**

60 The finalisation of the evaluation of the uncertainties is underdevelopment pending adoption of the
61 Scientific Committee guidance on uncertainty in scientific assessment.

62 The quantitative relevance of all identified metabolites in food and feed as well as their toxicological
63 assessment is discussed in this case study under conditions considered as reasonable worst case by the
64 assessors. A detailed uncertainty assessment for particular elements of toxicity and exposure
65 calculation can be provided on request of risk managers.

66 The following describes those steps in the decision scheme where alternative, more conservative,
67 decisions could have been made and provides the justification for the approach taken.

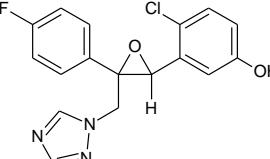
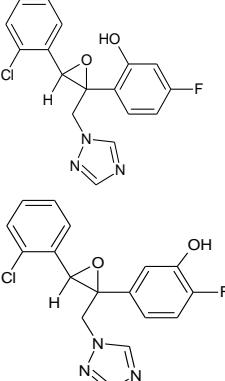
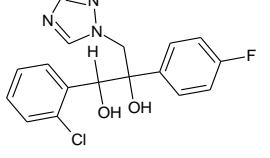
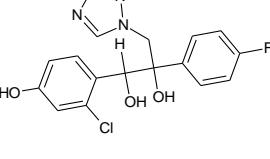
- 68 • For metabolites M13, M15 and M16 the prediction for genotoxicity is negative, but not
69 considered reliable because they were out of the applicability domain in one CA model and
70 the applicability domain was not defined in the second CA model. This was considered
71 unlikely to be of concern based on expert judgment on the absence of reactive chemical
72 groups in the structure.
- 73 • Grouping of metabolites is based on criteria for similarity. However, these criteria are not
74 fully characterized. For genotoxicity endpoints, grouping on profiling and presence of
75 functional groups was considered suitable for the purpose of risk assessment. Grouping of
76 metabolites for section of representative substance for testing for general toxicity was based
77 on common moiety and similarity in the chemical reactivity and this was considered
78 appropriate for this purpose. However, uncertainties still exist as no testing against the
79 toxicological endpoint/s was performed (e.g. the difference between secondary and tertiary
80 amines or hydroxylation of a butyl-group can call for a different reactivity. In absence of
81 testing this is still considered an uncertainty).
- 82 • Genotoxic alerts indicated by (Q)SAR for 12 metabolites are considered not relevant on the
83 basis of grouping and read-across. This bears a higher uncertainty compared to *in vitro* results
84 according to the proposed testing scheme.
- 85 • Minor rat and plant metabolites were assessed for their genotoxicity potential through
86 (Q)SAR, grouping and read across. . However, minor plant metabolites were not assessed for
87 general toxicity endpoints based on the assumption that the parent is a low potency substance.
88 The uncertainty with regard to non-consideration of minor metabolites is therefore based on
89 the assumption that their toxicological burden will be limited and then refers only to the
90 exposure part.
- 91 • The toxicological burden covered by the residue definition is slightly below the target of
92 75% of the total toxicological burden for cereals, some rotational crops and ruminant matrices.
93 This has only a marginal impact on the calculated dietary consumer risk
- 94 • No data are provided to assess the impact of the possible preferential
95 metabolism/degradation of each enantiomer in animals, plants and the environment. As
96 spiroxamine has diastereoisomers the risk assessment should consider the highest intake,
97 assuming that all the toxic activities are due to a single isomer which is representing the
98 residue and a factor of two to the ADI and ARfD should be applied.

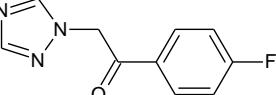
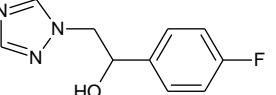
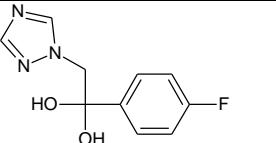
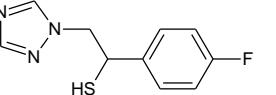
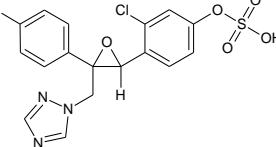


Appendix D. Case study – Epoxiconazole (Germany, 2005²⁶, 2008²⁷ & 2015²⁸)

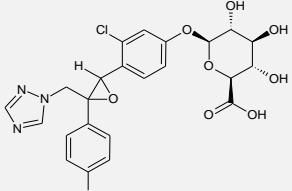
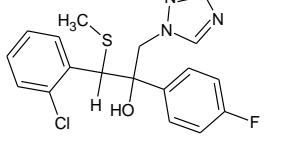
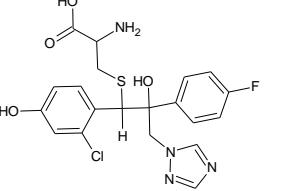
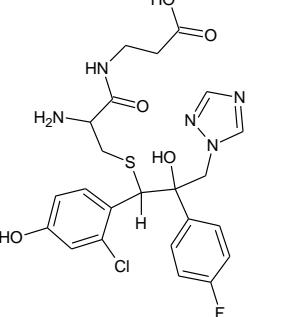
Step 1: Metabolite identified at any level in residue metabolism (plant)

A list of metabolites detected in residue metabolism studies is given in Table 1. Conjugated metabolites (i.e. glucosides and glucuronides) are assumed to be covered in their toxicological properties by their respective aglycons. For these metabolites, the results of the aglycon assessment can be adopted; the assessment for the conjugates is restricted to exposure estimates.

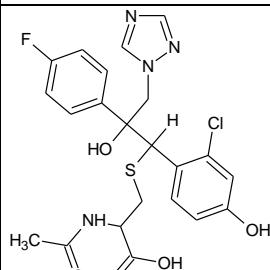
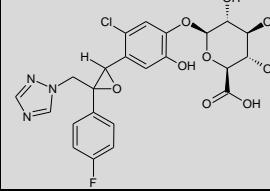
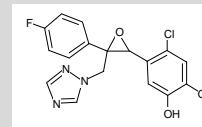
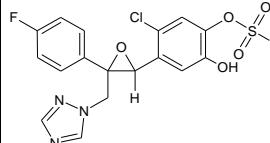
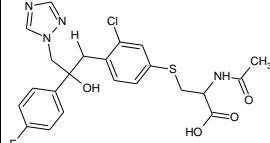
For the assessment of genotoxicity, position isomers are considered as individual entities, while enantiomers are considered as one entity; since the majority of the applied (Q)SAR models and profilers base their evaluation on a part of the molecule (the structural alerts) and not on the whole molecule, the concept of enantiomers is not relevant in regard to genotoxicity.

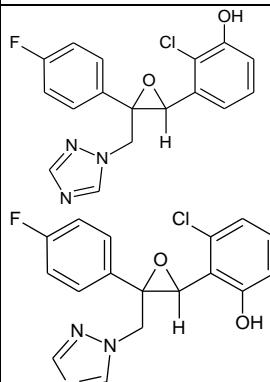
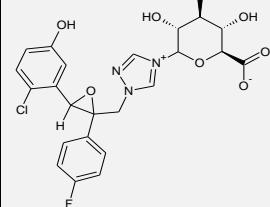
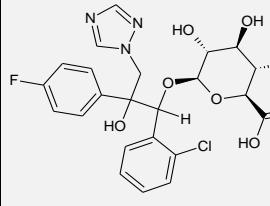




Table 1. Epoxiconazole metabolites






Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
Parent	BAS 480 F Epoxiconazole (2RS,3SR)-1-[3-(2-chlorophenyl)-2,3-epoxy-2-(4-fluorophenyl)propyl]-1H-1,2,4-triazole Fc1ccc(cc1)[C@]4(Cn2cncn2)O[C@H]4c3cccc3Cl Fc1ccc(cc1)[C@@@]4(Cn2cncn2)O[C@@H]4c3cccc3Cl		
M01	480M1 3-chloro-4-[3-(4-fluorophenyl)-3-(1H-1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenol Fc1ccc(cc1)C4(Cn2cncn2)OC4c3ccc(O)cc3Cl		M01 representative for conjugate M11, M61, M67, M68

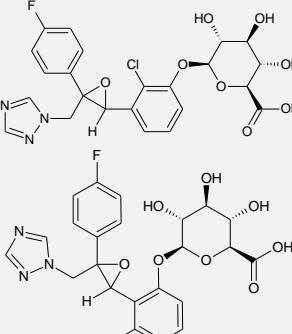
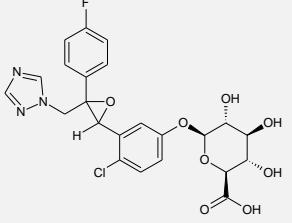
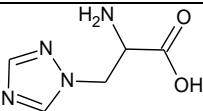




²⁶ Germany, 2005. Draft Assessment Report (DAR) on the active substance epoxiconazole prepared by the rapporteur Member State Germany in the framework of Directive 91/414/EEC, April 2005. Available at <http://dar.efsa.europa.eu/dar-web/provision>

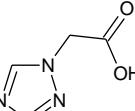
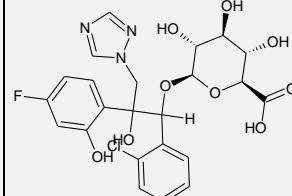
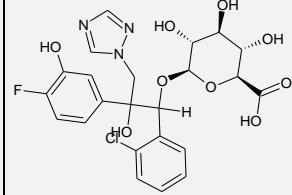
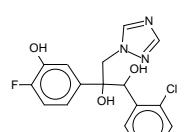
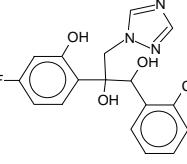
²⁷ Germany, 2008. Final addendum to the Draft Assessment Report (DAR) on epoxiconazole, compiled by EFSA, February 2008. Available online: www.efsa.europa.eu

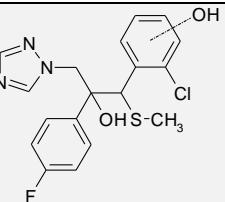





²⁸ Germany, 2015. Final addendum to the addendum to the draft assessment report (DAR) on epoxiconazole, compiled by EFSA, April 2015. Available online: www.efsa.europa.eu

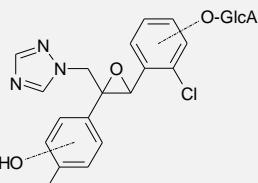
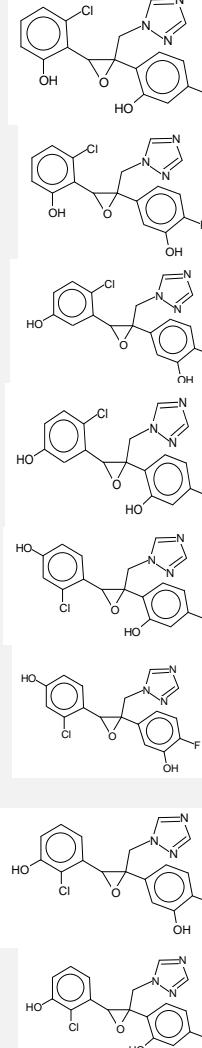



Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M02	480M2 BF 480-2, II (Chloro-hydroxy-metabolite) 4-chloro-3-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenol Fc1ccc(cc1)C4(Cn2cncn2)OC4c3cc(O)ccc3Cl		M02 representative for conjugate M27, M32, M61, M67, M68
M03	480M3 (XXXIV) 2-[3-(2-chlorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]-5-fluorophenol Fc1ccc(c(O)c1)C4(Cn2cncn2)OC4c3cccc3Cl 5-[3-(2-chlorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]-2-fluorophenol Fc1ccc(cc1O)C4(Cn2cncn2)OC4c3cccc3Cl		Both isomers are used for analysis M03 representative for conjugate M66
M04	480M4 BF 480-11 1-(2-chlorophenyl)-2-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propane-1,2-diol OC(Cn1cncn1)(c2ccc(F)cc2)C(O)c3cccc3Cl		M04 representative for conjugate M28, M29
M05	480M5 1-(2-chloro-4-hydroxyphenyl)-2-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propane-1,2-diol OC(Cn1cncn1)(c2ccc(F)cc2)C(O)c3ccc(O)cc3Cl		Used for analysis M05 representative for conjugate M60

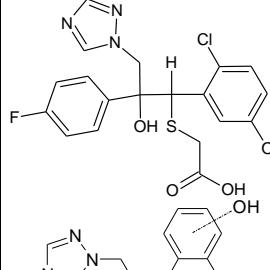
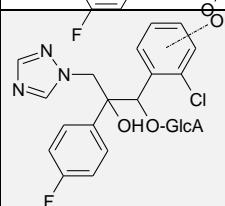
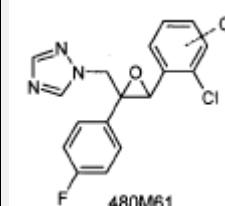
Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M06	480M6 1-(4-fluorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-yl)ethanone O=C(Cn1cncn1)c2ccc(F)cc2		
M07	480M07 BAS 480-F-alcohol 1-(4-fluorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-yl)ethanol OC(Cn1cncn1)c2ccc(F)cc2		
M08	480M08 1-(4-fluorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-yl)ethane-1,1-diol OC(O)(Cn1cncn1)c2ccc(F)cc2		
M09	480M09 1-(4-fluorophenyl)-2-(1 <i>H</i> -1,2,4-triazol-1-yl)ethanethiol SC(Cn1cncn1)c2ccc(F)cc2		
M10	480M10 3-chloro-4-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenyl hydrogen sulfate O=S(=O)(O)Oc1ccc(c(Cl)c1)C4OC4(Cn2cncn2)c3ccc(F)cc3		

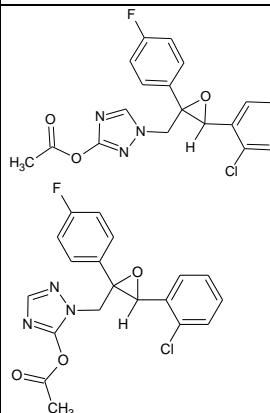
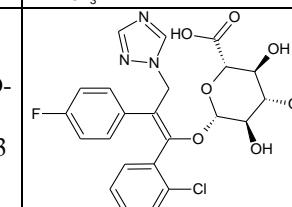
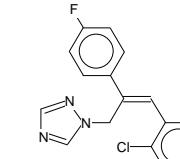
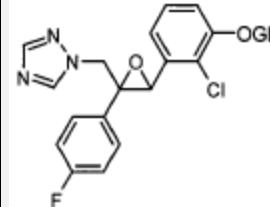



Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M11	480M11 3-chloro-4-[3-(4-fluorophenyl)-3-(1H-1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenyl b-D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C5(Cn2cncn2)OC5c3ccc(cc3Cl)O[C@H]4O[C@H]([C@H](O)[C@H](O)[C@H](O)[C@H]4O)C(=O)O</chem>		Toxicological assessment covered by M01
M12	480M12 1-(2-chlorophenyl)-2-(4-fluorophenyl)-1-(methylthio)-3-(1H-1,2,4-triazol-1-yl)propan-2-ol <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SC)c3cccc3Cl</chem>		
M13	480M13 <i>S</i> -[1-(2-chloro-4-hydroxyphenyl)-2-(4-fluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl]cysteine <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SCC(N)C(=O)O)c3ccc(O)cc3Cl</chem>		M13 representative for conjugate M25
M15	480M15 <i>S</i> -[1-(2-chloro-4-hydroxyphenyl)-2-(4-fluorophenyl)-2-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl]cysteinyl- <i>b</i> -alanine <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SCC(N)C(=O)NCCC(=O)O)c3ccc(O)cc3Cl</chem>		M15 representative for conjugate M25

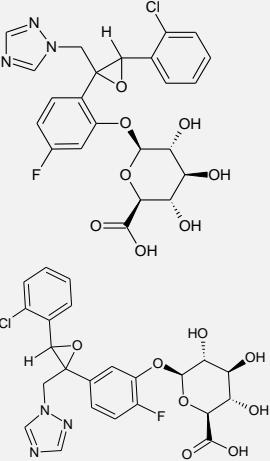
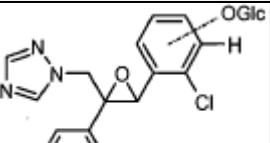
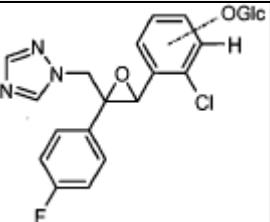
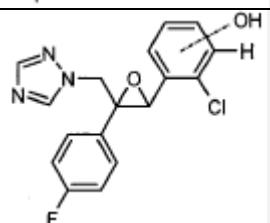





Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M16	480M16 <i>S</i> -{3-chloro-4-[2-(4-fluorophenyl)-1,2-dihydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl]phenyl}cysteine <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(O)c3ccc(SCC(N)C(=O)O)cc3Cl</chem>		
M17	480M17 <i>S</i> -[1-(2-chlorophenyl)-2-(4-fluorophenyl)-2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl]cysteine <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SCC(N)C(=O)O)c3cccc3Cl</chem>		
M18	480M18 Thio-BF 480-11, V 1-(2-chlorophenyl)-2-(4-fluorophenyl)-1-mercaptopropan-2-ol <chem>OC(Cn1cncn1)(C(S)c2cccc2Cl)c3ccc(F)cc3</chem>		M18 representative for conjugate M30
M19	480M19 3-chloro-4-[2-(4-fluorophenyl)-2-hydroxy-1-(methylthio)-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl]phenol <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SC)c3ccc(O)cc3Cl</chem>		M19 representative for conjugate M54


Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M20	480M20 <i>N</i> -acetyl- <i>S</i> -[1-(2-chloro-4-hydroxyphenyl)-2-(4-fluorophenyl)-2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl]cysteine <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SCC(NC(C)=O)C(=O)O)c3ccc(O)cc3Cl</chem>		
M21	480M21 5-chloro-4-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]-2-hydroxyphenyl <i>b</i> -D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C5(Cn2cncn2)OC5c4cc(O)c(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H](O)[C@H]3O)C(=O)O)cc4Cl</chem>		Toxicological assessment is done on
M22	480M22 5-chloro-4-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]-2-hydroxyphenyl hydrogen sulfate <chem>O=S(=O)(O)Oc1cc(Cl)c(cc1O)C4OC4(Cn2cncn2)c3ccc(F)cc3</chem>		
M23	480M23 <i>N</i> -acetyl- <i>S</i> -{3-chloro-4-[2-(4-fluorophenyl)-2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl]phenyl}cysteine <chem>OC(Cn1cncn1)(Cc2ccc(SCC(NC(C)=O)C(=O)O)cc2Cl)c3ccc(F)cc3</chem>		
M25	480M25 <u>Unknown</u> conjugate of MW=57 with x-chloro-y-[2-(4-fluoro-phenyl)-2-hydroxy-1-sulfanyl-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl] phenol	Structure to be covered by 480M13 / 480M15, Uncertainty assessment	Toxicological assessment covered by M13, M15



Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M26	<p>480M26</p> <p>2-chloro-3-[3-(4-fluorophenyl)-3-(1<i>H</i>-1,2,4-triazol-1-ylmethyl)-2-oxiranyl]phenol <chem>Fc1ccc(cc1)C4(Cn2cncn2)OC4c3cccc(O)c3Cl</chem></p> <p>3-chloro-2-[3-(4-fluorophenyl)-3-(1<i>H</i>-1,2,4-triazol-1-ylmethyl)-2-oxiranyl]phenol <chem>Fc1ccc(cc1)C4(Cn2cncn2)OC4c3c(O)cccc3Cl</chem></p>		<p>Both isomers are used for analysis</p> <p>M26 representative for conjugate M31, M65, M67, M68</p>
M27	<p>480M27</p> <p>Parent glucuronide, VI</p> <p>(1-[3-(2-chloro-5-hydroxy-phenyl)-2-(4-fluorophenyl)-2-oxiranyl]methyl)-1,2,4-triazolium methyl D-1-deoxy-glucopyranosiduronate</p> <p>(site of conjugation is nitrogen atom of the triazole ring requ. zwitter ionic structure) <chem>Oc1cc(c(Cl)cc1)C5OC5(Cn2nc[n+](c2)C3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C([O-])=O)c4ccc(F)cc4</chem></p>		Toxicological assessment covered by M02
M28	<p>480M28</p> <p>BF 480-11-glucuronide, VII</p> <p>1-(2-chlorophenyl)-2-(4-fluorophenyl)-2-hydroxy-3-(1<i>H</i>-1,2,4-triazol-1-yl)propyl D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C(O)(Cn2cncn2)C(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4cccc4Cl</chem></p>		Toxicological assessment covered by M04




Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M29	480M29 BF 480-11-conjugate 1-(2-chlorophenyl)-2-(4-fluorophenyl)-1-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propan-2-yl β-D-glucopyranosiduronic acid Clc1cccc1C(O)C(Cn2cncn2)(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4ccc(F)cc4		Toxicological assessment covered by M04
M30	480M30 Thio-BF 480-11-conjugate 1-(2-chlorophenyl)-2-(4-fluorophenyl)-1-mercaptopropan-2-yl β-D-glucopyranosiduronic acid Clc1cccc1C(S)C(Cn2cncn2)(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4ccc(F)cc4 1-(2-chlorophenyl)-2-(4-fluorophenyl)-2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl 1-thio- β-D-glucopyranosiduronic acid Fc1ccc(cc1)C(O)(Cn2cncn2)C(S[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4cccc4Cl		Toxicological assessment covered by M18





Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M31	480M31 Conjugate of III 2-chloro-3-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenyl b-D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C5(Cn2cncn2)OC5c4cccc(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4Cl</chem> 3-chloro-2-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenyl b-D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C5(Cn2cncn2)OC5c4c(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)cccc4Cl</chem>		Toxicological assessment covered by M26 (both isomers)
M32	480M32 Conjugate of II 4-chloro-3-[3-(4-fluorophenyl)-3-(1 <i>H</i> -1,2,4-triazol-1-ylmethyl)oxiran-2-yl]phenyl b-D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C5(Cn2cncn2)OC5c3cc(ccc3Cl)O[C@H]4O[C@H]([C@H](O)[C@H](O)[C@H]4O)C(=O)O</chem>		Toxicological assessment covered by M02
M52	480M52 1,2,4-Triazole <chem>BF 480-16 (87 085)(CGA 71019)(CGA 98032)</chem> 1 <i>H</i> -1,2,4-triazole <chem>c1nncn1</chem>		
M49	480M49 Triazolyl alanine 3-(1 <i>H</i> -1,2,4-triazol-1-yl)alanine <chem>NC(Cn1cncn1)C(=O)O</chem>		





Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M50	480M50 Triazolyl hydroxy propionic acid 2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propanoic acid OC(Cn1cncn1)C(=O)O		
M51	480M51 BF 480-17 Triazolyl acetic acid 1 <i>H</i> -1,2,4-triazol-1-ylacetic acid O=C(O)Cn1cncn1		
M53	480M53 (and/or isomers) 1-(2-chlorophenyl)-2-(4-fluoro-2-hydroxyphenyl)-2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl <i>b</i> -D-glucopyranosiduronic acid Fc1ccc(c(O)c1)C(O)(Cn2cnen2)C(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4cccc4Cl 1-(2-chlorophenyl)-2-(4-fluoro-3-hydroxyphenyl)-2-hydroxy-3-(1 <i>H</i> -1,2,4-triazol-1-yl)propyl <i>b</i> -D-glucopyranosiduronic acid Fc1ccc(cc1O)C(O)(Cn2cnen2)C(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4cccc4Cl	 	Toxicological assessment is done on

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M54	480M54 (and/or isomers) Exact position of OH not known, unresolved mixture (?) To be covered by 480M19, 480M53, and uncertainty to be discussed		Toxicological assessment covered by M19

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M55	480M55 (and/or isomers)		

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M56	480M56 (and/or isomers) Exact position of OH not known, assumed to be at 5- position, and uncertainty to be discussed $\{[1-(2\text{-chloro-5-hydroxyphenyl})-2-(4\text{-fluorophenyl})-2\text{-hydroxy-3-(1H-1,2,4-triazol-1-yl)propyl}sulfanyl\}acetic\ acid$ <chem>OC(Cn1cncn1)(c2ccc(F)cc2)C(SCC(=O)O)c3cc(O)ccc3Cl</chem>		
M60	480M60 (and/or isomers) Exact position of OH not known (mixture?), structure covered by ?		Toxicological assessment covered by M5
M61	480M61 Exact position of OH not known (mixture?), covered by either 480M1, 480M2, or 480M26	 480M61	Toxicological assessment covered by M1, M2, M26

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M62	<p>480M62</p> <p>1-{[3-(2-chlorophenyl)-2-(4-fluorophenyl)-2-oxiranyl]methyl}-1<i>H</i>-1,2,4-triazol-3-yl acetate <chem>CC(=O)Oc1ncn(n1)CC3(OC3c2ccccc2Cl)c4ccc(F)cc4</chem></p> <p>1-{[3-(2-chlorophenyl)-2-(4-fluorophenyl)-2-oxiranyl]methyl}-1<i>H</i>-1,2,4-triazol-5-yl acetate <chem>CC(=O)Oc4ncnn4CC2(OC2c1ccccc1Cl)c3ccc(F)cc3</chem></p>		
M63	<p>480M63</p> <p>(1<i>Z</i>)-1-(2-chlorophenyl)-2-(4-fluorophenyl)-3-(1<i>H</i>-1,2,4-triazol-1-yl)-1-propen-1-yl β-D-glucopyranosiduronic acid <chem>Fc1ccc(cc1)C(/Cn2cncn2)=C(/O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H]3O)C(=O)O)c4ccccc4Cl</chem></p>		Toxicological assessment is done on
M65	<p>480M65</p> <p>Identical to 480M31 first structure</p>		Toxicological assessment covered by M26 (the first structure)

Compound identifier	Name in Study and Assessment reports and SMILES	Structure	Remark
M66	<p>480M66</p> <p>2-[3-(2-chlorophenyl)-2-(1<i>H</i>-1,2,4-triazol-1-ylmethyl)-2-oxiranyl]-5-fluorophenyl β-D-glucopyranosiduronic acid</p> <p>Clc1cccc1C5OC5(Cn2cncn2)c4ccc(F)cc4O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H](O)[C@H]3O)C(=O)O</p> <p>5-[3-(2-chlorophenyl)-2-(1<i>H</i>-1,2,4-triazol-1-ylmethyl)-2-oxiranyl]-2-fluorophenyl β-D-glucopyranosiduronic acid</p> <p>Clc1cccc1C5OC5(Cn2cncn2)c4cc(O[C@H]3O[C@H]([C@H](O)[C@H](O)[C@H](O)[C@H]3O)C(=O)O)c(F)cc4</p>	 	Toxicological assessment covered by M3
M67	<p>480M67</p> <p>Covered by 480M31 480M32</p>		Toxicological assessment covered by M1, M2, M26_2
M68	<p>480M68</p> <p>Exact position of OH not known (mixture?), covered by either 480M1, 480M2, or 480M26</p>		Toxicological assessment covered by M1, M2, M26_2

Step 2: Exclusion of metabolites of no concern

None.

Step 3: Metabolite is known to be genotoxic

No specific information on genotoxicity of metabolites is available.

Step 4/Step 5: Metabolite is covered by rat metabolism

No major rat metabolites (>10% of AD in rat urine from the ADME study) were identified.

Proceed with the genotoxicity assessment (steps 5 to 9) for all metabolites.

Step 5: (Q)SAR prediction of Ames genotoxicity

Step 5.1: Description of (Q)SAR strategy

In order to predict the genotoxic potential (gene mutation and chromosomal aberrations) of the minor rat and plant specific metabolites, four models have been applied: OASIS AMES Mutagenicity and Chromosomal Aberration models (v08.08) implemented in the TIMES software (v2.27.13) and DEREK Nexus Mutagenicity and Chromosome Damage Models v 4.0.6. Lhasa Ltd, Leeds.

Independently of the predictions from (Q)SAR models, the metabolite(s) will be subject of read across analysis (step 6).

Step 5.2: Documentation of OASIS Ames Mutagenicity model (TIMES software)

11. Used model (title, name of authors, reference)

OASIS AMES mutagenicity model v08.08, Laboratory of mathematical chemistry, Burgas University

R. Serafimova, M. Todorov, T. Pavlov, S. Kotov, E. Jacob, A. Aptula, O. Mekenyany, Identification of the structural requirements for mutagenicity by incorporating molecular flexibility and metabolic activation of chemicals. II. General Ames mutagenicity model. *Chem. Res. Toxicol.*, 20, (2007), pp. 662–676.

12. Information about modelled endpoint (endpoint, experimental protocol)

Ames Mutagenicity assay.

13. Used training set (number of the substances, information about the chemical diversity of the training set chemicals)

The training set consists of 3489 chemicals (NTP database) separated in three groups: 641 mutagenic chemicals as parents, 418 chemicals mutagenic after S9 metabolic activation (non mutagens as parents), and 2430 non mutagenic chemicals. These three classes of chemicals were considered as biologically dissimilar in the modeling process; i.e., chemicals being mutagenic as parents are distinguished from chemicals, which were metabolically activated

14. Information on the algorithm used for deriving the model and the molecular descriptors (name and type of the descriptors used, software used for descriptor generation and descriptor selection)

The TIMES system combines in the same modeling platform metabolic activation of chemicals and their interaction with target macromolecules. The reactivity Ames model (-S9) describing interactions of chemicals with DNA was based on an alerting group approach. Only those toxicophores having clear interpretation for the molecular mechanism causing the ultimate effect were included in the model. The alerts were classified as direct acting and metabolically activated. The mechanistic interrelation between alerts and related parametric ranges generalizing the effect of the rest of the molecules on the alert is also considered. In the Ames model (+S9), the reactivity component was combined with a metabolic simulator, which was trained to reproduce documented maps for mammalian (mainly rat) liver metabolism for 260 chemicals. Parent chemicals and each of the generated metabolites were submitted to a battery of models to screen for a general effect and mutagenicity mechanisms. Thus, chemicals were predicted to be mutagenic as parents only, parents and metabolites, and metabolites only.

15. Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit, robustness and predictivity

For 3489 chemicals, the Ames model (-S9) was able to predict correctly 82% of the Ames positive and 91% of the Ames negative training set chemicals. When metabolic activation is taken into account, the Ames model (+S9) predicts 76% of the Ames positive and 76% of the Ames negative training set chemicals.

16. External statistic, if available

Not available

17. Information about the applicability domain (description of the applicability domain of the model and method used to assess the applicability domain)

The stepwise approach was used to define the applicability domain of the model. It consists of the following sub-domain levels:

- General parametric requirements - includes ranges of variation log KOW and MW,
- Structural domain - based on atom-centered fragments (ACFs).
- Interpolation space - estimates the population density of the parametric space defined by the explanatory variables of the QSAR models by making use the training set chemicals.
- Domain of simulator of metabolism - determines the reliability of the simulated metabolism.

A chemical is considered In Domain if its log K_{ow} and MW are within the specified ranges and if its ACFs are presented in the training chemicals. The information implemented in the applicability domain is extracted from the correctly predicted training chemicals used to build the model and in this respect the applicability domain determines practically the interpolation space of the model.

S. Dimitrov, G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlevisz, J. Niemela and O. Mekenyan, *J. Chem. Inf. Model.* Vol. 45 (2005), pp. 839-849.

18. Mechanistic interpretation of the model

Each structural alert in the model is related with a suggested mechanism of action which is reported together with the prediction.

19. Description, experimental data and predictions of possible structural analogues of the substance (provided by the software or selected by the applicant)

Not available

20. Any additional information provided by the model, e.g. suggested mechanism of action, uncertainties

The model provided suggested mechanism of action, examples of the substances documented to have the mechanism of action, generation of metabolites and prediction for them, information for experimental observed metabolites (if available).

Documentation of DEREK Nexus mutagenicity model

11. Used model (title, name of authors, reference)

DEREK Nexus Mutagenicity Model v 4.0.6.

Lhasa Ltd, Leeds, UK, <http://www.lhasalimited.org/>

Sanderson DM & Earnshaw CG (1991). Computer prediction of possible toxic action from chemical structure; The DEREK system. Human and Experimental Toxicology 10, 261-273.

Judson PN, Marchant CA & Vessey JD (2003). Using argumentation for absolute reasoning about the potential toxicity of chemicals. Journal of Chemical Information and Computer Sciences 43, 1364-1370.

Marchant CA, Briggs KA & Long A (2003). In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicology Mechanisms and Methods 18, 177–187.

Judson PN, Stalford SA & Vessey J (2013). Assessing confidence in predictions made by knowledge-based systems. Toxicology Research 2, 70-79.

12. Information about modelled endpoint (endpoint, experimental protocol)

The Derek Nexus model for mutagenicity is developed from Ames test data in both *S.typh* and *E.coli*. Supporting data from in vivo lacZ-transgenic assay, in vitro L5178Y TK⁺/- assay, in vitro HGPRT gene mutation assay, in vitro Na⁺/K⁺ ATPase gene mutation assay has also been considered for the development of a small number of alerts. Additionally, alert writers consider both mechanistic evidence and chemical properties (such as reactivity).

13. Used training set (number of the substances, information about the chemical diversity of the training set chemicals)

The DEREK model for mutagenicity is a base of rules which codified the knowledge about the relation between a structural features and a toxicological (i.e. mutagenic) effect. Although almost all alerts are related with mechanistic explanation and examples, these rules are not related with particular training set.

Recently, a model for negative prediction (non-mutagenic) has been developed and added to the previous model. For its development a training set of above 10 000 substances has been used (the number of mutagenic and non-mutagenic substances is almost equal). The training set is a compilation of six public available data sets (e.g. Kirkland, ISSSTY, NTP data sets).

14. Information on the algorithm used for deriving the model and the molecular descriptors (name and type of the descriptors used, software used for descriptor generation and descriptor selection)

Derek Nexus is a rule-based expert system for the prediction of toxicity. Its knowledge base is composed of alerts, examples and reasoning rules which may each contribute to the predictions made by the system. Each alert in Derek describes a chemical substructure believed to be responsible for inducing a specific toxicological outcome (often referred to as a toxicophore). Alerts are derived by experts, using toxicological data and information regarding the biological mechanism of action. Where relevant, metabolism data may be incorporated into an alert, enabling the prediction of compounds which are not directly toxic but are metabolised to an active species. The derivation of each alert is described in the alert comments along with supporting references and example compounds where possible. In addition, a likelihood is provided (e.g. certain, probable, plausible) which takes into account the presence of a structural alert and a limited number of molecular descriptors.

Derek Nexus contains new expert-derived functionality to provide negative predictions for bacterial in vitro mutagenicity. Non alerting compounds are evaluated to identify unclassified and misclassified features (from a data set of $>10^4$ compounds).

- Misclassified features in the molecule are derived from non alerting mutagens in the Lhasa reference set.
- Features in the molecule that are not found in the Lhasa reference set are considered unclassified.

In compounds where all features in the molecule are found in accurately classified compounds from the reference set, a negative prediction is displayed. Predictions for compounds with misclassified or unclassified features remain negative, and these features are highlighted to the user to enable expert assessment of the prediction. *Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit, robustness and predictivity*

Derek is a knowledge-based expert system containing mechanistically-based rules which are built using all the underlying evidence available to the SAR developer. Therefore, there is no defined training or test set, and therefore there are no internal validation statistics to report.

15. External statistic, if available

Not public available for positive predictions.

Performance against three external, proprietary data sets highlights that negative predictivity for all outcomes is good (generally > 80%) with the presence of unclassified or misclassified features slightly reducing accuracy.

16. Information about the applicability domain (description of the applicability domain of the model and method used to assess the applicability domain)

The scope of the structure-activity relationships describing the mutagenicity endpoint is defined by the developer to be the applicability domain for the model. Therefore, if a chemical matches an alert describing a structure-activity for mutagenicity it can be considered to be within the applicability domain. The applicability domain of each alert is defined by the alert developer on the basis of the training set data and expert judgement on the chemical and biological factors which affect the mechanism of action for each alert.

If a compound does not activate an alert or reasoning rule then Derek makes a negative prediction. The applicability of the negative prediction to the query compounds can be determined by an expert, if required, by investigating the presence (or absence) of misclassified and/or unclassified features.

17. Mechanistic interpretation of the model

All alerts describing structure-activity relationships for the mutagenicity endpoint have a mechanistic basis wherever possible. Mechanistic information is detailed in the comments associated with an alert and can include information on both the mechanism of action and biological target. The mechanistic basis of the model was developed a priori by examining the active and inactive structures before developing the structure-activity relationship. All references supporting the mechanistic basis of an alert are detailed and available for inspection within the software.

18. Description, experimental data and predictions of possible structural analogues of the substance (provided by the software or selected by the applicant)

The derivation of each alert is described in the alert comments along with supporting references and example compounds where possible.

19. Any additional information provided by the model, e.g. suggested mechanism of action, uncertainties

Described above.

The model is published in the QMRF JRC Database: <http://qsardb.jrc.it/qmrf/>.

Documentation of OASIS *in vitro* chromosomal aberration model (TIMES software)

11. Used model (title, name of authors, reference)

OASIS *in vitro* chromosomal aberration model v08.08, Laboratory of mathematical chemistry, Burgas University

O. Mekenyany, M. Todorov, R. Serafimova, S. Stoeva, A. Aptula, R. Finking, E. Jacob, Identifying the structural requirements for chromosomal aberration by incorporating molecular flexibility and metabolic activation of chemicals. *Chem. Res. Toxicol.* Vol. 20, (2007), pp. 1927–1941.

12. Information about modelled endpoint (endpoint, experimental protocol)

In vitro structural chromosomal aberrations

13. Used training set (number of the substances, information about the chemical diversity of the training set chemicals)

The training set consists of 506 chemicals separated in three groups: 243 mutagenic chemicals as parents, 77 chemicals mutagenic after S9 metabolic activation (non mutagens as parents), and 186 non mutagenic chemicals

Sofuni, T., Ed. (1998). Data Book of Chromosomal Aberration Test *in vitro*, Revised Edition. Life-Science Information Center, Tokyo, Japan.

14. Information on the algorithm used for deriving the model and the molecular descriptors (name and type of the descriptors used, software used for descriptor generation and descriptor selection)

Modeling the potential of chemicals to induce chromosomal damage has been hampered by the diversity of mechanisms which condition this biological effect. The direct binding of a chemical to DNA is one of the underlying mechanisms that is also responsible for bacterial mutagenicity. Disturbance of DNA synthesis due to inhibition of topoisomerases and interaction of chemicals with nuclear proteins associated with DNA (e.g., histone proteins) were identified as additional mechanisms leading to CA. Reactivity component of the CA model (-S9) describing interactions of chemicals with DNA and/or proteins was based on an alerting group approach. Only those toxicophores having clear interpretation for the molecular mechanism causing the ultimate effect were included in the model. Some of the specified alerts interact directly with DNA or nuclear proteins, whereas others are applied in a combination of two-dimensional QSAR models assessing the degree of activation of the alerts from the rest of the molecules. In the CA model (+S9), the reactivity component was combined with a metabolic simulator, which was trained to reproduce documented maps for mammalian (mainly rat) liver metabolism for 260 chemicals.

Parent chemicals and each of the generated metabolites were submitted to a battery of models to screen for a general effect and mutagenicity mechanisms. Thus, chemicals were predicted to be mutagenic as parents only, parents and metabolites, and metabolites only.

15. Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit, robustness and predictivity

For 506 chemicals, the CA model (-S9) was able to predict correctly 79% of the CA positive and 87% of the CA negative training set chemicals. When metabolic activation is taken into account, the CA model (+S9) predicts 81% of the CA positive and 75% of the CA negative training set chemicals.

16. External statistic, if available

Not available

17. Information about the applicability domain (description of the applicability domain of the model and method used to assess the applicability domain)

The stepwise approach was used to define the applicability domain of the model. It consists of the following sub-domain levels:

- General parametric requirements - includes ranges of variation log KOW and MW,
- Structural domain - based on atom-centered fragments (ACFs).
- Interpolation space - estimates the population density of the parametric space defined by the explanatory variables of the QSAR models by making use the training set chemicals.
- Domain of simulator of metabolism - determines the reliability of the simulated metabolism.

A chemical is considered In Domain if its log K_{ow} and MW are within the specified ranges and if its ACFs are presented in the training chemicals. The information implemented in the applicability domain is extracted from the correctly predicted training chemicals used to build the model and in this respect the applicability domain determines practically the interpolation space of the model.

S. Dimitrov, G. Dimitrova, T. Pavlov, N. Dimitrova, G. Patlevisz, J. Niemela and O. Mekenyan, *J. Chem. Inf. Model.* Vol. 45 (2005), pp. 839-849.

18. Mechanistic interpretation of the model

Each structural alert in the model is related with a suggested mechanism of action which is reported together with the prediction.

19. Description, experimental data and predictions of possible structural analogues of the substance (provided by the software or selected by the applicant)

Not available

20. Any additional information provided by the model, e.g. suggested mechanism of action, uncertainties

The model provided suggested mechanism of action, examples of the substances documented to have the mechanism of action, generation of metabolites and prediction for them, information for experimental observed metabolites (if available).

Documentation of DEREK Nexus Chromosome damage model

11. Used model (title, name of authors, reference)

DEREK Nexus Mutagenicity Model v 4.0.6.

Lhasa Ltd, Leeds, UK, <http://www.lhasalimited.org/>

Sanderson DM & Earnshaw CG (1991). Computer prediction of possible toxic action from chemical structure; The DEREK system. Human and Experimental Toxicology 10, 261-273.

Judson PN, Marchant CA & Vessey JD (2003) Using argumentation for absolute reasoning about the potential toxicity of chemicals. Journal of Chemical Information and Computer Sciences 43, 1364-1370.

Marchant CA, Briggs KA & Long A (2003). In silico tools for sharing data and knowledge on toxicity and metabolism: Derek for Windows, Meteor, and Vitic. Toxicology Mechanisms and Methods 18, 177–187.

Judson PN, Stalford SA & Vessey J (2013). Assessing confidence in predictions made by knowledge-based systems. Toxicology Research 2, 70-79.

12. Information about modelled endpoint (endpoint, experimental protocol)

The Derek Nexus model for chromosome damage is developed from several sources of data. Sources of primary data used for alert development include in vitro and in vivo chromosome aberration test, in vitro and in vivo micronucleus test, in vitro L5178Y TK⁺/TK⁻ assay. Alert writers consider both mechanistic evidence and chemical properties (such as reactivity). Depending on evidence in vitro and/or in vivo prediction can be made.

13. Used training set (number of the substances, information about the chemical diversity of the training set chemicals)

The DEREK model for chromosome damage is a base of rules which codified the knowledge about the relation between a structural features and a toxicological (i.e. chromosome damage) effect. Although almost all alerts are related with mechanistic explanation and examples, these rules are not related with particular training set.

14. Information on the algorithm used for deriving the model and the molecular descriptors (name and type of the descriptors used, software used for descriptor generation and descriptor selection)

Derek Nexus is a rule-based expert system for the prediction of toxicity. Its knowledge base is composed of alerts, examples and reasoning rules which may each contribute to the predictions made by the system. Each alert in Derek describes a chemical substructure believed to be responsible for inducing a specific toxicological outcome (often referred to as a toxicophore). Alerts are derived by experts, using toxicological data and information regarding the biological mechanism of action. Where relevant, metabolism data may be incorporated into an alert, enabling the prediction of compounds which are not directly toxic but are metabolised to an active species. The derivation of each alert is described in the alert comments along with supporting references and example compounds where possible. In addition likelihood is provided (ie certain, probable, plausible, equivocal and nothing to report) which takes into account the presence of a structural alert and a limited number of molecular descriptors.

15. Internal statistics (performance of the model to the training set chemicals)- goodness-of-fit, robustness and predictivity

Derek is a knowledge-based expert system containing mechanistically-based rules which are built using all the underlying evidence available to the SAR developer. Therefore, there is no defined training or test set, and therefore there are no internal validation statistics to report.

16. External statistic, if available

Not public available.

17. Information about the applicability domain (description of the applicability domain of the model and method used to assess the applicability domain)

The scope of the structure-activity relationships describing the chromosome damage endpoint is defined by the developer to be the applicability domain for the model. Therefore, if a chemical matches an alert describing a structure-activity for mutagenicity it can be considered to be within the applicability domain. The applicability domain of each alert is defined by the alert developer on the basis of the training set data and expert judgement on the chemical and biological factors which affect the mechanism of action for each alert. If a compound does not activate an alert or reasoning rule in Derek, a result of ‘nothing to report’ is presented to the user. This can be interpreted as a negative prediction or that the query compound is outside the domain of the model. Which of these is more appropriate may depend on the endpoint of interest.

18. Mechanistic interpretation of the model

All alerts describing structure-activity relationships for the chromosome damage endpoint have a mechanistic basis wherever possible. Mechanistic information is detailed in the comments associated with an alert and can include information on both the mechanism of action and biological target. The mechanistic basis of the model was developed a priori by examining the active and inactive structures before developing the structure-activity relationship. All references supporting the mechanistic basis of an alert are detailed and available for inspection within the software.

19. Description, experimental data and predictions of possible structural analogues of the substance (provided by the software or selected by the applicant)

The derivation of each alert is described in the alert comments along with supporting references and example compounds where possible

20. Any additional information provided by the model, e.g. suggested mechanism of action, uncertainties

Described above

The model is published in the QMRF JRC Database: <http://qsardb.jrc.it/qmrf/>

Step 5.3: Description of results. Analysis of genotoxicity prediction and applicability domain

Table 3 Prediction of genotoxicity (gene mutation - OASIS and DEREK Nexus models and chromosomal aberrations - OASIS chromosomal aberration model and DEREK Nexus in vitro human and mammalian chromosomal damage models) of rat and plant specific metabolites by (Q)SAR

	OASIS gene mutation model (Applicability Domain)	DEREK Ames model	DEREK Chromosome damages model	OASIS Chromosomal aberration model (Applicability Domain)
M01	Negative (Out)	Negative	Nothing to report	Positive with MA* (Out)
M02	Negative (Out)	Negative	Nothing to report	Positive with MA(Out)
M03_1	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M03_2	Negative (Out)	Negative	Nothing to report	Positive with MA(Out)
M04	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M05	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M06	Negative (Out)	Negative	Nothing to report	Negative with/without MA (Out)
M07	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M08	Negative (Out)	Negative	Nothing to report	Negative with/without MA (Out)
M09	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M10	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M12	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M13	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M15	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M16	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M17	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)

M18	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M19	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M20	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M21	Negative (Out)	Negative	Plausible	Positive with MA(Out)
M22	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M23	Negative (Out)	Negative	Nothing to report	Positive with MA(Out)
M26_1	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M26_2	Negative (Out)	Negative	Nothing to report	Positive with MA(Out)
M49	Negative (Out)	Negative	Nothing to report	Negative with/without MA (Out)
M50	Negative (Out)	Negative	Nothing to report	Negative with/without MA (Out)
M51	Negative (Out)	Negative	Nothing to report	Negative with/without MA (Out)
M52	Negative (Out)	Negative	Nothing to report	Negative with/without MA (Out)
M53_1	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M53_2	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M55_1	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M55_2	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M55_3	Negative (Out)	Negative	Nothing to report	Positive with MA(Out)
M55_4	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)

M55_5	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M55_6	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M55_7	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M55_8	Negative (Out)	Negative	Nothing to report	Positive with MA(Out)
M56_1	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M56_2	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M56_3	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M56_4	Negative (Out)	Negative	Nothing to report	Positive with/without MA (Out)
M62_1	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M62_2	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)
M63	Negative (Out)	Negative	Nothing to report	Positive with MA (Out)

*MA – metabolic activation

OASIS Mutagenicity model predicts all 45 metabolites as negative, out of the applicability domain.

DEREK Nexus Mutagenicity model predicts all 45 metabolites as negative (non-mutagenic).

OASIS Model for chromosomal aberrations, predicts nine metabolites M05, M13, M15, M19, M20 and M56 (all isomers) as positive with and without metabolic activation. In all cases a phenol formed as a result of hydroxylation of benzene halogenated ring is recognised as an alert for interactions with topoisomerases/proteins. Thirty metabolites, M01, M02, M03 (all isomers), M04, M07, M09, M10, M12, M16, M17, M18, M21, M22, M23, M26 (all isomers), M53 (all isomers), M55 (all isomers), M62 (all isomers) and M63, are predicted to be positive with metabolic activation. In all cases mono or bi hydroxylation is predicted to occur in benzene halogenated rings, and formed phenol(s) is recognised as an alert for interactions with topoisomerases/proteins.

All predictions are out of the model applicability domain. Six metabolites are predicted as negative with and without metabolic activation M06, M08, M49, M50, M51 and M52. They are out of the model applicability domain.

DEREK Nexus in vitro human and mammalian chromosomal damage models predict metabolite M21 as plausible to cause chromosomal damages due to a catechol alert in the molecule. For all other metabolites the outputs are “nothing to report”.

Step 5.4: Conclusion on (Q)SAR

Metabolites M06, M08, M49, M50, M51 and M52 are predicted as negative from all models.

(Q)SAR assessment identified a potential of metabolite M21 to induce genotoxicity hazard. Both models for chromosomal damages predicted the metabolite as positive.

Metabolites M04, M05, M06, M07, M08, M09, M12, M13, M15, M16, M17, M18, M19, M20, M23, M49, M50, M51, M52, M53 (all isomers), M56 (all isomers) and M63 are predicted as negative from three model, though they are predicted as positive by the OASIS chromosomal aberration model.

Step 6: Read across (OECD toolbox)²⁹

Step 6.1:

Both endpoints, gene mutation and chromosomal aberrations, should be evaluated by read across for all metabolites.

Molecular initiating events of relevance for this assessment are interaction with DNA and/or proteins. The profilers included in the OECD Toolbox which codified the structural alerts that are important for these two types of interactions are the mechanistic profilers - DNA binding by OASIS v.1.3, DNA binding by OECD, Protein binding by OASIS v 1.3, Protein binding by OECD and endpoint specific profilers- DNA alerts for AMES, MN and CA by OASIS v1.3, In vitro mutagenicity (AMES test) alerts by ISS, In vivo mutagenicity (Micronucleus) alerts by ISS, Protein binding alerts for Chromosomal aberrations by OASIS v1.1.

The above mentioned profilers have been applied to all metabolites of interest and to the parent substance as a substance with known experimental genotoxic activity.

²⁹ <http://www.oecd.org/chemicalsafety/risk-assessment/theoecdqsartoolbox.htm>

In order to evaluate the structural similarity, in addition to the structural alerts related to the evaluated endpoints, organic functional group profiler has been applied. This additional step will provide information on the presence/absence of other functional groups different to the structural alerts and will give indication for the potential influence of the remaining part of the molecule to the relevant structural alerts (i.e. electronic and structural influence).

No structural alerts were reported for the parent substance and for all the metabolites evaluated for the profilers DNA alerts for AMES, MN and CA following the application of OASIS v1.3.

The alerts found for DNA binding following the profilers for DNA binding by OASIS v.1.3, DNA binding by OECD, Protein binding by OASIS v 1.3, Protein binding by OECD and endpoint specific profilers, In vitro mutagenicity (AMES test) alerts by ISS, In vivo mutagenicity (Micronucleus) alerts by ISS, Protein binding alerts for Chromosomal aberrations by OASIS v1.1 and organic functional group are presented in the Table 4.

Table 4 *Genotoxicity profiling of isoproturon metabolites by OECD Toolbox*

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
parent	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Saturated heterocyclic fragment Triazole
M01	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol Saturated heterocyclic fragment Triazole
M02	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol Saturated heterocyclic fragment Triazole
M03_1	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Phenol Saturated heterocyclic fragment Triazole
M03_2	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol Saturated heterocyclic fragment Triazole
M04					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide Dihydroxyl group Triazole
M05					Alert6	Alert 8 Alert 9	Alert 10	Alcohol Amidine Aryl Aryl halide Dihydroxyl group Phenol Triazole
M06					Alert6	Alert 8 Alert 9		Amidine Aryl

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Aryl halide Ketone Triazole
M07					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide Triazole
M08					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide Triazole
M09	Alert 11		Alert 12	Alert 13	Alert6	Alert 8 Alert 9		Amidine Aryl Aryl halide Thioalcohol Triazole
M10	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Saturated heterocyclic fragment Sulfate Triazole
M12					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Sulfide Triazole
M13					Alert6	Alert 8 Alert 9	Alert10	Alcohol Aliphatic Amine, primary Alpha amino acid Amidine Aryl Aryl halide Carboxylic acid Phenol Sulfide Triazole
M15			Alert 14		Alert6	Alert 8 Alert 9	Alert10	Alcohol Aliphatic Amine, primary Amidine Aryl Aryl halide Carboxamide Carboxylic acid Phenol Sulfide Triazole
M16					Alert6	Alert 8 Alert 9		Alcohol Aliphatic

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Amine, primary Alpha amino acid Amidine Aryl Aryl halide Carboxylic acid Dihydroxyl group Sulfide Triazole
M17					Alert6	Alert 8 Alert 9		Alcohol Aliphatic Amine, primary Alpha amino acid Amidine Aryl Aryl halide Carboxylic acid Sulfide Triazole
M18	Alert 11		Alert 12	Alert 13	Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide Thioalcohol

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Triazole
M19					Alert6	Alert 8 Alert 9	Alert 10	Alcohol Amidine Aryl Aryl halide Phenol Sulfide Triazole
M20			Alert 14		Alert6	Alert 8 Alert 9	Alert 10	Alcohol Amidine Aryl Aryl halide Carboxamide Carboxylic acid Phenol Sarcosine Sulfide Triazole
M21	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol Saturated heterocyclic fragment Triazole
M22	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Epoxide Phenol Saturated heterocyclic fragment Sulfate Triazole
M23			Alert 14		Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide Carboxamide Carboxylic acid Sarcosine Sulfide Triazole
M26_1	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol Saturated heterocyclic fragment Triazole
M26_2	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Saturated heterocyclic fragment Triazole
M49					Alert6	Alert 8 Alert 9		Aliphatic Amine, primary Alpha amino acid Amidine Aryl Carboxylic acid Triazole
M50					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Carboxylic acid Triazole
M51					Alert6	Alert 8 Alert 9		Amidine Aryl Carboxylic acid Triazole
M52					Alert6	Alert 8 Alert 9		Amidine Aryl Triazole
M53_1					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
								Aryl halide Dihydroxyl group Phenol Triazole
M53_2					Alert6	Alert 8 Alert 9		Alcohol Amidine Aryl Aryl halide Dihydroxyl group Phenol Triazole
M55_1 to M55_8	Alert 1	Alert2	Alert 3	Alert 4	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Amidine Aryl Aryl halide Epoxide Phenol Saturated heterocyclic fragment Triazole
M56_1 to M56_4					Alert6	Alert 8 Alert 9	Alert 10	Alcohol Amidine Aryl Aryl halide Carboxylic acid Phenol Sulfide Triazole

	DNA Binding by OASIS v1.3	DNA Binding by OECD	Protein binding by OASIS v 1.3	Protein binding by OECD	In vitro mutagenicity (AMES) alerts by ISS	In vivo mutagenicity (MN) by Iss	Protein binding alerts for CA by OASIS v 1.1	Organic functional groups
M62_1 and M62_2	Alert 1 Alert 15	Alert2	Alert 3	Alert 4 Alert 16	Alert 5 Alert6	Alert 7 Alert 8 Alert 9		Acetoxy Amidine Aryl Aryl halide Carboxylic acid ester Epoxide Saturated heterocyclic fragment Triazole
M63					Alert6	Alert 8 Alert 9		Alkene Allyl Amidine Aryl Aryl halide Triazole

Alert 1: SN2 > Alkylation, direct acting epoxides and related > Epoxides and Aziridines

Alert 2: SN2 > Direct Acting Epoxides and related > Epoxides

Alert 3: SN2 > Ring opening SN2 reaction > Epoxides, Aziridines and Sulfuranes

Alert 4: SN2 > Epoxides and Related Chemicals > Epoxides

Alert 5: Epoxides and aziridines

Alert 6: Hydrazine

Alert 7: Epoxides and aziridines

Alert 8: H-acceptor-path3-H-acceptor

Alert 9: Hydrazine

Alert 10: AN2 > Michael-type addition to quinoid structures > Phenols

Alert 11: Radical > Generation of reactive oxygen species > Thiols

Alert 12: SN2 > Interchange reaction with sulphur containing compounds > Thiols and disulfide compounds

Alert 13: SN2 > SN2 reaction at a sulphur atom > Thiols

Alert 14: Acylation > Ester aminolysis > Amides

Alert 15: Specific Acetate Esters (different mechanisms e.g. Nucleophilic attack after cerbenium ion formation; Acylation)

Alert 16: Acylation > Direct Acylation Involving a Leaving group > Acetates

Read across results:

All profilers (except DNA alerts for AMES, MN and CA following OASIS v1.3 analysis) recognized in the parent molecule epoxide ring, as a potential alert for binding with DNA and/or proteins (alerts 1, 2, 3, 4, 5, and 7). The profilers developed by ISS for Ames mutagenicity and in vivo MN identified additional two alerts - Hydrazine (alerts 6 and alert 8) and H-acceptor-path3-H-acceptor (alert 9).

The three alerts present in the parent substance are also present in metabolites M01, M02, M03, M10, M21, M22, M26, M55 (all isomers). No new alerts were identified. One or more hydroxyl groups (in metabolites M01, M02, M03, M21, M26 and M55) and a sulphate group (in metabolite M10 and M22) are considered consequent to the metabolism of the halogenated rings. Metabolites M01, M02, M03, M10, M22, M26, M55 (all isomers) could be considered very similar to the parent substance and therefore of not genotoxicity concern. Although the read across analysis show that the metabolite M21 is also very similar to the parent substance and the OECD Toolbox profilers didn't identified any new alert, both models for chromosomal damages (DEREK Nexus and OASIS) predicted the metabolite as positive. Therefore the concern of genotoxicity cannot be excluded.

Metabolite M62 contains all alerts present in the parent substance but a new alert – Acetates is identified by two profilers (DNA binding by OASIS and Protein binding by OECD). Therefore the concern of genotoxicity cannot be excluded.

The alert linked to the epoxide ring disappeared for metabolites M04, M06, M07, M08, M12, M16, M17, M49, M50, M51, M52, M53 and M63; the two additional alerts - Hydrazine and H-acceptor-path3-H-acceptor, are present in all of them. No new alerts were identified. Differences in the remaining part of the molecules, compared to the parent substance are related with opening of the epoxide ring and formation of OH group in metabolites M04, M53 and M17. For the metabolite M53, an additional OH group in the fluorinated aromatic ring is present while the metabolite M17 is a cysteine conjugate of metabolite M04. Therefore, based on the read across analysis, metabolites M04 and M53 should be considered very similar to the parent substance and therefore of no genotoxicity concern. If hydrolysis can be justified for metabolite M17, its toxicological assessment is covered by metabolite M04 and therefore the genotoxicity concern for this metabolite could also be excluded.

For metabolite M12, after opening of the epoxide ring, a methylthiol group is formed, and for metabolite M63 a double bond is present. Although these two new functional groups are not recognized as structural alerts for genotoxicity, they could change the molecular reactivity and consequently the biological behaviour of these two metabolites when compared to the parent substance and therefore genotoxic concern for them could not be excluded.

For metabolites M06, M07 and M08, the epoxide ring and the halogenated aromatic ring are not present and they should be considered structurally different from the parent substance, two of them are predicted (by OASIS CA model) as potentially causing chromosomal aberrations (M07 and M09), therefore their genotoxic potential cannot be excluded.

Metabolites M49, M50, M51 and M52, for which no new alerts were identified, belong to the triazole class M52 containing alanine M49, propanoic M50 and ylactic M51 acids groups; therefore they cannot be considered structurally similar to the parent substance. They are predicted as negative by all 4 models but the predictions are out of the model applicability model, therefore and their genotoxic potential should be evaluated.

A special case is the metabolite M16, a cysteine conjugate of metabolite M05 (see the analyses done for the metabolite M05 below).

The OH group, present in the chlorinated aromatic ring, is recognized as an alert for interaction with proteins (Protein binding alerts for CA by OASIS) in metabolites M05, M13, M15, M19, M20, M56 (all isomers). Metabolites M13, M15, M16, M19, M20 and M56 are all conjugates of metabolite M05. They are hydrolysis products of metabolite M05 for which genotoxic potential cannot be excluded since a new alert is present. It should be noted that for metabolites M15 and M20 a new alert – amides was recognized by Protein binding by OASIS but this alert is a part of the cysteine molecule and therefore it was not considered of genotoxicity concern.

Similarly, the new alert – amides (Protein binding by OASIS) was reported for metabolite M23. Also in this case, the alert was linked to the cysteine molecule. If hydrolyses is demonstrated the metabolite could be considered similar to metabolite M05, although has one OH group less.

For metabolites M09 and M18 a new alert – thiols, for DNA and protein binding (DNA binding by OASIS, Protein binding by OASIS and Protein binding by OECD) was reported. Therefore their genotoxic potential cannot be excluded. Considering the remaining part of the molecule the metabolite M09 should be considered similar to metabolites M06, M07 and M08 and grouped together. Metabolite M18 is similar to metabolite M12 and they could be grouped together.

Summary:

1. Metabolites M01, M02, M03, M10, M22, M26, M55 (all isomers) are very similar to the parent substance and therefore considered of no genotoxicity concern.
2. Metabolites M04 and M53 should be also considered very similar to the parent substance and therefore of no genotoxicity concern. If hydrolysis can be considered as a likely event for metabolite M17 its toxicological assessment is covered by metabolite M04 and therefore the genotoxicity concern for this metabolite could also be excluded.
3. **Metabolite M21** the genotoxicity concern cannot be excluded therefore it should to be subject of exposure assessment and comparison against TTC (step8) and/or testing (step 9).
4. **Metabolite M62** the genotoxicity concern cannot be excluded therefore it should to be subject of exposure assessment and comparison against TTC (step8) and/or testing (step 9).
5. **Metabolite M63** the genotoxicity concern cannot be excluded therefore it should to be subject of exposure assessment and comparison against TTC (step8) and/or testing (step 9).
6. **Metabolites M12 and M18** the genotoxicity concern cannot be excluded therefore they should to be subject of exposure assessment and comparison against TTC (step8) and/or testing (step 9). Metabolite M18 could be potentially tested as a representative, since an alert was identified for it.
7. **Metabolites M06, M07, M08 and M09** the genotoxicity concern cannot be excluded therefore they should to be subject of exposure assessment and comparison against TTC (step8) and/or testing (step 9). Metabolite M06 (a ketone) and M09 (a thiol) could be tested as group representatives.
8. Metabolites M49, M50, M51 and M52 the genotoxicity concern cannot be excluded therefore they should to be subject of exposure assessment and comparison against TTC (step8) and/or testing (step 9).
9. **M05, M13, M15, M16, M19, M20, M23, M56** (all isomers) the genotoxicity concern cannot be excluded therefore they should to be subject of exposure assessment and comparison

against TTC (step 8) and/or testing (step 9). Metabolite M05 could be tested as representative in case hydrolysis is considered as likely.

Step 7: Generation of input data and combined exposure assessment against $\text{TTC}_{\text{genotoxicity}}$

For following uses an exposure assessment was attempted.

Table 5 *Uses considered for exposure estimates*

Crop	Application			
	Growth stage	Number	kg as/ha #	PHI
Cereals (wheat, rye, barley, oat, spelt, triticale)	BBCH 25-69	2	0.125	35
Sugar beets	BBCH 39-49	2	0.125	28
Banana	Not specified	Not specified	0.098	0

PHI pre-harvest interval

per treatment

Step 7.1. Derivation of residue input data for metabolites

a) Residue levels in primary crop (cereal, sugar beet, banana) and in groundwater

Metabolite identification was attempted in the following commodities of crops treated post-emergence with ^{14}C -epoxiconazole:

- spring wheat plant parts, treated
 - at growth stages BBCH 37 and 47-49 with 0.12 kg as/ha at a time (ca. 0.96 N rate) – triazole label
 - at growth stage BBCH 29 with 0.25 kg as/ha (1 N rate) – oxirane label
 - at growth stage BBCH 38 and 69 with 0.125 kg as/ha at a time (1 N rate) for each label, oxirane and triazole
- sugar beet roots and tops, treated twice with 0.15 kg as/ha (1.2 N), growth stages not reported
- protected and unprotected bunches of bananas, treated post-emergence with 4 x 0.15 kg as/ha, growth stages not reported
- coffee beans of plants treated post-emergence with 0.15 and 0.10 kg as/ha, growth stages at treatment not reported
- Residues in banana and coffee beans are relevant for consumers only. Residues in grain and sugar beet root are relevant for consumer and livestock exposure; residues in straw and beet tops are relevant for livestock exposure calculation; residues in forage are not deemed relevant for livestock exposure (GAP is on cereals for grain production).
- FOCUS groundwater level predictions are available for epoxiconazole and 1,2,4-triazole. The PECgw values for both substances are far below the 0.1 $\mu\text{g/L}$ level in all 9 FOCUS scenarios. Information is not available for any other metabolite. (assessed for cereals and sugar beet uses)
- Where necessary for the assessment residue data from field trials (HR, STMR) as reported in the DAR and addenda to the DAR were used.

b) Residue levels in rotational crops

- Rotational crop metabolism study was simulating realistic worst case situations in terms of soil residue concentrations, considering the soil accumulation potential of epoxiconazole, and sowing of rotational crops at 30 day plant-back interval (PBI), 120 day PBI and 356 day PBI. Field trials are available but cannot be used for conversion. Parent residues were <LOQ. Soil concentrations in the field trials upon a single use of epoxiconazole were significantly lower than the predicted plateau concentration in soil. Thus, metabolism data could be used for exposure estimates for metabolites, where suitable. Crop groups studied: Cereals (grain, straw), root crops (radish root and leaf), and leafy crops (lettuce). Data on additional crop groups (oilseed; fruiting vegetables) are not available. However, metabolite identification in rotational crops was limited to cereals (triazole label) only.
- 30 day PBI (root/tuber and leafy crops): Upon regular harvest with the intended PHI, ploughing and fallowing will precede replanting, that however may occur earlier than after 120 days. Therefore, residue data of the 30 day PBI should be considered when deriving highest and median residues in rotational crops across the three plant back intervals.

Wheat:

Study 1

Oxirane label (1 N): 6 additional - not identified - components were found in the organic phases of the straw samples (<0.001-0.007 mg/kg <0.1-0.4% TRR). The aqueous phase was composed of 31 distinct peaks (0.001-0.04 mg/kg, 0.1-2.2% TRR, not identified). In grains, greater parts of radioactivity were associated with or incorporated into the starch fraction; no identification of metabolites was performed.

Triazole label (0.96 N): 12 additional - not identified - components were found in the organic phases of the straw samples (0.001-0.017 mg/kg, ≤0.1% TRR). The aqueous phase was composed of 20 distinct peaks, 18 of them unidentified (0.001-0.015 mg/kg, ≤0.1% TRR). In grains, greater parts of radioactivity were associated with or incorporated into the starch fraction; no identification of metabolites was performed.

Study 2

Generally, the identification and characterisation rate was high in all matrices accounting for around 90% of the radioactivity present. In grain (oxirane label), the identification and characterisation rates were slightly lower, however the residue concentration was low (TRR 0.049 mg/kg) which resulted in a higher uncertainty of the values measured. Due to high matrix load only some structures could be elucidated: metabolites 480M61 and 480M63. Some unidentified peaks were present in the medium polar region in amounts.

From the two cereal metabolism studies, the identity of additional cereal metabolites was proposed as displayed in column 5 of Table 1; however concentrations were only determined for metabolites listed in Table 6.

Table 6 Wheat metabolism summary

	Wheat, primary crop - Study 1						Wheat, primary crop - Study 2																		
	Metabolism study 1 N (oxirane)			Metabolism study 0.96 N (triazole)			Metabolism study 1 N (oxirane)			Metabolism study 1N (triazole)			Metabolism study 1 N (oxirane)			Metabolism study 1N (triazole)									
	Straw		Straw		Straw		Straw		Straw		Grain		Grain												
	TRR		CF	HR _c	TRR		CF	HR _c	TRR		CF	HR _c	TRR		CF	STM _{Rc}	TRR		CF	STM _{Rc}					
	%	mg /kg		mg /kg	%	mg /kg		mg /kg	%	mg /kg		mg /kg	%	mg /kg		mg /kg	%	mg /kg		mg /kg					
TRR		1.98				13.71				13.99				15.23				0.049			0.324				
Parent	42.7	0.84	1	15.4	63.4	8.70	1	15.4	89.2	12.47	1	15.4	92.1	14.02	1	15.4	53.4	0.026	1	0.14	4.5	0.015	1	0.14	
M02	1.2	0.02	0.024	0.367																					
M04	0.1	0.002	0.002	0.037																					
M06					0.4	0.061	0.007	0.108																	
M07	1.5	0.03	0.036	0.550																					
M26 (M61)	1.8	0.04	0.048	0.733																					
M61 conj.					1.1	0.157	0.018	0.278																	
M61/ M63 **									3.1	0.432	0.035	0.53	1.9	0.295	0.021	0.324	2.6	0.001	0.039	0.005					
M49*														0.7	0.053	0.004	0.058					78.6	0.121	8.07	1.13

* Concentration [mg/kg] of M49 was calculated using the molecular mass of triazole alanine

** "Medium polar" with retention times between 40 and 62 minutes using HPLC method LCO1, containing metabolites M61/M63

1

- 2 • **Sugar beet (1.2 N):**
- 3 No identification of any compound in roots and leaves attempted except parent compound.
- 4 Sugar beet roots: Parent 0.032-0.034 mg/kg, corresponding to 57-64% TRR, up to 6 additional
- 5 compounds at 0.001– 0.003 mg/kg;
- 6 Sugar beet tops: Parent 4.09-6.0 mg/kg corresponding to 92-98% TRR, no metabolites determined.
- 7
- 8 • **Coffee (0.15 + 0.1 kg as/ha; N rate factor unknown):**
- 9 Coffee beans: No identification of residues due to low absolute levels (TRR 0.008 – 0.009 mg/kg),
- 10 only presence of parent (0.001 mg/kg) could be confirmed.
- 11 Coffee leaves: Identified compounds are summarised in Table 7.
- 12 The data have limited relevance to support the metabolism in the pulses/oilseed crop category to
- 13 which coffee beans have been allocated.

14 **Table 7 Coffee metabolism summary**

Designation	Coffee leaves		Coffee leaves		Coffee leaves	
	0 DAT	mg/kg	57/62 DAT	mg/kg	77/82 DAT	mg/kg
Oxirane-2-¹⁴C label						
TRR	30.348	100	39.154	100	22.946	100
480M65/480M66	0.242	0.8	0.732	1.9	0.509	2.2
480M67	0.469	1.5	1.551	4.0	0.970	4.2
480M68	0.459	1.5	0.621	1.6	0.278	1.2
Parent	26.274	86.6	28.406	72.5	18.339	79.9
Triazole-3(5)-¹⁴C label						
TRR	28.921	100	36.497	100	26.795	100
480M65/480M66	-	-	0.808	2.2	0.433	1.6
480M67	-	-	0.608	1.7	1.110	4.1
480M68	-	-	-	-	-	-
Parent	28.243	97.7	31.397	86.0	20.457	76.3

15
16
17
18
19
20

21

22 • **Banana** (4 x 0.15 kg as/ha; N rate factor unknown):

23 **Table 8 Banana metabolism summary**

	Unprotected banana				Protected banana			
	C Phenyl label		F Phenyl label		C Phenyl label		F Phenyl label	
	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg
Parent	64.2	0.029	61.4	0.012	72.8	0.025	79.4	0.17
unknown	7.3	0.003						
unknown	6.5	0.003	1.7	0.001	2.1	0.001		
unknown	6.1	0.003	0.9	<0.001	1.0	<0.001		
unknown	1.6	0.001					4.0	0.002
unknowns*	(3) 1.1-1.8	≤0.001	(5) 0.9-2.1	≤0.001				

24 * Number of metabolites in parentheses and range of concentration

25

26 • **Rotational crops:**

27 Identification of residues was only made in cereals in the triazole label study, and results are
28 summarised in Table 9.

29 **Table 9 Rotational crop metabolism**

	Grain		Straw	
	% TRR	mg/kg	% TRR	mg/kg
Parent epoxiconazole	-	-	39.4	0.458
M49 (Triazolyl alanine)	54.1	0.612	-	-
M50 Triazolyl hydroxy propionic acid	-	-	16.0	0.186
M51 Triazolyl acetic acid	25.8	0.292	10.1	0.118
Unknown	-	-	4.0	0.047
Unknown	-	-	2.4	0.028
Unknown	-	-	3.4	0.040
Unknown	-	-	3.4	0.040
Fraction containing M61 conj.¹⁾	-	-	3.3	0.038
Fraction containing M61 conj.²⁾	-	-	6.8	0.079
M61¹	-	-	2.7	0.032
Isomer of M26³⁾	-	-	1.5	0.018

30 ¹⁾ Enzyme treatment afforded 53.6 % metabolite M61

31

32 ²⁾ Enzyme treatment afforded 71.1 % metabolite M61

33

32 ³⁾ Metabolite hydroxylated at the chloroaromatic ring at position 5.

34 **Step 7.2 Combined exposure calculation for those metabolites, for which genotoxic effects**
35 **cannot be excluded**

36 According to the outcome of Module 1 (exclusion of genotoxicity), metabolites M05, M06, M07,
37 M08, M09, M12, M13, M15, M16, M18, M19, M20, M21, M23, M62, M63, should be further
38 addressed for their relevance in dietary exposure.

39 For metabolites M49, M50, M51, M52 (triazole derivative metabolites, “TDMs”) a genotoxicity
40 concern could not be ruled out after the screening in Module 1, however TDMs are common
41 metabolites to a number of active substances, and separate toxicological data are available. It is
42 therefore not appropriate to conduct a TTC assessment for these metabolites.

43 M62 was reported as identified in wheat but was concluded as an artefact of work-up with ethyl
44 acetate.

45 Further, metabolites M08, M09, M16, M19, M20, M21 and M23 were reported in the DAR as poultry
46 metabolites. From the original study report it appears that identification of the said metabolites was
47 based on hen excreta, and they were not identified in commodities relevant for consumers, though a
48 large number of peaks in the hen edible commodities remained unidentified. Therefore, their presence
49 in hen edible commodities cannot be ruled out in general, but they will have to be disregarded in the
50 consumer exposure estimates.

51 Metabolites, for which dietary exposure finally should be assessed to use the TTCgenotox:

M06	Poultry liver & eggs; Ruminant milk, liver, kidney, fat; Cereal straw
M07	Ruminant liver, Poultry liver, muscle, skin, fat & eggs; Cereal straw
M13	Ruminant milk, liver, kidney; Poultry liver & eggs
M5	Ruminant milk & liver
M56	Ruminant milk, liver & kidney
M18	Ruminant muscle & fat
M12	Poultry liver
M15	Poultry liver & eggs
M63	Cereal grain & straw

52
53 **Step 7.3 Conclusion**

54 With the data and information available it is not possible to conduct reliable quantitative dietary
55 exposure assessments with regard to metabolites for assessment of genotoxicity against the TTC.

56 For most of the identified or tentatively identified metabolites the residue levels were either not or
57 insufficiently reported, or cannot be precisely calculated as they can arise in animal commodities upon
58 livestock exposure to epoxiconazole in feed items. Hence, a conclusive calculation of reliable dietary
59 exposure, necessary for a TTC assessment, is not possible.

60 However, only from the contribution of M63 in a dietary exposure assessment for cereal grain with the
61 available information of potential levels, the TTCgenotox is already exceeded.

62 Metabolites M49, M50, M51 and M52 (the triazole derivative metabolites aka TDMs) were identified
63 in grain and straw. A triazole label study is only available in ruminants; nothing can be stated with
64 regard on TDM occurrence in poultry commodities. Studies were only conducted with epoxiconazole,
65 and not with TDMs that are major residues in cereal grain and rotational commodities. However,
66 TDMs are common metabolites to a number of substances and have got separate reference values
67 allocated, therefore, this is considered a special case where a separate risk assessment is highly

68 recommended, and Metabolites M49, M50, M51 and M52 are therefore not dealt with in the
69 subsequent assessment, but the suggestion as candidates for risk assessment is taken forward.

70 **Step 8: Genotoxicity testing**

- 71 1. **Metabolite (21)** the genotoxicity concern cannot be excluded therefore it should be subject to
72 testing (step 9).
- 73 2. **Metabolite M63** the genotoxicity concern cannot be excluded therefore it should be subject to
74 testing (step 9).
- 75 3. **Metabolites M12 and M18** the genotoxicity concern cannot be excluded therefore metabolite
76 M18 could be potentially tested as a representative, since an alert was identified for it.
- 77 4. **Metabolites M06, M07, M08 and M09** the genotoxicity concern cannot be excluded therefore
78 metabolite M06 (a ketone) and (9) (a thiol) could be tested as group representatives.
- 79 5. **M05, M13, M15, M56 (all isomers)** the genotoxicity concern cannot be excluded therefore
80 metabolite M05 could be tested as representative in case hydrolysis of the other metabolites
81 into metabolite M5 is demonstrated. If this cannot be demonstrated, all metabolites should be
82 subject to individual testing. Livestock metabolites M16, M19, M20, M23 may be considered
83 covered by this group.

84
85 Genotoxicity endpoints (point mutations, structural and numerical chromosome aberrations) should be
86 investigated. In-vitro studies (e.g. Ames test (TG 471) and in vitro micronucleus assay (TG 487)) are
87 considered suitable for the exploration of the above mentioned genotoxicity endpoints.

88 **Step 9: Genotoxicity concern**

89 For several metabolites a genotoxicity concern can only be ruled out upon further investigations (See
90 step 8 above).

91 **Step 10 Assessment of toxicological properties of parent compound and metabolites**

92 **Step 10.1 Toxicological assessment of parent compound**

93 **Introduction: Summary of the toxicity of epoxiconazole**

94 The most sensitive effects of epoxiconazole were reduced body weight gain and liver toxicity, as
95 observed in a 18-month study in mice, a 2-year study in rats and a 1-year study in dogs. In addition
96 anemia was observed.

97 Epoxiconazole is considered to induce liver tumours in mice and rats through a phenobarbitone-like
98 mechanism, i.e. induction of liver enzymes and hepatic growth. Increased incidences of adrenal gland
99 cortex neoplasms, ovarian cysts, ovarian theca granulosa cell tumours, and decreased incidences of
100 neoplasms in the testes (Leydig cell tumours), in the adrenal gland medulla (phaeochromocytomas)
101 and in the pituitary gland (adenomas) in rats were considered indicative of an effect on the synthesis or
102 availability of steroid hormones. Hormonal changes were detected after 4 days of administration
103 supporting the conclusion that hormonal imbalances were induced within the first week of exposure at
104 least in females. Specific steroid hormones affected by epoxiconazole in male and female rats included
105 androgens, oestradiol, corticosterone and aldosterone. LH, FSH, ACTH were however generally
106 increased, indicating intact feed-back mechanisms.

107 In reproductive toxicity studies epoxiconazole increased precoital intervals, prolonged or abolished
108 oestrus cycles and decreased levels of relevant steroid hormones. Duration of pregnancy was
109 prolonged, probably due to interference with parturition-inducing signals. This resulted in an increased
110 number of pups either being born dead or dying in the early postnatal period.

111 In several prenatal developmental toxicity studies in rats, among others reductions in oestradiol,
112 progesterone and prolactin levels and increased placental weights were observed. The increase in
113 placental weight may be related to the hormonal changes induced in the dams and indicate an
114 increased placental metabolic function (synthesis of steroids, detoxification of epoxiconazole).
115 Embryofoetal toxicity consisted of increased embryo- or foetolethality and higher incidence of skeletal
116 variations cleft palate malformations and increased post implantation loss.

117 In a prenatal developmental toxicity study in rabbits, dose-dependent maternal toxicity (reduced food
118 consumption, impairments in body weight) marked increase in post implantation loss and reduced
119 uterine weights) was observed.

120 Epoxiconazole was not neurotoxic.

121 The current classification of epoxiconazole is:

122 Category 1B for developmental and reproductive toxicity, Category 2 for carcinogenicity

123 In conclusion, many of the effects of epoxiconazole appear to be the result of liver enzyme induction
124 or effects on hormone levels (androgens, oestradiol, corticosterone and aldosterone, LH, FSH, ACTH),
125 including the ones observed in the developmental toxicity study. Some studies are showing that the
126 teratogenic effect is likely due to retinoic metabolism linked to liver enzyme induction ie CYP 26
127 induction (Menegola et al. 2005³⁰ and 2006³¹) It is noted that foetal effects (NOAEL 20 mg/kg
128 bw/day) occurred at doses well above the overall NOAEL of 0.8 mg/kg bw/day that formed the basis
129 for the ADI. However, an ARfD was also set based on the reproductive effects of epoxiconazole.

130 **Step 10.2 Toxicological assessment of metabolites**

131 None of the metabolites was present in rat urine above 10%AR and no individual studies on
132 metabolites exist except for the TDMs. It is known that M49, M50, M51 and M52 - belonging to the
133 TDMs - are common metabolites to a number of active substances and have got separate reference
134 values allocated, based on a separate dossier with toxicological studies. Therefore, for this special case
135 a separate risk assessment is highly recommended, and Metabolites M49, M50, M51 and M52 are not
136 dealt with further in this case study, as the case is for demonstration purposes only. However, the
137 suggestion to consider TDMs as candidates for risk assessment is taken forward.

138 It is further noted, that the assessment of expoxiconazole in this case study is using the assumption that
139 expoxiconazole and TDMs have separate reference values and do not share common effects. However,
140 it should be born mind that there probably are effects shared between TDMs and epoxiconazole, and
141 therefore, in reality, this needs to be considered for a proper assessment.

142 **Step 11: Combined exposure of all metabolites to assess general toxicity (optional)**

³⁰ Menegola, E., Broccia, M.L., Di Renzo, F., Massa, V. and Giavini, E., 2005. Study on the common teratogenic pathway elicited by the fungicides triazole-derivatives. *Toxicology in Vitro* 19, 737– 748.

³¹ Menegola, E., Broccia, M.L., Di Renzo, F., Massa, V. and Giavini, E., 2006. Postulated pathogenic pathway in triazole fungicide induced dysmorphicogenic effects. *Reproductive Toxicology* 22,

143 For the rest TTC is not applicable due to uncertainty caused by significant livestock exposure and
144 residue transfer in animal commodities, and the knowledge of existence of several non identified
145 metabolites in the edible plant matrices.

146 **Step 12 Consideration on potency**

147 The ADI was set at 0.008 mg/kg bw/d derived from the NOAEL of the 18-month carcinogenicity
148 study in mice (0.8 mg/kg bw/d) and using as safety factor of 100.

149 ARfD 0.023 mg/kg bw based on two generation reproduction study in rat applying a safety factor of
150 100.

151 The substance is considered potent.

152 **Step 13**

153 Based on its potency all metabolites in food meeting the criteria for potent substance metabolites in
154 food commodities of plant and animal origin should be toxicologically assessed (Refer to listing in
155 step 18.)

156 **Step 15**

157 Major plant residues in feed are the parent compound and the TDMs. As has been indicated already
158 earlier (see Step 7.3), the assessment of Metabolites M49, M50, M51 and M52 is not dealt with further
159 in this case study; however, the suggestion to consider the TDMs as candidates for risk assessment is
160 taken forward by default.

161 In rotational cereal straw metabolites hydroxylated at the chloroaromatic ring were tentatively
162 identified as free compounds and as conjugates and the sum considered together in the different
163 fractions would exceed 10% TRR. However definite confirmation of the identity of these residues and
164 their total levels is missing. Further it appears that the potential contribution to the livestock burden of
165 residues in rotate cereals might be marginal in view of the residue concentrations observed in the
166 primary cereal commodity which is driving the livestock dietary burden. Hence the livestock dietary
167 burden calculation is conducted for parent residues only for primary cereal and sugar beet
168 commodities. Banana is not considered relevant for livestock feeding.

169 The trigger of 0.004 mg/kg bw/d for requirement of a livestock metabolism study is exceeded for
170 ruminants and poultry. Metabolism of expoxiconazole is addressed by radiolabelled studies in goats and
171 laying hens (step 17).

172 Epoxiconazole are considered fat soluble and having a potential for accumulation.

173

174

175

176

177

178

179 **Step 16**

 180 **Table 13 Input data and dietary burden calculation for epoxiconazole³²**

Commodity	Median dietary burden		Maximum dietary burden	
	Input value (mg/kg)	Comment	Input value (mg/kg)	Comment
Epoxiconazole				
Sugar beet pulp (dry)	0.9	Median residue* default PF 18	0.9	Highest residue * default PF 18
Sugar beet tops	0.68	Median residue	1.44	Highest residue
Wheat, rye, spelt, triticale grain	0.03	Median residue	0.03	Median residue
Wheat, rye, spelt, triticale bran	0.126	Median residue *PF 4.2	0.126	Median residue *PF 4.2
Barley, oat grain	0.14	Median residue	0.14	Median residue
Barley, oat bran	0.588	Median residue *PF 4.2	0.588	Median residue *PF 4.2
Cereal straw	2.42	Median residue	15.4	Highest residue
Contribution to livestock burden				
Epoxiconazole - Maximum intakes				
Diet	mg/kg bw/d			%
Lamb	0.459			100
Ram/ Ewe	0.360			100
Dairy cattle	0.210			100
Beef cattle	0.131			100
Poultry(Layer)	0.130			100

181

 182 **Step 17**

10% TRR (red)	0.01 mg/kg at N rate for critical diet (blue)
---------------	---

183

Livestock Studies

 184 **Table 14 Goat metabolism (oxirane label, 10 mg/kg bw)**

Code	Milk		Muscle		Fat		Liver		Kidney	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
Parent	0.260	52.9	0.470	58.5	4.999	90.9	8.545	32.8	1.815	22.1
M02	0.008	1.9	0.033	4.1	0.071	1.3	0.395	1.5	0.191	2.3
M02 conj. (M32)	0.011	3.5								
M04	0.011	2.7	0.048	5.9	0.084	1.5	1.441	5.5	0.405	4.9

³² EFSA livestock burden calculator considering OECD feeding table.

Code	Milk		Muscle		Fat		Liver		Kidney	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
M04 conj. (M28)	0.004	0.9	0.040	5.0			3.355	12.9	0.052	0.6
M04 conj. (M29)									0.186	2.3
M18			0.033	4.2	0.089	1.6				
M18 conj. (M30)									0.491	6.0
M26	0.003	0.9					0.316	1.2	0.121	1.5
M26 conj. (M31)	0.016	4.0								
M27	0.005	1.1					3.019	11.6	2.080	25.3

186

Table 15 Goat metabolism (triazole label, 0.35 mg/kg bw)

Code	Milk		Liver		Kidney		Muscle		Fat	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
Parent			0.027	1.6	0.004	1.7			0.005	7.2
M02 / M26 and/or isomers			0.035	2.1						
M04	<0.0005	1.0	0.017	1.0						
M04 conj. (M28 or isomeric gluc.)	<0.0005	0.6	0.015	0.9						
M05 and/or isomers	<0.0005	1.3	0.033	2.0						
M05 / M54 and/or isomers	0.001	1.6	0.012	0.7						
M05 / M54 / M55 / M56 and/or isomers	<0.0005	1.1	0.009	0.6	0.003	1.3				
M13 / M53 / M05 conj. (M60) and/or isomers	0.001	4.0	0.019	1.2	0.009	3.8				
M06	<0.0005	0.9	0.122	7.2	0.008	3.1			0.009	12.5
M07			0.011	0.7						
M52	0.022	63.8	0.036	2.2	0.042	17.2	0.029	69.7	0.026	37.1

187

188

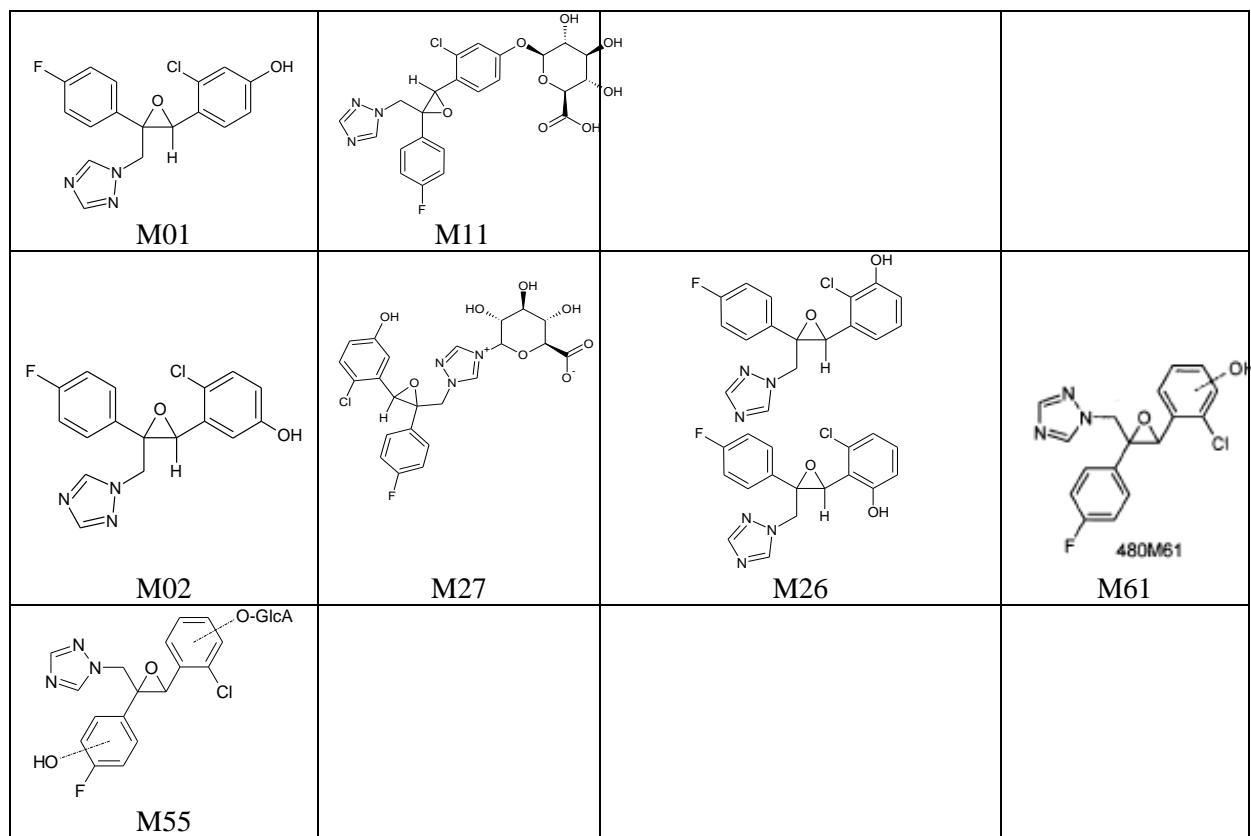
Table 16 Poultry metabolism (oxirane label – Laying hens 14.75 mg/kg bw)

Code	Liver		Muscle		Skin		Fat		Eggs	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
Parent	3.201	14.0	0.349	47.6	4.521	84.7	10.866	98.7	1.245	54.6
M01	0.167	0.7								
M01 conj. (M11)	1.267	5.5	0.035	4.6						
M02	0.312	1.4	0.006	0.9						
M06	1.087	4.7							0.096	4.2
M07	1.096	4.8	0.144	19.6	0.608	11.4	0.039	0.4	0.163	7.1

Code	Liver		Muscle		Skin		Fat		Eggs	
	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR	mg/kg	% TRR
M10	0.515	2.2	0.016	2.2						
M12	0.049	0.2								
M13	1.107	4.8							0.213	9.3
M13 conj. (M25)	0.375	1.6								
M15	0.554	2.4							0.263	11.5

189

190 **Step 18 Testing strategy, grouping and read-across**


191 The following metabolites are to be included on considerations of their toxicity (as identified in step 7
192 and 17):

193 M02, M04, M05, M06, M07, M11, M13, M15, M26, M27, M28, M30, M53, M54, M55, M56, M60,
194 M61/ M63 (and the TDMs: M52, M49, M50, M51)

195 In specific cases, for conjugated metabolites their aglycons will be referenced.

196 Toxicological information is only available for the parent compound. Therefore, the grouping proposal
197 is based only on the structural similarity. Substances belonging to the same group are expected to have
198 a similar chemical reactivity.

199 **Group A**

200

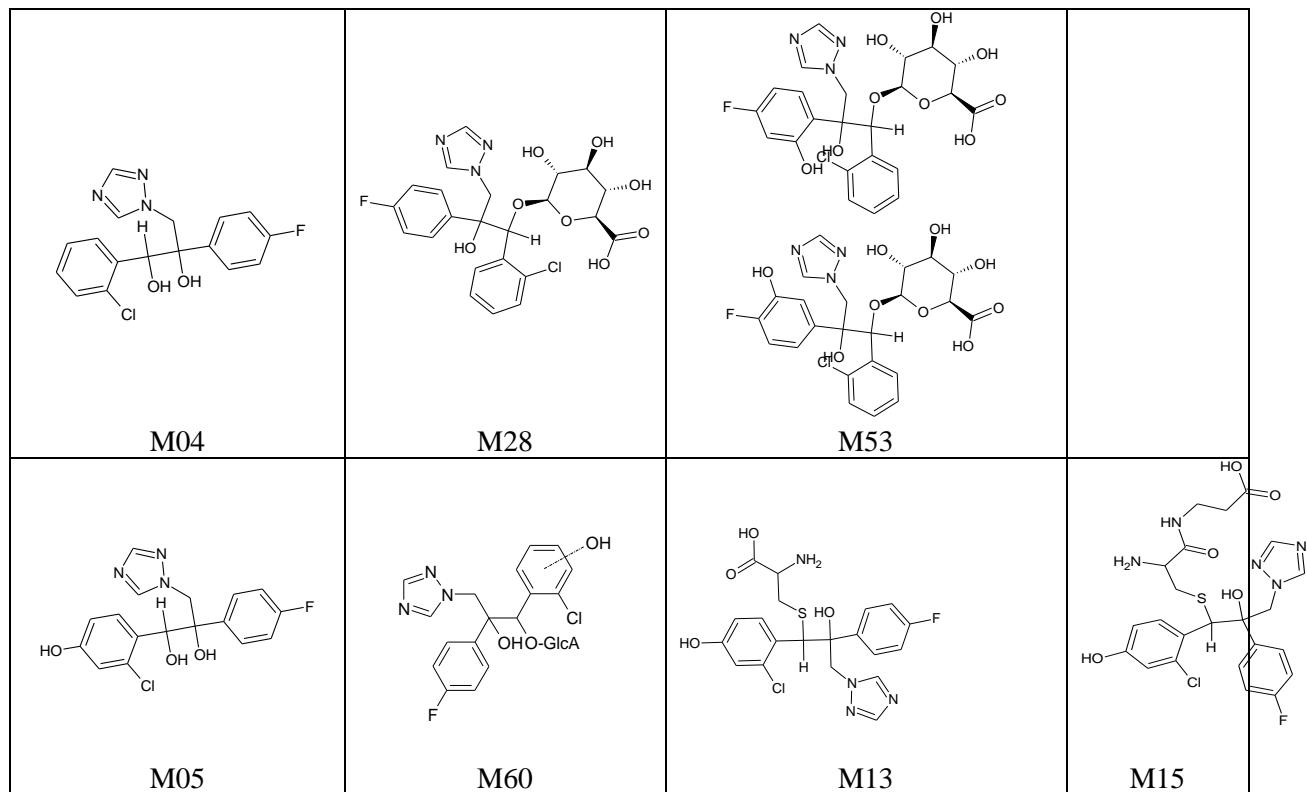
201 The metabolites identified in group A mainly differ from the parent by the addition of a hydroxyl
 202 group in one or two halogenated benzene rings, or conjugates thereof.

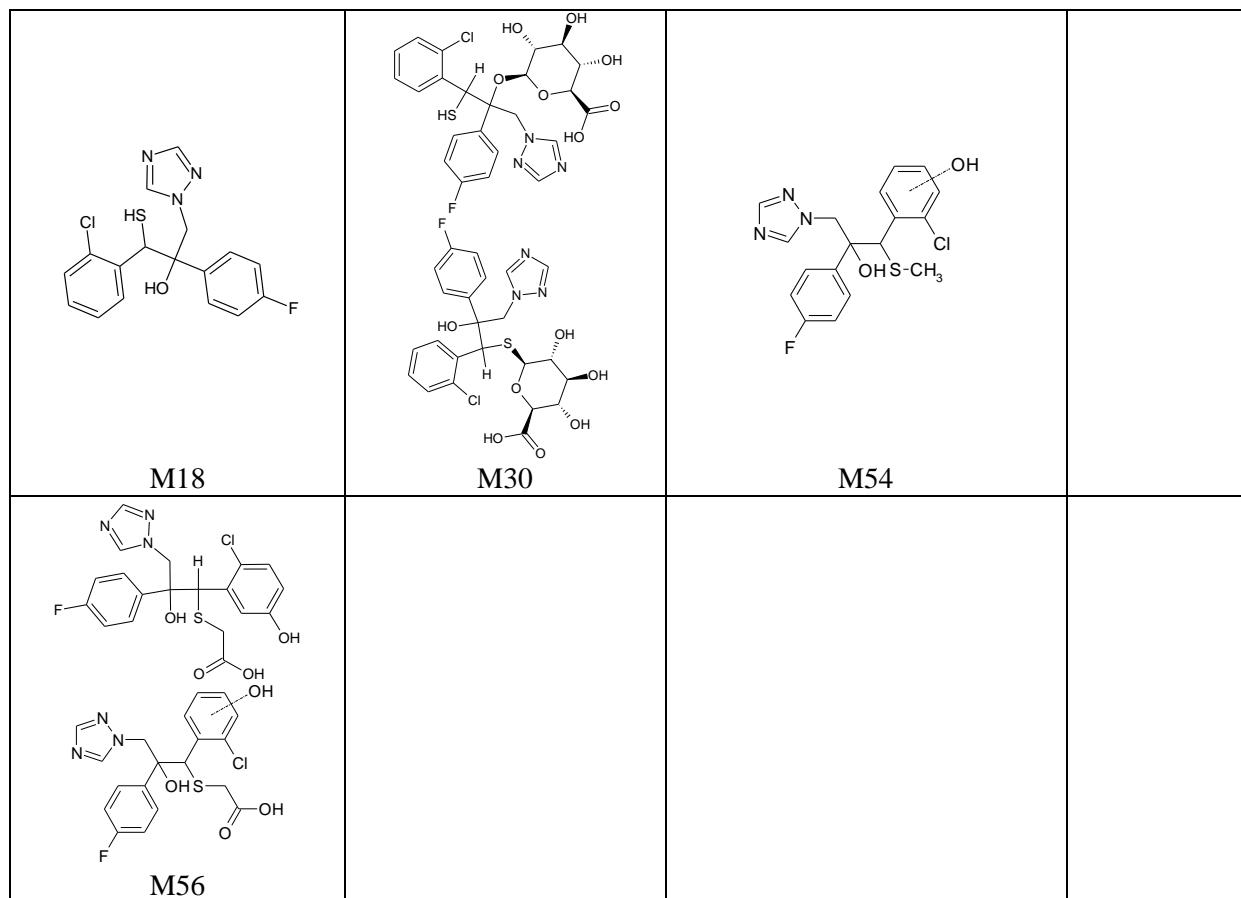
203 The following subgroups may be considered:

204 • Metabolites M01 (aglycon of M11), M02 (aglycon of M27) and M26, M61, the difference
 205 with the parent molecule is due to the presence of a hydroxyl group in different positions in
 206 one of the halogenated benzene rings.

207 • M55 is also conjugated metabolites, however their aglycons are unique (two hydroxyl groups
 208 are presented either in one of benzene halogenated ring or in both benzene halogenated rings).

209 *Strategy for M01, M02, M11, M26, M27, M55 and M61:*


210 • The hydroxylation on a ring system without cleavage of the ring is not expected to cause
 211 additional hazard or increase the toxicity of the compound.


212 • M11, M27 are conjugated metabolites (i.e. glucosides and glucuronides) and the toxicology of
 213 the glucosides or glucuronides are considered to be covered by their respective aglycons: M1
 214 as representative for M11; M2 as representative for M27.

215 • Based on the observations above it is concluded that the toxicological properties of
 216 metabolites M01, M02, M11, M26, M27, M55 and M61 are covered by the toxicology of the
 217 parent. For these metabolites no further testing is required.

218 •

219 **Group B**

220

221 In metabolites belonging to group B the epoxide ring is opened to form diols which maybe
 222 subsequently metabolized further. Although it is likely that this will render the compounds less
 223 reactive it is not clear how this may affect their toxicity.

224 The following subgroups may be considered:

- 225 • In metabolites M04 (aglycon of M28) and M05 (aglycon of M60) the epoxide ring is open and
 226 an additional hydroxyl group appears in the chlorinated benzene ring in metabolite M05.
- 227 • M53 is also a conjugated metabolite; its aglycon is unique as it is monohydroxylated on the
 228 fluorinated ring.
- 229 • Metabolites M13, M15 are conjugates (cysteine or cysteinyl-beta-alanine) of metabolite M05
 230 and therefore, if their hydrolysis is demonstrated, the toxicological assessment might rely on
 231 the assessment of the respective aglycon or its representative.
- 232 • In the metabolites M18 (aglycon of M30) and M54 one of the OH groups is replaced by a
 233 methylthiol group (M54) or sulfhydryl group (M18) and therefore they might have different
 234 reactivity.
- 235 • M56 as acetate should be evaluated as such (or its hydrolysis product if the hydrolysis is
 236 demonstrated)

237 *Strategy for M04, M05, M13, M15, M28, M53, M60:*

238 The toxicity of the glucoside and glucuronide conjugates is considered to be covered by their
 239 respective aglycons, i.e. M04 as representative for M28 and M53; M05 as representative for M60

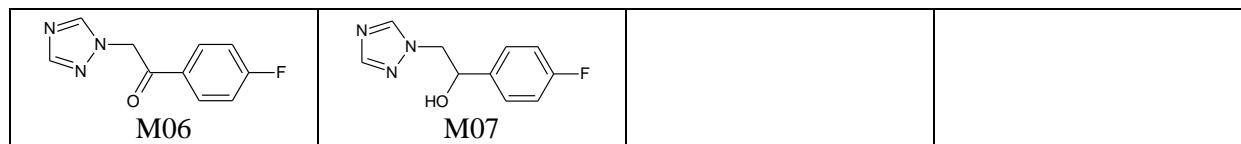
240 Metabolites M13, M15 are conjugates (cysteine or cysteinyl-beta-alanine) of metabolite M05 and
 241 therefore if hydrolysis to M05 is demonstrated the toxicological assessment might rely on the
 242 assessment of M05. As a first step, it should be demonstrated whether the compounds M13, M15 are
 243 converted to M05. If this occurs the toxicological properties of these compounds are considered
 244 covered by the toxicology of M05.

245 The toxicity of M05 is considered to be covered by that of M04.

246 M04 can be considered a representative of this group of metabolites. The potency of this compound to
 247 induce liver enzymes and to induce endocrine disruption should be tested in vitro (e.g. according to
 248 Kjaerstad et al., 2010)³³. Epoxiconazole should be included in these studies and the relative potency of
 249 these metabolites as compared to epoxiconazole should be assessed.

250 In view of the structural similarities between epoxiconazole and the metabolites of group B, and since
 251 developmental effects of epoxiconazole were observed at doses well above the NOAEL that formed
 252 the basis of the ADI, no further testing of the developmental potency of the metabolites in group B is
 253 required.

254 For those compounds that are not hydrolysed to M05 one representative metabolite should be tested
 255 according to the strategy as described above for M04.


256 *Strategy for M18, M54 and M56*

257 M56 is an acetate. If hydrolysis is demonstrated its toxicity can be considered covered by that of M18,
 258 since the hydroxylation of the rings is not expected to increase the toxicity. As a first step, it should be
 259 demonstrated whether the acetate group in M56 is hydrolysed.

260 M18 can be considered a representative of this group of metabolites. The potency of this compound to
 261 induce liver enzymes and to induce endocrine disruption should be tested in vitro (e.g. according to
 262 Kjaerstad et al., 2010)³⁴. Epoxiconazole should be included in these studies and the relative potency of
 263 these metabolites as compared to epoxiconazole should be assessed.

264 If the acetate group in M56 is not hydrolysed it should be tested according to the strategy as described
 265 above for M18.

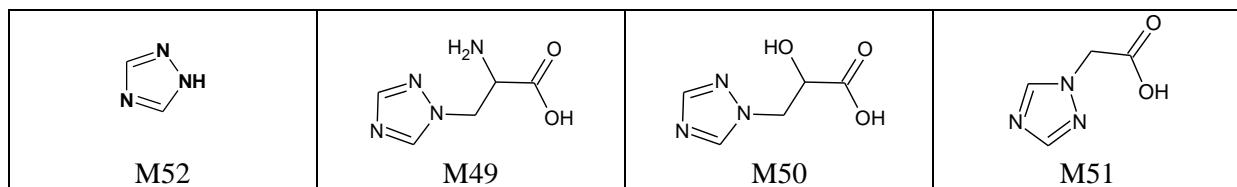
266 **Group C:**

267

268 *Strategy for M06 and M07*

269 The metabolites M06 and M07 lack the chlorobenzene ring. No metabolites lacking the chlorobenzene
 270 ring were identified in the metabolism study in rats. It is therefore possible that these metabolites have
 271 a toxicity profile that differs from that of epoxiconazole.

³³ Kjaerstad et al., Reproductive Toxicology 30 (2010) 573-582

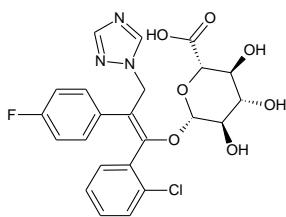

³⁴ Kjaerstad et al., Reproductive Toxicology 30 (2010) 573-582

272 M6 is probably the most reactive of these metabolites and therefore toxicologically most relevant.
 273 Thus, M6 can be considered representatives for the metabolites in group C. It is not clear whether the
 274 metabolites of group C also affect liver enzymes and steroid hormones in a similar way as
 275 epoxiconazole. Therefore, the potency of M06 to induce liver enzymes and to induce endocrine
 276 disruption should be tested in vitro (e.g. according to Kjaerstad et al., 2010)³⁵. Epoxiconazole should
 277 be included in these studies and the relative potency of these metabolites as compared to
 278 epoxiconazole should be assessed.

279 Since the toxicity profile may differ from that of epoxiconazole the toxicity of M6 should be assessed
 280 in the enhanced OECD 407.

281 Secondly, the potential developmental toxicity effects of M06 should be tested in a developmental
 282 toxicity study in rats (OECD 414).

283 **Group D:**



284

285 *Strategy for M49, M50, M51 and M52*

286 This group consists of the triazole derivative metabolites (TDMs). The toxicology of triazole (M52),
 287 triazole acetic acid (M51) and triazole alanine (M49) has been assessed and reference values have
 288 been established (EFSA, 2008)³⁶. The toxicity of M50 (triazole hydroxypropionic acid) is considered
 289 covered by that of M49 and M51. As for the existence of data that were deemed sufficient to set
 290 toxicological reference values, no further considerations on toxicity assessment for these metabolites
 291 will be made in this case study.

292 **Group E:** Metabolite M63 is a glucopyranosiduronic acid conjugate. It is aglycon is unique and rather
 293 different than other metabolites (with double bond between the three rings) and should be kept in
 294 separate group.

295

296 First Tier: For all the metabolites with an alert for genotoxicity in module 1, it should be investigated
 297 whether or not there is a genotoxicity concern by appropriate genotoxicity tests in vitro and, when
 298 necessary, in vivo.

³⁵ Kjaerstad et al., Reproductive Toxicology 30 (2010) 573-582

³⁶ EFSA (European Food Safety Authority), 2008. Conclusion regarding the peer review of the pesticide risk assessment of the active substance penconazole. 104 pp. doi:10.2903/j.efsa.2008.175r

299 **Group E**

300 Metabolite M63 is a glucopyranosiduronic acid conjugate. Its aglycon is unique and rather different
301 than other metabolites (with a double bond between the three rings).

302 *Strategy for M63*

303 Firstly, the potency of this compound to induce liver enzymes and to induce endocrine disruption
304 should be tested in vitro (e.g. according to Kjaerstad et al, 2010)³⁷. Epoxiconazole should be included
305 in these studies and the relative potency of this metabolite as compared to epoxiconazole should be
306 assessed. Depending on results, an additional safety factor of 10x can be applied in case of negative
307 outcome for endocrine effect. If the results are indicative that the metabolite has a similar qualitative
308 profile of the parent, the same reference dose of the parent can be applied. Testing for DART
309 endpoints can be an option.

310

311 **Step 19 Assessment against total toxicological burden**

312 The following compounds of relevance were identified in food and feed of plant origin and require
313 further assessment:

314 Cereals: According to the findings in Tables 6 and 9, parent compound, M49, M50 and M51 (TDMs),
315 and M61/63 pending the finalisation of the toxicological relevance assessment (in particular
316 genotoxicity for M63).

317 The TDMs should be subject to a separate assessment considering all sources, which is not conducted
318 here as this would go beyond the scope of this case study.

319 Root crops: Parent

320 Fruit crops: Parent

321 The following compounds of relevance were identified in food of animal origin and require further
322 assessment (According to the findings in Tables 14 to 16):

323 Parent, M02, M04, M05, M06, M07, M11, M13, M15, M26, M27, M28, M30, M52, M53, M54, M55,
324 M56, M60.

325 Their quantitative occurrence is expressed in Table 17 (for poultry) and Tables 17 and 18 (for
326 ruminants) and in terms of %TRR (as determined in metabolism studies) and in % of toxicological
327 burden, which is meant as percentage of identified residue compounds.

328 In the absence of toxicological data on the metabolites a RPF of 1 is assumed for all metabolites
329 except TDMs. It is again noted that the assessment in this case study is using the assumption that
330 epoxiconazole and TDMs have separate reference values and do not share common effects. However,
331 it should be born mind that there probably are effects shared between TDMs and epoxiconazole, and
332 therefore, in reality, this needs to be considered for a proper assessment.

333

³⁷ Kjaerstad et al., Reproductive Toxicology 30 (2010) 573-582

334
 335

Table 17 *Residues of concern for food of animal origin (≥10 % TRR and at least 0.01 mg/kg)- Poultry (oxirane label)*

Residue component		Liver		Muscle		Skin		Fat		Eggs	
	RPF	% TRR	% tox burden								
Parent	1	14	33.1	47.6	63.6	84.7	88.1	98.7	99.6	54.6	63.0
<i>M01</i>		0.7									
<i>M01 conj. (M11)</i>		5.5		4.6							
M01 (sum)	1	6.2	14.7	4.6	6.1						
M02	1	1.4	3.3	0.9	1.2						
M06	1	4.7	11.1							4.2	4.8
M07	1	4.8	11.3	19.6	26.2	11.4	11.9	0.4	0.4	7.1	8.2
M10	1	2.2	5.2	2.2	2.9						
M12	1	0.2	0.5								
<i>M13</i>		4.8								9.3	
<i>M13 conj. (M25)</i>		1.6									
M13 (sum)	1	6.4	15.1							9.3	10.7
M15	1	2.4	5.7							11.5	13.3
Total identified		42.3	100	74.9	100	96.1	100	99.1	100	86.7	100
Sum of relevant compounds		31.4	74.2	71.8	95.9	96.1	100.0	99.1	100.0	71.0	81.9
Sum of non-considered compounds		10.9	25.8	3.1	4.1	0	0	0	0	15.7	18.1

336

 337
 338

Table 18 *Residues of concern for food of animal origin (≥10 % TRR and at least 0.01 mg/kg)- Ruminant metabolism low dose (triazole label, 0.35 mg/kg bw)*

Residue component	RPF	Milk		Liver		Kidney		Muscle		Fat	
		% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden	% TRR	% tox burden
Parent	1			1.6	8.9	1.7	17.2			7.2	36.5
M02 / M26	1			2.1	11.7						
<i>M04</i>		1		1.0							
<i>M04 conj.</i>		0.6		0.9							
M04 (sum)	1	1.6	15.2	1.9	10.6						
M05	1	1.3	12.4	2.0	11.1						
M05 / M54	1	1.6	15.2	0.7	3.9						
M05 / M54 / M55 / M56	1	1.1	10.5	0.6	3.3	1.3	13.1				
M13 / M53 / M05 conj.	1	4.0	38.1	1.2	6.7	3.8	38.4				
M06	1	0.9	8.6	7.2	40.0	3.1	31.3			12.5	63.5
M07	1			0.7	3.9						
M52 (TDM)	n/a	63.8	100.0	2.2	100.0	17.2	100.0	69.7	100	37.1	100.0
Total identified - Parent group	1	10.5	100.0	18.0	100.0	9.9	100.0	-	-	19.7	100.0

Sum of relevant compounds - Parent group		2.5	23.8	10.7	59.4	4.8	48.5	n/a	n/a	19.7	100.0
Sum of non-considered compounds - Parent group		8.0	76.2	7.3	40.6	5.1	51.5	n/a	n/a	0	0
Total identified –TDM group	n/a	63.8	100.0	2.2	100.0	17.2	100.0	69.7	100	37.1	100.0
Sum of relevant compounds – TDM group		63.8	100.0	2.2	100.0	17.2	100.0	69.7	100.0	37.1	100.0
Sum of non-considered compounds TDM group		0	0	0	0	0	0	0	0	0	0

339

340 **Table 19 Residues of concern for food of animal origin(≥10 % TRR and at least 0.01 mg/kg)-**
 341 **Ruminant metabolism high dose (oxirane label, 10 mg/kg bw)**

Residue component	RPF	Milk		Muscle		Fat		Liver		Kidney	
		%TRR	% tox burden								
Parent	1	52.9	77.9	58.5	75.3	90.9	95.4	32.8	50.1	22.1	34.0
<i>M02</i>		1.9	2.8	4.1	5.3	1.3	1.4	1.5	2.3	2.3	3.5
<i>M02 conj.</i>		3.5	5.2		0.0		0.0		0.0		0.0
M02 (sum)	1	5.4	8.0	4.1	5.3	1.3	1.4	1.5	2.3	2.3	3.5
<i>M04</i>		2.7	4.0	5.9	7.6	1.5	1.6	5.5	8.4	4.9	7.5
<i>M04 conj. (M28)</i>		0.9	1.3	5	6.4		0.0	12.9	19.7	0.6	0.9
<i>M04 conj. (M29)</i>	1		0.0		0.0		0.0		0.0	2.3	3.5
M04 (sum)	1	3.6	5.3	10.9	14.0	1.5	1.6	18.4	28.1	7.8	12.0
<i>M18</i>			0.0	4.2	5.4	1.6	1.7		0.0		0.0
<i>M18 conj. (M30)</i>			0.0		0.0		0.0		0.0	6.0	9.2
Sum M18	1	0	0.0	4.2	5.4	1.6	1.7		0.0	6.0	9.2
<i>M26</i>		0.9	1.3		0.0		0.0	1.2	1.8	1.5	2.3
<i>M26 conj. (M31)</i>		4	5.9		0.0		0.0		0.0		0.0
Sum M26	1	4.9	7.2	0	0.0	0	0.0	1.2	1.8	1.5	2.3
M27	1	1.1	1.6		0.0		0.0	11.6	17.7	25.3	38.9
Total identified		67.9	100.0	77.7	100.0	95.3	100.0	65.5	100.0	65.0	100.0
Sum of relevant compounds		57.6	84.8	69.4	89.3	92.4	97.0	62.8	95.9	55.2	84.9

Sum of non-considered compounds		10.3	15.2	8.3	10.7	2.9	3.0	2.7	4.1	9.8	15.1
---------------------------------	--	------	------	-----	------	-----	-----	-----	-----	-----	------

342

 343 **Step 20**

 344 **Residue definition for plants**

345 The following compounds are relevant for risk assessment:

346

 347 **Cereals (primary and rotational crops):**

 348 **Parent, and provisionally M61/63 pending the finalisation of the toxicological**
 349 **relevance assessment (in particular genotoxicity for M63)**

 350 **Separately M49, M50 and M51 (TDMs)**

 351 **Root crops: Parent (default)**

 352 **Fruit crops: Parent (default)**

353

 354 **Residue definition for livestock**

355 With regard to the ruminant studies the following is noted: In the high dose goat metabolism study primarily the parent compound was recovered. From the rat metabolism data it has been shown that the excretion of radioactivity is dose related (low excretion of parent at higher dose rates and more intensive excretion at lower dose rates). Moreover, the high dosed goat study used a shorter slaughter interval than the low dosed study. It was therefore assumed that these are the reasons why the residue pattern differs significantly between the two studies so that at the high dosed metabolism study M06 was not observed while there was significant occurrence in animal matrices in the low dosed study.

 362 **Poultry: Parent + M07 + M01 and M13, including their conjugates**

 363 **Ruminants: Parent + M04 (free & conj.) + M06 +M27**

 364 **Separately M52 (TDM)**

365 The residue definitions are provisional pending full toxicological assessment of metabolites in the “parent group” as appropriate (refer to step 18) or investigation of their occurrence in a ruminant feeding study.

368

369 **Assessment of stereoisomers (enantiomers and diastereoisomers) for the parent and metabolites**

370 The toxicological studies are performed with a racemic mixture of parent compound.

 371 **Enantiomer ratio in commodities of plant origin (tables X-X9) (Final addendum to the Draft**
 372 **Assessment Report (DAR) in the context of confirmatory data peer review, 2012)**

373

 374 The enantiomer ration in plant samples was determined in methanol extracts (and concentrated by SPE
 375 (solid-phase extraction) fractionation) and chromatography using a chiral column.

376

 377 **Table X Enantiomer ration in wheat grain samples**

Proportion		Residue in wheat grain					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
20	80	0.004	0.017	0.021	42	89	EU-N
20	80	0.003	0.013	0.016	29	85	EU-N
21	79	0.004	0.014	0.018	34	87	EU-N
27	73	0.003	0.008	0.010	42	89	EU-S
29	71	0.008	0.019	0.026	42	89	EU-N
31	69	0.010	0.022	0.032	41	89	EU-N
32	68	0.003	0.006	0.009	35	87	EU-S
32	68	0.010	0.021	0.031	35	89	EU-N
33	67	0.012	0.024	0.036	38	83	EU-N
34	66	0.007	0.013	0.020	43	85	EU-N
35	65	0.006	0.011	0.017	35	87	EU-N
37	63	0.008	0.013	0.021	49	92	EU-S
38	62	0.004	0.007	0.012	42	89	EU-N
42	58	0.033	0.045	0.077	28	85	EU-N
46	54	0.006	0.007	0.012	41	89	EU-S
47	53	0.020	0.022	0.042	48	89	EU-S
49	51	0.038	0.039	0.077	42	89	EU-S

378 *DALA – interval after last application

379

 380 **Table X2 Enantiomer ration in barley grain samples**

Proportion		Residue in barley grain					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
16	84	0.014	0.072	0.086	42	89	EU-S
16	84	0.015	0.080	0.096	49	92	EU-S
18	82	0.022	0.103	0.126	34	87	EU-S
22	78	0.009	0.032	0.041	35	87	EU-S
26	74	0.022	0.064	0.086	56	89	EU-N
26	74	0.011	0.032	0.042	49	92	EU-S
27	73	0.011	0.031	0.042	42	89	EU-S
28	72	0.017	0.045	0.063	42	89	EU-S
30	70	0.022	0.053	0.075	49	89	EU-S

31	69	0.024	0.051	0.075	50	87	EU-N
32	68	0.009	0.019	0.028	56	89	EU-N
33	67	0.012	0.024	0.036	48	87-89	EU-N
33	67	0.020	0.042	0.063	49	89	EU-S
34	66	0.015	0.029	0.044	42	89	EU-S
38	62	0.027	0.043	0.069	42	89	EU-S
38	62	0.050	0.084	0.134	41	89	EU-S
38	62	0.013	0.021	0.034	42	89	EU-S
39	61	0.014	0.022	0.036	48	89	EU-S
40	60	0.039	0.058	0.096	36	87-89	EU-S
40	60	0.036	0.055	0.091	43	89	EU-S
40	60	0.030	0.045	0.075	49	89	EU-S
41	59	0.066	0.095	0.161	48	89	EU-S
42	58	0.066	0.092	0.157	35	89	EU-S
44	56	0.061	0.076	0.137	50	89	EU-S

 381
 382

Table X3 Enantiomer ration in pea seed samples

Proportion		Residue in pea seed					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
38	62	0.09	0.15	0.24	35	89	EU-S
40	60	0.10	0.15	0.25	20	83	EU-S
43	57	0.12	0.16	0.28	28	85	EU-N
45	55	0.09	0.11	0.21	21	83	EU-N

383

384

Table X4 Enantiomer ration in wheat plant samples

Proportion		Residue in wheat plant					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
36	64	0.085	0.150	0.235	42	87	EU-S
39	61	2.190	3.408	5.597	27	85	EU-N
41	59	1.290	1.894	3.184	44	87	EU-S
43	57	1.068	1.391	2.459	34	85	EU-S
44	56	0.410	0.525	0.935	42	87	EU-S
44	56	0.457	0.577	1.034	35	78-80	EU-N
44	56	1.030	1.319	2.349	36	85	EU-S
46	54	0.128	0.151	0.278	36	83	EU-N
46	54	0.768	0.895	1.663	27	75	EU-N
47	53	0.390	0.441	0.830	35	83	EU-S
48	52	2.402	2.593	4.995	34	87	EU-S
48	52	0.386	0.411	0.797	35	85	EU-S
49	51	0.411	0.423	0.834	35	87	EU-N
50	50	0.565	0.556	1.121	29	77	EU-S
51	49	0.358	0.342	0.701	29	83	EU-N
57	43	1.164	0.883	2.047	28	85	EU-N

385

386

Table X5 Enantiomer ration in barley plant samples

Proportion		Residue in barley plant					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
34	66	0.237	0.460	0.697	42	83	EU-N
36	64	0.331	0.598	0.929	42	83-87	EU-N
37	63	0.402	0.690	1.092	35	77	EU-N
38	62	0.345	0.559	0.904	35	75-81	EU-N
38	62	0.741	1.216	1.958	35	87-89	EU-S
41	59	0.380	0.544	0.925	34	87	EU-S
44	56	1.237	1.559	2.796	35	87	EU-S
43	57	0.258	0.347	0.605	34	85	EU-S

387

388

Table X6 Enantiomer ration in maize plant samples

Proportion		Residue in maize plant					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
18	82	0.033	0.145	0.177	19	75	EU-N
18	82	0.019	0.087	0.106	46	85	EU-N
20	80	0.004	0.014	0.018	86	89	EU-N
21	79	0.061	0.232	0.293	12	71	EU-N
23	77	0.007	0.023	0.030	71	89	EU-N
25	75	0.007	0.021	0.028	64	85	EU-N
25	75	0.013	0.039	0.053	28	75	EU-N
29	71	0.010	0.023	0.033	57	85	EU-N
30	70	0.138	0.315	0.453	69	89	EU-S
31	69	0.020	0.043	0.063	17	71	EU-N
31	69	0.182	0.413	0.595	49	85	EU-S
31	69	0.082	0.186	0.269	21	75	EU-S
31	69	0.080	0.180	0.260	49	89	EU-S
32	68	0.016	0.033	0.049	29	75-77	EU-N
32	68	0.045	0.097	0.142	77	89	EU-S
33	67	0.200	0.399	0.599	14	71	EU-S
34	66	0.076	0.146	0.222	16	71	EU-S
35	65	0.046	0.084	0.130	49	85	EU-S
35	65	0.170	0.321	0.491	35	85	EU-S
35	65	0.006	0.011	0.016	91	89	EU-N
36	64	0.030	0.053	0.083	13	71	EU-N
36	64	0.051	0.090	0.142	27	77	EU-S
40	60	0.293	0.435	0.728	21	75-77	EU-S
45	55	0.255	0.311	0.566	6	71	EU-S

389

390

391

392

Table X7 Enantiomer ration in pea plants

Proportion		Residue in pea plants					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
50	50	0.64	0.63	1.27			EU-N
50	50	1.67	1.66	3.33			EU-S
52	48	1.15	1.05	2.20			EU-S

393

394

Table X8 Enantiomer ration in wheat ear samples

Proportion		Residue in wheat ears					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
48	52	0.076	0.081	0.156	36	83	EU-N
48	52	0.133	0.143	0.276	35	78-80	EU-N
48	52	0.085	0.091	0.177	36	85	EU-S
48	52	0.293	0.313	0.606	44	87	EU-S
48	52	0.747	0.799	1.546	34	87	EU-N
48	52	0.123	0.132	0.256	34	85	EU-S
48	52	0.121	0.130	0.251	35	83-85	EU-S
48	52	0.101	0.108	0.209	42	87	EU-S
48	52	0.124	0.133	0.256	35	85	EU-S
48	52	0.117	0.125	0.243	27	75	EU-N
48	52	0.581	0.622	1.203	29	83	EU-N
48	52	0.187	0.200	0.387	29	77	EU-S
48	52	0.289	0.309	0.598	35	83	EU-S
48	52	0.358	0.383	0.741	42	87	EU-S
48	52	0.595	0.636	1.231	28	87	EU-S
48	52	0.502	0.537	1.038	28	87	EU-S
48	52	0.647	0.692	1.338	34	87	EU-S

395

396

Table X9 Enantiomer ration in maize cob with husk samples

Proportion		Residue in cob with husk					
(-)-BAS 480 F	(+)-BAS 480 F	(-)-BAS 480 F	(+)-BAS 480 F	Sum	DALA*	Growth stage	Region
(%)	(%)	(mg/kg)	(mg/kg)	(mg/kg)		BBCH	
25	75	0.001	0.004	0.006	64	85	
35	65	0.004	0.007	0.011	17	71	
37	63	0.009	0.015	0.025	28	75	
40	60	0.004	0.006	0.009	13	71	
45	55	0.007	0.009	0.016	30	85	
47	53	0.010	0.011	0.021	9	71	
49	51	0.010	0.010	0.019	20	75-77	
54	46	0.009	0.008	0.017	6	71	

397

398 Results of analyses of the plant samples, present in the Tables X-X8, show that the applied ratio
 399 (51:49) is not maintained. A significant and reproducible increase of the (+) - enantiomer is observed
 400 for cereal grains (wheat - 33:6, barley - 32:68 and pea - 42:58) and other parts of the plants (maize
 401 plant - 30:70 and cob - 42:48, barley plant - 39:61, wheat plant - 46:54). The ratio is changed slightly
 402 in the same direction also for wheat ear (48:52) and kept not changed for pea plants (but only 3
 403 samples are analysed). Slightly change in opposite direction was observed in coffee, both in beans and
 404 leaves the proportion of (+)- enantiomer decreased to 41.6% and 45.4%, respectively.

405
 406

407 **Enantiomer ratio in samples of animal origin (goat, rat)(tables X10, X11)**

408 The enantiomer ratio in animal tissue and milk samples was determined by chromatography using a
 409 chiral column.

410
 411 **Table X10.** Enantiomer ration in samples from BAS 480 F metabolism studies conducted in goat (re-
 412 extraction extracts)

Origin	Matrix	Previous studies Methanol extract		Present Study Methanol extract	
		BAS 480 F		(-)-BAS 480 F	(+)-BAS 480 F
		(mg/kg)	(%TRR)	(% ROI)	(% ROI)
Goat (Study 151738)	Urine (Day 7)	0.042	1.4	43.1	56.9
	Liver	0.027	1.6	16.7	83.3
	Kidney	0.004	1.7	44.0	56.0
	Fat	0.005	7.2	47.0	53.0

413
 414

Table X11. Enantiomer ration in samples from BAS 480 F metabolism studies conducted in rat

Matrix/Experiment/Sampling Time	Animal	BAS 480 F			Enantiomer ratios	
					(-)-BAS 480 F	(+)-BAS 480 F
		(mg/kg)	(% TRR)	(% Dose)	(%)	(%)
Application solution					51.2	48.8
Plasma	F01	4.146	64.1	0.03	29.6	70.4
WxF	F02	5.731	71.0	0.07	34.2	65.8
(1h)	Mean				31.9	68.1
Liver	F01	31.812	65.5	0.98	45.8	54.2
WxF	F02	41.557	71.2	1.33	46.4	53.7
(1h)	Mean				46.1	53.9
Liver	F03	0.918	3.7	0.04	23.9	76.1
DxF	F04	0.426	2.2	0.02	19.4	80.6
(48 h)	Mean				21.7	78.3
Faeces	F03	106.564	20.2	3.20	53.9	46.1
DxF	F04	482.697	74.8	6.65	50.1	50.0
(0-24 h)	Mean				52.0	48.0
Faeces	F03	46.980	3.8	1.91	60.0	40.0
DxF	F04	229.748	14.4	9.39	51.3	48.7
(24-48h)	mean				55.6	44.4

415

416 Results of analyses of the goat matrices (table X10) after administration of a racemic mixture show
417 significant increase of the proportion of (+)-enantiomer to 83% in liver. Observed isomer change in
418 kidney, fat and urine was in the same direction but not so significant, the proportion of (+)- enantiomer
419 was 56%, 53% and 57%, respectively. The increase of the proportion of the positive enantiomer in
420 goat liver was in accordance with the results for liver in rat study – 78% (Table X11).

421 Stereoisomeric composition of residues found in the samples (plant and animal origin) shows a
422 difference compared to the sample used in the toxicological studies (a racemic mixture). In the
423 absence of additional stereoselective toxicological studies, correction factors of 1.3 and 1.7 were
424 derived for cereal grain and liver, respectively in order to address the relevance of stereoisomeric
425 composition change on the consumer dietary risk assessment. These factors take into account the
426 reduction of the (-/+) enantiomer ratio and assuming that the toxicity is attributed to the (+)-
427 enantiomer.

428

429 **Data gaps**

430 **Uncertainties of particular relevance for decision making**

431 • A large number of metabolites contain a hydroxyl group in either the chlorinated or the
432 fluorinated ring structure or in both structures. The position of the hydroxyl group in the
433 ring structure varies between metabolites. For some metabolites the position of the
434 hydroxyl group has not been identified. It is assumed that for the epoxiconazole
435 metabolites the hydroxylation of a ring structure without opening the ring will not increase
436 the toxicity of the metabolite. This assumption is based on a conclusion in an External
437 Scientific Report to EFSA prepared by AGES (2010). It is noted that AGES based this
438 conclusion on data obtained mostly from acute toxicity studies. AGES also noted that
439 there are some compounds where hydroxylation of a ring structure may increase its toxicity
440 (e.g. hydrochinon). Therefore, some uncertainty remains on the applicability to predict the
441 toxicity after short-term or long-term exposure

442 • QSAR/RA

443 • Exposure, coverage of tox burden, rate of identification in metabolism studies, variability
444 between studies, testing strategy

445

446 **ABBREVIATIONS**

447	1N GAP	Application rate according to Good Agricultural Practice
448	AAOEL	Acute Acceptable Operator Exposure Level
449	ACF	atom-centered fragments
450	AD	administered dose
451	ADI	acceptable daily intake
452	ADME	absorption, distribution, metabolism, and excretion
453	AOEL	Acceptable operator exposure levels
454	ARfD	acute reference dose
455	BBCH	Scale describing the phenomenological growth stage of plants
456	CA	Chromosomal aberration
457	CF	Conversion factor
458	cGAP	critical GAP
459	FN	false negative
460	FP	false positive
461	GAP	Good Agricultural Practice
462	HR	highest residue
463	HRc	Highest residues converted
464	ISS	Istituto Superiore di Sanità
465	K _{ow}	Octanol-Water Partition Coefficient
466	LOAEL	lowest observed adverse effect level
467	LOQ	Limit of Quantitation
468	MN	Micronucleus
469	MTD	maximum tolerated dose
470	MW	Molecular weight
471	NOAEL	No Observed Adverse Effect Level
472	NTP	National Toxicology Program
473	PBI	plant-back interval

474	PHI	pre-harvest interval
475	QSAR	(Quantitative) structure–activity relationship
476	RPF	relative potency factor
477	SA	structural alerts
478	STMR	supervised trials median residue
479	SVM	Support Vector Machines
480	TRR	total radioactive residue
481	TTC	Threshold of Toxicological Concern