

DRAFT GUIDANCE OF EFSA

EFSA Draft Guidance Document on the Risk Assessment of Plant Protection Products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees)¹

European Food Safety Authority^{2, 3}

European Food Safety Authority (EFSA), Parma, Italy

ABSTRACT

The Guidance Document is intended to provide guidance for notifiers and authorities in the context of the review of Plant Protection Products (PPPs) and their active substances under Regulation (EC) 1107/2009. The scientific Opinion on the science behind the development of a risk assessment of Plant Protection Products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees) (EFSA, 2012a) provided the scientific basis for the development of the Guidance Document. Specific Protection Goals were agreed in consultation with the Standing Committee on the Food Chain and Animal Health. The Guidance Document suggests a tiered risk assessment scheme with a simple and cost effective First Tier to more complex Higher Tier studies under semi-field and field conditions. Each of the tiers will have to ensure that the appropriate level of protection is achieved.

16 © European Food Safety Authority, 20YY

18 KEY WORDS

19 Honey bees, risk assessment, Guidance Document, Pesticides. *Apis mellifera*, *Bombus*, Solitary bees

¹ On request from [requesting party] [OR] EFSA, Question No EFSA-Q-YYYY-NNNNNN, approved on DD Month YYYY.

² Correspondence: ppr@efsa.europa.eu

³ Acknowledgement: EFSA wishes to thank the members of the Working Group:

Suggested citation: European Food Safety Authority; EFSA Guidance Document on the Risk Assessment of Plant Protection Products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees). EFSA Journal 20YY;volume(issue):NNNN. [202 pp.] doi:10.2903/efsa.20YY.NNNN. Available online: www.efsa.europa.eu/efsaJournal

22 **SUMMARY**

23 EFSA was asked by the European Commission to develop a Guidance Document on the risk
24 assessment of Plant Protection Products on bees. The Guidance Document is intended to provide
25 guidance for notifiers and authorities in the context of the review of Plant Protection Products (PPPs)
26 and their active substances under Regulation (EC) 1107/2009. The scientific Opinion on the science
27 behind the development of a risk assessment of Plant Protection Products on bees (*Apis mellifera*,
28 *Bombus* spp. and solitary bees) (EFSA, 2012a) provided the scientific basis for the development of the
29 Guidance Document.

30 The process of the development of the Guidance Document follows the methodology of definition of
31 Specific Protection Goals (SPG) as outlined in the Scientific Opinion of EFSA's PPR Panel (EFSA,
32 2010). The Standing Committee on the Food Chain and Animal Health was consulted for the
33 appropriate levels of protection (e.g. to make choices on the magnitude of effects, duration of effects
34 and exposure percentiles).

35 The Guidance Document suggests proposed the implementation of a tiered risk assessment scheme
36 with a simple and cost effective First Tier to more complex Higher Tier studies under semi-field and
37 field conditions. Each of the tiers will have to ensure that the appropriate level of protection is
38 achieved.

39 More detailed guidance on specific aspects of laboratory studies and Higher Tier risk assessments are
40 given in the Appendices. A need was identified for test protocols for bumble bees and solitary bees.
41 Potential protocols are available in the published literature and first proposals are made in the
42 Appendices. It is important that fully validated test protocols are developed in future.

43

44 *Note: If there is no abstract then the summary will begin on the first page and the key words section
45 will appear after the summary.*

46 **TABLE OF CONTENTS**

47	Abstract	1
48	Summary	2
49	Table of contents	3
50	Background as provided by The European Commission	5
51	Terms of reference as provided by The European Commission	5
52	Context of the scientific output	5
53	1. Introduction	7
54	2. Protection goals as agreed with risk managers from Member States	8
55	3. Exposure Assessment for bees.....	8
56	3.1. Introduction.....	8
57	3.1.1. Relationship between the exposure assessments of honey bees, bumble bees and solitary bees	8
58	3.1.2. Specification of the Exposure Assessment Goal	9
59	3.1.3. Selection of the Ecotoxicologically Relevant types of Concentration	9
60	3.1.4. Linking of Exposure and Effect Assessment based on parallel tiered approaches	10
61	3.1.5. The concept of the Residue Unit Dose (RUD) as used in the exposure assessment	11
62	3.1.6. The need for an Exposure Assessment at landscape level.....	11
63	3.1.7. The hierarchy of the Exposure Assessment.....	12
64	3.2. Exposure Assessment for spray applications	13
65	3.2.1. The exposure Assessments for the different types of plants sampled by the bees	13
66	3.2.2. Conservative default values for RUDs of pollen and nectar after spray applications	15
67	3.2.3. Concentrations in pollen and nectar in the treated crop.....	15
68	3.2.4. Concentrations in pollen and nectar in weeds in the treated field	16
69	3.2.5. Concentrations in pollen and nectar in plants in field margins.....	18
70	3.2.6. Concentrations in pollen and nectar in adjacent crops	19
71	3.2.7. Concentrations in pollen and nectar in plants in permanent crops in the next year and in succeeding annual crops	20
72	3.2.8. The likely hierarchy of the Exposure Assessments for the different types of plants in regulatory practice	24
73	3.3. Exposure Assessment for solids.....	25
74	3.3.1. Introduction	25
75	3.3.2. Exposure Assessment for seed treatments	25
76	3.3.3. Exposure Assessment for granules	35
77	3.4. Recommendations for further work to improve or underpin the proposed exposure assessment guidance	39
78	4. Laboratory, semi-field and field studies	41
79	4.1. Acute laboratory (oral+ contact LD 50), 10-d laboratory adult (LC50), Aupinel larvae test	41
80	4.1.1. Test for bioaccumulative toxicity in oral dose administered to honey bees	41
81	4.2. Semi-field and field studies	45
82	5. Trigger values	48
83	6. Introduction to the risk assessment scheme for honey bees	50
84	6.1. Acute and chronic risk assessment.....	50
85	6.2. Semi-field studies.....	52
86	6.3. Field studies	53
87	6.4. Exposure assessment in the risk assessment scheme	53
88	6.5. Risk assessment for bumble bees and solitary bees	53
89	6.6. Systemic compound	54
90	7. Risk assessment schemes.....	55
91	7.1. Risk assessment scheme for honey bees	55
92	7.1.1. Risk assessment scheme for honey bees for spray applications	55
93	7.1.2. Risk assessment scheme for honey bees for solid applications	59
94	7.2. Risk assessment scheme for bumble bees.....	63
95	7.2.1. Risk assessment scheme for bumble bees for spray applications	63

100	7.2.2. Risk assessment scheme for bumble bees for solid applications.....	67
101	7.3. Risk assessment scheme for solitary bees.....	71
102	7.3.1. Risk assessment scheme for solitary bees for spray applications.....	71
103	7.3.2. Risk assessment scheme for solitary bees for solid applications.....	74
104	8. Mixture toxicity and toxicity of formulated products with 2 or more active substances.....	79
105	9. Risk mitigation options.....	81
106	9.1. Risk mitigation for honeybees	81
107	9.2. Risk mitigation options for honeybees.....	82
108	9.2.1. Spray treatment.....	82
109	9.2.2. Seed/soil treatment	84
110	10. Uncertainty analysis	86
111	References	87
112	Appendices	92
113	A. Nomenclature for Effect Sizes.....	93
114	B. Protection goals	96
115	C. Mortality occurring in a field study conducted according to EPPO 170 and example for comparison to protection goals.....	99
116	D. Relevance of dust for treated seeds.....	100
117	E. Honeydew.....	104
118	F. Guttation and proposed risk assessment for guttation water	105
119	G. Attractivity of agricultural crops to honeybees for the collection of nectar and/or pollen	107
120	H. Landscape-level exposure assessment of the average concentration entering the hive	128
121	I. Pesticide residue levels in nectar and pollen and the residue unite doses (RUDs).....	131
122	J. Protocol for performing field studies to assess a certain percentile of the concentration in pollen and nectar in a certain type of plants in the area of use of the substance.	139
123	K. Assessment of spray drift and dust drift deposition onto field margins and adjacent fields.....	141
124	L. Assessment of the percentile of a subpopulation that corresponds to a prescribed percentile of the total population.....	147
125	M. Checklists for evaluating Laboratory studies.....	149
126	N. Checklists for Evaluating Semi-field studies.....	154
127	O. Higher tier effects studies	156
128	P. Test protocols for bumblebees (<i>Bombus terrestris</i>).....	170
129	Q. Test protocols solitary bees (<i>Osmia cornuta</i> and <i>Osmia bicornis</i> = <i>O. rufa</i>)	174
130	R. Test crops to be used	179
131	S. Calculation of the oral exposure with working examples.....	180
132	T. Literature review on daily mortality rate	185
133	U. Trigger values	192
134	Glossary [and/or] abbreviations	200

139 **BACKGROUND AS PROVIDED BY THE EUROPEAN COMMISSION**

140
141 EFSA is currently revising the European Guidance Document on terrestrial ecotoxicology elaborated
142 by the Commission and experts from Member States. In the context of this revision, the bees risk
143 assessment will also be addressed.

144 Members of the European Parliament and beekeepers' associations have expressed their concerns to
145 the Commission as to the appropriateness of the current risk assessment scheme, and in particular on
146 the EPPO⁴ "Environmental risk assessment scheme for Plant Protection Products – Chapter 10:
147 honeybees" revised in September 2010 with ICPBR⁵ recommendations.

148 Considering the importance and the sensitiveness of this issue, and in line with the aim of the
149 Commission Communication on Honeybee Health (COM (2010) 714 final)⁶ adopted on 6 December
150 2010, the Commission considers that the revised EPPO assessment scheme would need further
151 consideration by EFSA in an Opinion on the science behind the risk assessment for bees and that a
152 Guidance Document on the risk assessment of Plant Protection Products on bees should be developed.

153

154 **TERMS OF REFERENCE AS PROVIDED BY THE EUROPEAN COMMISSION**

155 A scientific Opinion of the PPR Panel on the science behind the development of a risk assessment of
156 Plant Protection Products on bees (*Apis mellifera*, *Bombus spp.* and solitary bees) will be prepared.

157 In particular the following issues will be addressed:

- 158 • The assessment of the acute and chronic effects of Plant Protection Products on bees,
159 including the colony survival and development.
- 160 • The estimation of the long-term effects due to exposure to low concentrations
- 161 • The development of a methodology to take into account cumulative and synergistic effects.
- 162 • The evaluation of the existing validated test protocols and the possible need to develop new
163 protocols, especially to take into account the exposure of bees to pesticides through nectar and
164 pollen.

165 In order to have the possibility for stakeholders and the interested public to comment on the draft
166 Guidance Document, we propose to include a round of public consultations on the draft Guidance
167 Document. An Opinion on the science behind the Guidance Document could be delivered by April
168 2012 and a final Guidance Document in December 2012.

169

170 **CONTEXT OF THE SCIENTIFIC OUTPUT**

171 The Guidance Document is intended to provide guidance for notifiers and authorities in the context of
172 the review of Plant Protection Products (PPPs) and their active substances under Regulation (EC)
173 1107/2009.

⁴ European and Mediterranean Plant Protection Organization

⁵ International Commission for Plant-Bee Relationships Statutes

⁶ Communication from the Commission to the European Parliament and the Council on Honeybee Health, COM(2010) 714 final, adopted on 06/12/2010

174 The scientific Opinion on the science behind the development of a risk assessment of Plant Protection
175 Products on bees (*Apis mellifera*, *Bombus* spp. and solitary bees) (EFSA, 2012a) provided the
176 scientific basis for the development of the Guidance Document.

177 A public consultation is foreseen in order to give stakeholders and the interested public the
178 opportunity to comment on the draft Guidance Document.

179

180 **1. Introduction**

181 A decline of some pollinator species was reported in several different regions of the world (Biesmeijer
182 et al., 2006; Committee on the status of Pollinators in North America, 2007). Bee poisoning incidents
183 were reported in Europe (e.g. exposure to dust from seed treatments). Pollination is a very important
184 ecosystem service for food production and maintainance of biodiversity (Gallai et al., 2009). The
185 question on the causes of the observed declines received a lot of attention from regulatory authorities.
186 Research activities and monitoring of honey bee colony losses and bee poisoning incidents were
187 initiated.

188 Pesticides were often considered as one of the factors contributing to the decline of some insect
189 pollinator species. Concerns were raised by Members of the European Parliament and beekeepers'
190 associations on the appropriateness of the current risk assessment schemes for Plant Protection
191 Products. The European Commission tasked EFSA to issue an Opinion on the science behind the risk
192 assessment for bees and to develop a Guidance Document on the risk assessment of Plant Protection
193 Products on bees (*Apis mellifera*, *Bombus* spp., and solitary bees).

194 The process of the development of the Guidance Document follows the methodology of definition of
195 Specific Protection Goals (SPG) as outlined in the Scientific Opinion of EFSA's PPR Panel (EFSA,
196 2010). Risk management choices need to be made to define the Specific Protection Goals. The
197 Standing Committee on the Food Chain and Animal Health was consulted for the appropriate levels of
198 protection (e.g. to make choices on the magnitude of effects, duration of effects and exposure
199 percentiles).

200 The Guidance Document proposes the use of a tiered risk assessment scheme with a simple and cost
201 effective First Tier to more complex Higher Tier studies under semi-field and field conditions. Each of
202 the tiers will have to ensure that the appropriate level of protection is achieved.

203 The objective of this Guidance Document (GD) is to outline a process by which Plant Protection
204 Products (PPPs) can be evaluated for their potential risk in causing unacceptable harm to a group of
205 non-target organisms (bees). The maximum acceptable level of harm is defined by Specific Protection
206 Goals (SPGs), which are set out in the GD.

207 In practice, the process for risk assessment has two main components: a preliminary Exposure
208 Assessment (EA) that yields the Predicted Environmental Concentration (PEC) of the PPP that the
209 bees are exposed to in a severe case; an effect assessment that compares the degree of harm that can
210 result from exposure of bees to the PEC against the maximum level given by the SPGs. For example, a
211 PPP that was unlikely to come into any contact with bees during agricultural use would have a PEC of
212 zero and the effect assessment component of the risk assessment process would be unnecessary.

213 The risk assessment has several levels, or tiers. The First Tier is intended to sift out PPPs that are of
214 negligible risk to bees and so prevent unnecessary further testing. This First Tier involves various
215 triggers that are typically calculations based on the PEC and the known toxicity of the PPP. If the First
216 Tier triggers indicate that the PPP potentially presents an unacceptable risk, either the assessment must
217 be refined by including improved information and/or mitigation measures or the Higher Tier tests are
218 invoked, which involve semi-field and field tests.

219 The First Tier triggers are based on comparing a Hazard Quotient (HQ) or Exposure Toxicity Ratio
220 (ETR) against a threshold Trigger Value. The HQ or ETR is the ratio of the PEC to a standard index of
221 the PPP's toxicity to bees (e.g. the LD₅₀). A new contribution of this GD is to produce bespoke Trigger
222 Values that reflect the SPGs.

223 The Higher Tier tests were also formulated to reflect the SPGs. Thus, while there are many kinds of
224 observations that would indicate harm to bees at some level, the semi-field and field tests presented
225 here are designed to identify only unacceptable harm of the kind defined in the SPGs.

226

227 **2. Protection goals as agreed with risk managers from Member States**

228 Specific Protection Goals based on ecosystem services were defined according to the methodology
229 outlined in the Scientific Opinion of EFSA (2010). In consultation with risk managers in the
230 SCoFCAH (Standing Committee on the Food Chain and Animal Health) the Specific Protection Goals
231 for honey bees were set as follows.

232 The attributes to protect were defined as survival and development of colonies and effects on larvae
233 and bee behaviour as listed in regulation (EC) No 1107/2009. In addition, abundance/biomass and
234 reproduction were also included because of their importance for the development and long-term
235 survival of colonies.

236 The viability of each colony, the pollination services it provides, and its yield of hive products all
237 depend on the colony's strength and, in particular, on the number of individuals it contains. It is
238 therefore proposed to relate protection goals specifically to colony strength, which is defined
239 operationally as the number of bees it contains (= colony size).

240 The magnitude of effects on colonies should not exceed 7% reduction in colony size. Forager
241 mortality should not be increased compared to controls by a factor of 1.5 for 6 days or a factor of 2 for
242 3 days or a factor of 3 for 2 days.

243 Honey production is important for beekeepers and should therefore be included in the Specific
244 Protection Goals. It is proposed to include honey production as an endpoint measurement in field
245 studies.

246 The overall level of protection also includes the exposure assessment goals. It was decided that the
247 exposure assessment should be done for each of the regulatory zones. By defining a certain percentile
248 exposure assessment goal (e.g. 90%) it means that 90% of all colonies at the edge of a treated field in
249 one regulatory zone should be exposed to a lower quantity than what is assessed in the risk
250 assessment.

251 No final decision was taken by the SCoFCAH on the exposure percentiles. The current version of the
252 Guidance Document is based on the 90th percentile. If risk managers decide to choose a higher
253 percentile after the public consultation period then the corresponding exposure values need to be
254 changed in the final version of the GD.

255 For further details on setting of protection goals see Appendices A and B.

256

257 **3. Exposure Assessment for bees**

258 **3.1. Introduction**

259 **3.1.1. Relationship between the exposure assessments of honey bees, bumble bees and solitary
260 bees**

261 This chapter deals with the exposure assessment of the bees. Except for this first section, the chapter
262 considers only the exposure assessment of the honey bees. As will be described below, this exposure
263 assessment focuses on the concentration in nectar and pollen in the bee hive (which is an average of
264 the concentrations in all types of attractive plants in the foraging area). We consider the approach
265 described for the honey bees also valid for bumble bees because they form a nest which can be
266 considered the equivalent of a hive with respect to exposure. However, this is of course not the case
267

268 for the solitary bees. As will be described below, the approach for the honey bees is based on
269 approaches for the different types of attractive plants in the foraging area. So for the solitary bees we
270 propose to base the exposure assessment on the approaches described below for the different types of
271 attractive plants.
272

273 **3.1.2. Specification of the Exposure Assessment Goal**

274
275 As described in Chapter 2, the proposed goal of the exposure assessment is to provide concentrations
276 corresponding to a 90th percentile worst-case for the hives at the edges of treated fields in the area of
277 use in the context of registration at EU level. The exposure assessment described in the following
278 sections is based on this 90th percentile but can be changed if risk managers would decide to another
279 percentile.
280

281 The total area to be considered for assessing this 90th percentile depends on the type of registration.
282 Options include (i) the whole EU (e.g. for seed treatments), (ii) one of the regulatory zones, (iii) a
283 certain climatic zone, (iv) a Member State. Usually the selected option is linked to the concept of a
284 safe use of significant size. Let us consider for example an application of an insecticide in
285 strawberries: the issue is then whether the SCoFCAH considers a safe use in strawberries in e.g.
286 Greece sufficient for EU registration or would like to have a safe use in the whole southern zone. This
287 may be different for different types of application of the substance and will need to be clarified at a
288 later stage. This guidance will further refer to the total area to be considered as 'the area of use of the
289 substance'.
290

291 As described in Chapter 2, the exposure assessment goal is defined as the colonies at the edges of
292 treated field in the area of use of the substance. As will be described below, the exposure of such
293 colonies may not only be caused by residues in nectar and pollen from plants in the treated field but
294 also by residues in nectar and pollen from other plants: e.g. attractive adjacent crops or attractive
295 succeeding crops. For such other plants it becomes a point of debate whether the spatial statistical
296 distribution should be defined as (A) the hives at the edge of the treated fields or (B) the hives at the
297 edge of the adjacent or succeeding crops. The populations A and B will be different. For example not
298 all fields with a certain attractive succeeding crop in an area of use will have had the treated crop as its
299 precursor crop. In order not to complicate the exposure assessment by such shifts in the definition of
300 the spatial population of the hives, we propose to stick to the same definition of the spatial population
301 of the hives for all types of plants: i.e. those at the edge of fields treated with the substance considered
302 (option A). This is justified because in principle this population exists: e.g. even if the treated crop is
303 followed by an unattractive crop, there may be a hive at the edge of this field next year because of
304 other attractive crops in the landscape.
305

306 The exposure assessment goal used here does not prevent incidents because it assesses only the 90th
307 percentile worst-case hive at the edge of the treated field. Incident prevention would lead to another
308 exposure assessment goal and thus to another exposure assessment procedure. If the SCoFCAH wishes
309 to include incident prevention in addition to the exposure assessment goal as defined above, this needs
310 to be added at a later stage. An exposure assessment goal based on incident prevention will have to
311 include the definition of an incident and the maximum number of incidents that is considered
312 acceptable in the area of use of the substance.
313
314

315 **3.1.3. Selection of the Ecotoxicologically Relevant types of Concentration**

316
317 As described by EFSA (2010), any assessment of the risk to organisms has to be based on those types
318 of concentration that are most relevant for the effect (called the ecotoxicologically relevant types of
319 concentration). The schemes for the effect assessment for honey bees require a number of different

320 types of concentrations and this chapter describes how these are to be assessed. Given time limitations,
321 we focus on the assessment of the concentrations in nectar and pollen entering the hive and ignore the
322 other types of concentration that may be relevant for spray and seed-treatment applications (see
323 section 3.5.1 of EFSA, 2012a). The reason for this is that the concentrations in nectar and pollen
324 entering the hive are considered to be the most important drivers for the effects on the colony. Other
325 types of concentration may be added at a later stage.
326

327 We consider that the most important exposure concentrations to be added are the concentration in
328 honeydew and the concentration in the guttation water (both after spray and seed-treatment
329 applications). High concentrations of systemic pesticides can be found in guttation droplets. However
330 it is unclear to which extend bees use these guttation droplets and hence pose a risk to bees. At the
331 moment it is not possible to provide a complete risk assessment method for exposure via honeydew,
332 since concentrations in honeydew after pesticide application are not known. However, incidents with
333 honey bees have been reported following overspray of honeydew. Therefore, the flow chart for the
334 concentrations in the nectar and pollen following spray applications contains as a first step the option
335 to prevent the contamination of honeydew via overspray by risk mitigation. A start has been made on
336 Appendix E by listing plants for which honeydew formation occurs regularly and significantly.
337 Comments and additions to this list are highly appreciated. Also for guttation water, a start has been
338 made in Appendix F by listing crops for which guttation occurs regularly and significantly and some
339 recommendations on how the risk to guttation water may be addressed. Comments and additions to
340 this list are highly appreciated.
341

The view of stakeholders on the importance of the exposure to honeydew and guttation would be welcome. Stakeholders are kindly asked to submit information/data on these exposure routes.

342
343
344 The risk via systemic uptake in plants and subsequent transfer to honeydew (after spray or after
345 solid/seed treatment) is currently not covered by the risk assessment scheme. This exposure route may
346 be developed in the future but is considered to be less relevant than the routes via nectar and pollen.
347 This is because the concentration of a systemic compound that could circulate in the phloem and reach
348 honeydew without harming aphids should, in principle, not be capable of harming bees foraging on the
349 honeydew, unless the compound is highly selective towards non-aphid insects. Selectivity information
350 should be available in the registration dossier. If such a selectivity is highlighted, a dedicated risk
351 assessment may be performed (e.g. risk mitigation).
352

353 The risk via direct exposure of honeydew from application of solid formulations, i.e. from 'overdust'
354 of honeydew in adjacent crops and field margins, is also not covered by the current risk assessment
355 scheme. This risk is considered to be less relevant than the risk from 'overdust' of nectar and pollen
356 because the latter is expected to occur much more often.
357
358

359 **3.1.4. Linking of Exposure and Effect Assessment based on parallel tiered approaches**

360
361 The risk to bees is assessed using parallel tiered approaches for the effect and exposure assessments
362 (EFSA, 2010, p. 46). So the guidance in this chapter delivers tiered approaches for assessing the
363 concentrations in pollen and nectar that are needed for the tiered effect assessment scheme in Chapter
364 7. The tiered exposure approaches will be described in the form of flow charts (see e.g. Figure 1). So
365 let us explain here the general legend of these charts. If a box contains a question, then it is always
366 followed by a 'yes' and a 'no' option. If a box does not contain a question, then it is a possible next
367 step in the tiered approach or it is a conclusion (e.g. if a box says 'acceptable risk'). If an activity in a
368 box leads to the conclusion that the risk is acceptable, there is no need to continue in the flow chart.
369
370

371 **3.1.5. The concept of the Residue Unit Dose (RUD) as used in the exposure assessment**

372
373 The aim of the exposure assessment is to generate concentrations in nectar and pollen. These are based
374 on the concept of the Residue Unit Dose (RUD):
375

376 $PEC = \delta \text{ RUD}$ (Eqn 1)

377 where δ is the dose (kg/ha), RUD is the concentration in nectar or pollen (mg/kg) at a dose of 1 kg/ha
378 and the PEC is the 'predicted environmental concentration' (mg/kg). We use the acronym 'PEC' for
379 this endpoint of the exposure because this is commonly used for the other exposure assessments in the
380 EU dossiers; it should be noted that the PEC for the bee exposure assessment may also be derived
381 from measurements.
382

383 As described before, also concentrations in adjacent crops, for example, have to be assessed. In such
384 cases, Eqn 1 does not apply because only a fraction of the dose will be deposited on this adjacent crop.
385 Therefore we need to generalise Eqn 1 into:
386

387 $PEC = m_{dep} \text{ RUD} = f_{dep} \delta \text{ RUD}$ (Eqn 2)

388 where m_{dep} is the mass deposited per area (kg/ha) and f_{dep} is the fraction of the dose deposited (-).
389
390

393 **3.1.6. The need for an Exposure Assessment at landscape level**

394 Bees from a hive at the edge of a treated field sample nectar and pollen not only from the treated field
395 but also from other fields. Effects on colonies are likely to not be related to concentrations in nectar
396 and pollen collected by an individual bee but to the average concentration in the nectar and pollen
397 entering the hive (which is the target of the proposed exposure assessment). This average
398 concentration depends on the concentrations in nectar and pollen in the whole foraging area of the
399 foragers of a hive and on the sampling strategy of these foragers.
400

401 Appendix H describes a first simple model for assessing the average concentration entering a hive
402 considering a foraging area that consists of different types of crops, i.e. a landscape-level approach. At
403 this stage, there is not yet a consensus on a model for obtaining the average concentration in the hive
404 based on the spatial distribution of concentrations in nectar and pollen in the foraging area of the hive.
405 There is also no consensus on the size of the foraging area of a hive although this will be at least in the
406 order of the radius of 1 km around a hive. Therefore we propose a conservative approach assuming
407 that the foraging area of a hive consists exclusively of the type of plants considered (treated crop or
408 other plants in treated field or adjacent crop etc). This conservativeness is likely to have a large effect
409 on the resulting concentrations and may thus also have a large effect on the acceptability of a risk
410 resulting from a certain use. This is especially the case because the conservativeness of the exposure in
411 higher-tier effect experiments is to a large extent based on restricting the foraging area as much as
412 possible to the treated field (e.g. by using *Phacelia* or application in tunnels). Therefore we
413 recommend developing guidance for a landscape-level exposure assessment in the near future.
414

415
416
417
418
419

420 **We encourage you to submit (during the public consultation period) data demonstrating**
421 **that the maximum in time of the concentration in nectar or pollen in a hive at the edge of**
422 **a treated field is lower than the maximum in time of this concentration in nectar or pollen**
423 **in the flowers of the treated crop.**

424
425
426

427 **3.1.7. The hierarchy of the Exposure Assessment**

428
429 We propose to structure the exposure assessment firstly on the basis of the application method of the
430 substance and secondly on the type of plants that may generate the nectar and pollen. The justification
431 for the application method is that this may have a very large effect on the exposure (e.g. dusts only
432 being generated by seed treatments) and that this is linked to a certain use, and thus to the regulatory
433 decision making (see EFSA, 2012b, for similar considerations with respect to the exposure assessment
434 for soil organisms).

435
436 For the justification of the type of plants, let us consider for example the concentration in nectar. Bees
437 may sample nectar from (i) the treated crop, (ii) weeds in the treated field, (iii) adjacent crops, (iv)
438 plants in field margins, and (v) plants growing during the next growing season in the treated field. The
439 nectar concentrations of these type of plants may differ strongly. For example, if a spray application
440 occurs only after the flowering period of the treated crop, this is likely to lead to low or negligible
441 exposure in the treated crop but not necessarily to low concentrations in e.g. weeds in the treated field
442 because the weeds in the treated field may flower during application. Spray drift from orchards outside
443 the treated field may be about 20% in the first metres (FOCUS, 2001) which may be deposited on
444 plants that are flowering during the time of application. These examples indicate that different types of
445 plants require different exposure assessments and thus different exposure flow charts.

446
447 Thus this chapter will consider the spray applications in Section 2 and the solid applications in Section
448 3 and at the start of each of these sections the different types of plants are described for which
449 exposure assessments will be provided.

450
451 Risk mitigation through mitigation of exposure has played an important role in the regulatory risk
452 assessment for honey bees for decades. It is therefore an essential part of the exposure assessment
453 procedures. Thus we have integrated it in the exposure flow charts described in Sections 2 and 3.

454

455 **3.2. Exposure Assessment for spray applications**

456 **3.2.1. The exposure Assessments for the different types of plants sampled by the bees**

457

458 As described in Section 1 the PEC in nectar and pollen has to be assessed for all the different types of
459 plants that are sampled by the bees. Figure 1 shows how this assessment works. The first step (box 1)
460 is to assess the PEC in weeds in treated fields based on the full dose and conservative default RUD
461 values. This can be seen as a screening step: in the First Tier, flowering weeds are assumed to be
462 present at the time of application, irrespective of the crop. This will generate the highest lower-tier
463 PEC of all types of plants and may be sufficient for non-toxic substances. If this screening step does
464 not solve the problem, the PECs of all the types of plants in the boxes 2 to 6 have to be considered.
465 Each of these boxes refers to an exposure assessment for which flow charts are given in the following
466 sections. All these flow charts have to be followed in parallel and the risks resulting from these
467 exposures have to be evaluated. As a next step (box 7) the exposure as measured in semi-field studies
468 in tunnels may be used to account for metabolism either in the foragers during transport from the
469 flowers to the hive or after entry of the nectar or pollen in the hive. For that purpose the courses of
470 time of these concentrations in the flowers and in the hive have to be compared and the concentrations
471 from the boxes 2 to 6 may be multiplied with the ratio of the maximum in the hive in the tunnel
472 divided by the maximum in the flowers in the tunnel (nectar and pollen to be treated separately). This
473 ratio is called the 'metabolism adjustment factor' in box 7.

474

475 There is still one complication: the flow charts for the exposure for the different types of plants
476 contain many risk mitigation options (e.g. 'restrict application to post-flowering'). If such an option is
477 needed to conclude on acceptable risk, the use of the substance changes and this may have also an
478 effect of the exposure assessment for other types of plants. Therefore box 8 indicates that in such a
479 case the flow charts in the other boxes have to be checked iteratively and this process has to continue
480 until the assessments in the different boxes are consistent with each other.

481

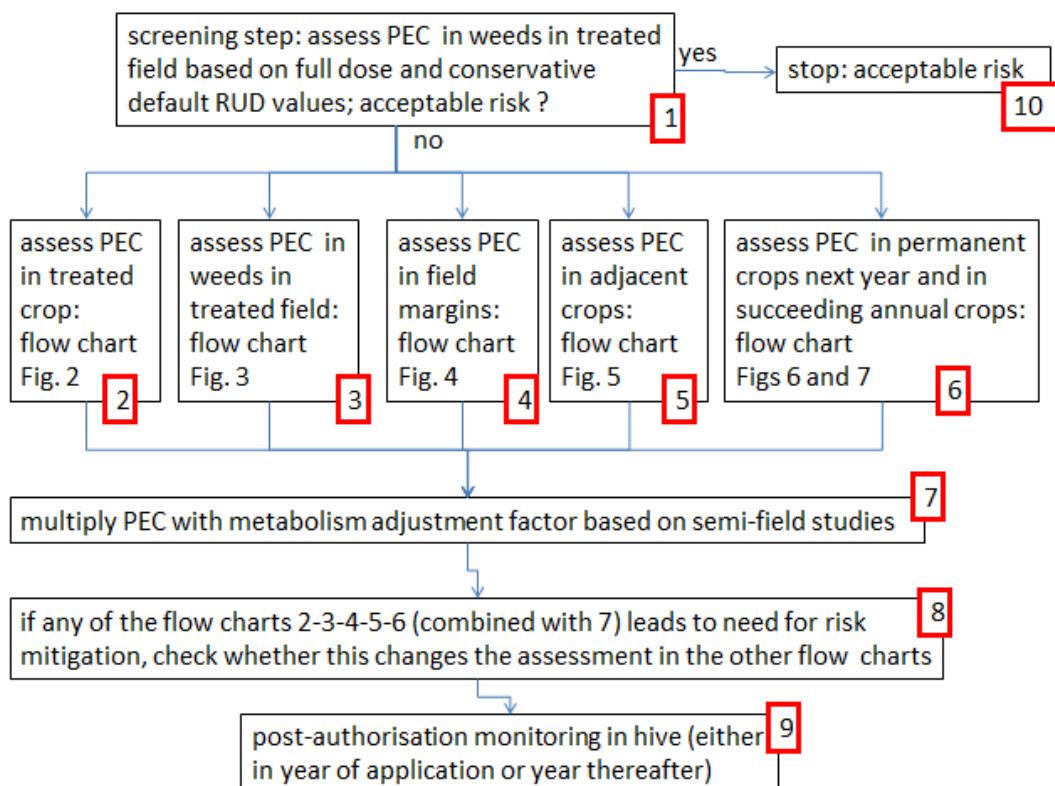
482 Risk managers may wish to have some form of post-authorisation monitoring to ensure that the risk is
483 acceptable or to confirm the underlying risk assessment. Article 66 of the EC Regulation 1107/2009
484 offers this possibility ('Producers of Plant Protection Products shall undertake post-authorisation
485 monitoring on the request of the competent authorities.'). Therefore box 9 in Figure 1 offers the
486 possibility to assess the exposure based on monitoring data in hives at the edge of treated fields. Such
487 monitoring data have of course to be targeted to the exposure assessment goal (i.e. 90th percentile of
488 hives at edges of treated fields in the area of use of the substance). They also have to be targeted to the
489 most critical part of the exposure assessments in the lower tiers (e.g. if the most critical part was the
490 concentrations in a succeeding crop then the monitoring should target hives at edges of fields of this
491 succeeding crop). This leads to the following provisional and non-exhaustive list of monitoring
492 requirements:

493 --- all farmers in the whole foraging area (provisionally set as a circle around the hive with a radius of
494 3 km) should have the intention to use the substance as specified on the product label (so also
495 following the risk mitigation measures on this label) because the concentration in the hive is
496 influenced by the use in the whole foraging area

497 --- the use of the product in the foraging area during the monitoring period should be recorded

498 --- in view of possible effects of weather conditions, monitoring data should be available for more than
499 one year

500 --- for assessment of problems in adjacent crops, monitoring should include measurements of wind
501 direction on the day(s) when the substance is applied to the treated field


502 --- for assessment of problems in field margins, monitoring should include information on occurrence
503 of field margins around the treated field in relation to the wind direction on the day(s) when the
504 substance is applied to the treated field

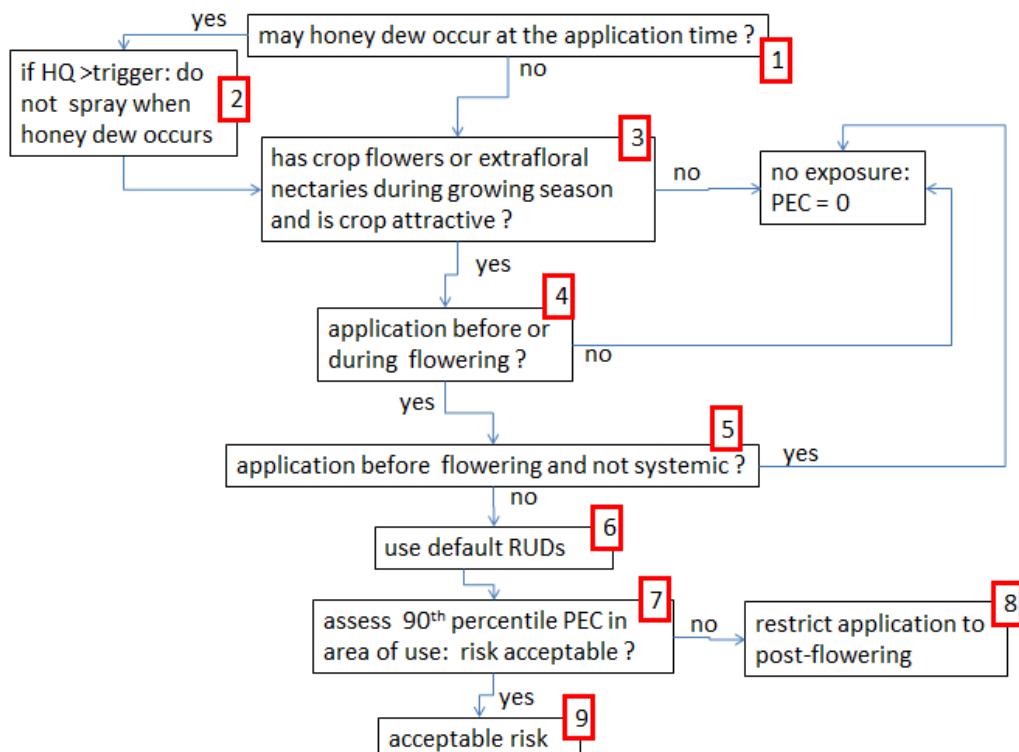
505 --- for assessments of problems with guttation in the treated field, monitoring should include daily
 506 records of occurrence of guttation in the treated field in the period after application of the substance
 507 --- the time course of the concentrations in nectar and pollen in the hive should be followed, starting
 508 before application(s) of the substance and continuing until the concentration has clearly passed its
 509 maximum value

510 --- it is advisable to perform the monitoring mainly in areas with high intensity of use of the substance
 511 because this intensity is likely to influence the 90th percentile case.

512 From the results of such monitoring studies the 90th percentile has to be derived using appropriate
 513 statistical analyses based on the spatial population as defined in Section 1.2 using all relevant
 514 information.

515
 516 The scheme in Figure 1 does not consider the PEC in adjacent crops and field margins in the year(s)
 517 following the year of application because these PECs will be smaller than those in the treated field in
 518 the year(s) following the year of application for spray applications. The scheme chart does also not
 519 consider weeds in the year after application in permanent crops and in succeeding annual crops (either
 520 in year of application or in year after application) because the concentrations in the nectar and pollen
 521 in these weeds are also expected to be smaller than those in the weeds in the application period.
 522
 523
 524

525
 526 **Figure 1:** Scheme for the exposure assessments for the PECs in nectar and pollen collected by the
 527 bees after spray applications.


528
 529
 530
 531

532 **3.2.2. Conservative default values for RUDs of pollen and nectar after spray applications**

533
534 The next sections describe the exposure assessments for the five different types of plants as indicated
535 in Figure 1. Four out of these five require conservative default values for the RUD in nectar and pollen
536 to avoid expensive residue measurements for substances that are not toxic to honey bees. These RUD
537 values are based on the data presented in Appendix I 'Pesticide residue levels in nectar and pollen and
538 the residue unit doses (RUDs)'. The default RUD for nectar is 21 mg/kg and that for pollen is 150
539 mg/kg. These are the highest values of 28 measurements for nectar and 37 measurements of pollen.
540 The underlying assumption is that such conservative default values should be based on 99th percentiles
541 because it is highly undesirable from a risk management point of view that a lower exposure tier
542 would lead to acceptable risk whereas the risk would not be acceptable in reality. The highest of 28
543 values is the 98.2th percentile of the frequency distribution and the highest of 37 values is the 98.6th
544 percentile of the frequency distribution (so close to the 99th percentile).
545
546

547 **3.2.3. Concentrations in pollen and nectar in the treated crop**

548
549 The exposure assessment for the PECs for nectar and pollen in the treated crop is described in the flow
550 chart of Figure 2. At the start (box 1) it is checked whether honeydew may occur and if so, it is
551 recommended (in box 2) to put on the label that the substance should not be applied if there is honey
552 dew present if the HQ exceeds the trigger value for oral exposure to avoid this complication for non-
553 toxic substances. The next step (box 3) is to check whether this crop has flowers or extrafloral
554 nectaries during the growing season (if not, there is no nectar and pollen) and if it is attractive to bees
555 (if not no nectar and pollen is transported to the hive). Then it is checked to see whether the substance
556 is sprayed before or during flowering (box 4). If the substance is sprayed before flowering and not
557 systemic (box 5) then no exposure can be expected. Otherwise the concentrations in nectar and pollen
558 have to be assessed and as a first step this can be based on the default values described in Section 2.2
559 (box 6). If the risk is still not acceptable, the 90th percentile PEC in the area of use has to be assessed
560 (box 7) by field measurements under normal agricultural conditions (see Appendix J for guidance for
561 performing such measurements). Such measurements will also include automatically the uptake of
562 substance via the crop roots and its transport to pollen and nectar. If this box 7 does not lead to
563 acceptable risk, the exposure may be mitigated by restricting the application to the post-flowering
564 period (box 8).
565
566

567
568

569 **Figure 2:** Flow chart for the exposure assessments of the PECs for nectar and pollen in the treated
570 crop after spray applications. The box numbers refer to the general text above.

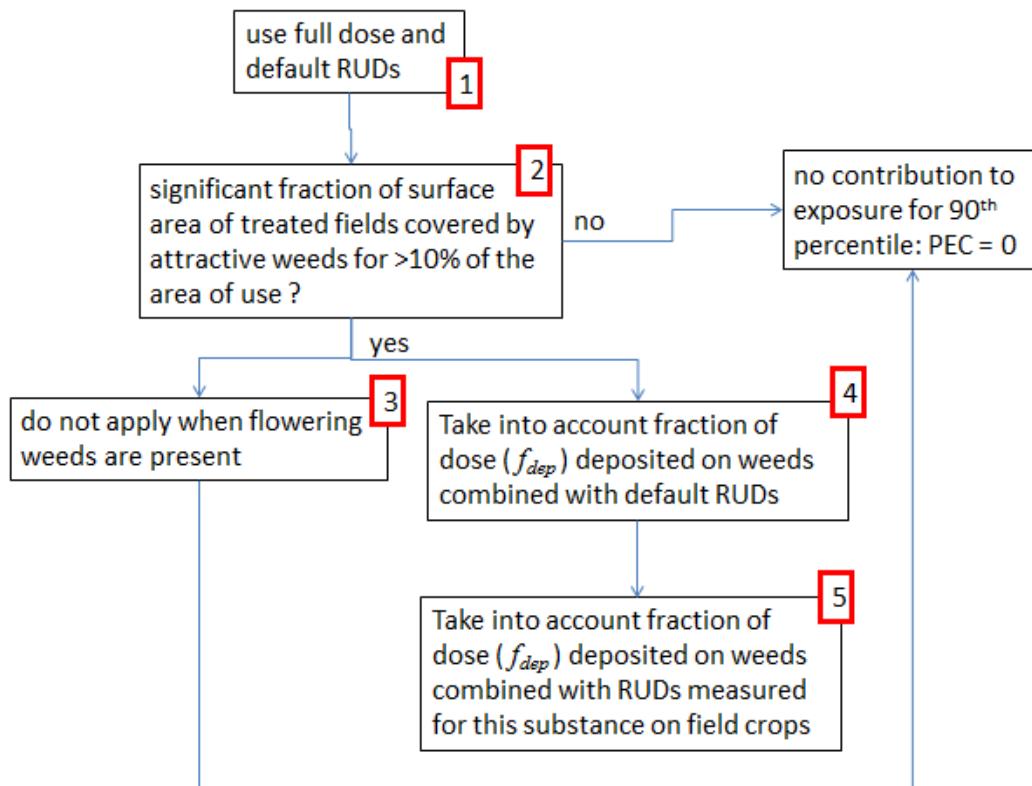
571
572
573
574
575

576 **3.2.4. Concentrations in pollen and nectar in weeds in the treated field**

577
578
579
580

581 The first step for the PECs for weeds in the treated field is to estimate the PEC using default RUD
582 values (Section 3.2.2) in combination with the full dose (box 1 in Figure 3).
583
584 These plants may flower at any time, so the application time does not have an influence on these
585 RUDs. If this gives an unacceptable risk, it may be checked whether it is likely that a significant
586 fraction of the surface area of treated fields is covered by weeds at the application time. If this will
587 happen at less than 10% of the area of use of the substance, no weeds will occur in a 90th percentile
588 case and thus their exposure can be ignored (box 2). For example, weeds are usually abundant in
589 annual crops: abundant weed growth is more likely to occur in e.g. orchards. However, at this moment
590 no guidance for this assessment of the abundance of weeds is available for the most relevant crops. We
591 recommend therefore to develop guidance for this at EU level in the near future. As long as this
592 guidance is not available, the box can be ignored and the risk assessor can go immediately to box 3 or
593 4 (conservative approach).

594
595
596


597 Next there are two parallel steps in the flow chart: (i) mitigate the risk by not applying when flowering
598 weeds are present (box 3) or (ii) refine the exposure by taking into account the fraction of the dose
599 deposited on the weeds (box 4). Guidance for this fraction of the dose deposited can be found in
600 Appendix E of EFSA (2009). In case box 4 does not lead to acceptable risk, we propose to refine the
601 RUDs for the weeds by using RUDs measured for this substance in a number of different types of field

597 crops (box 5). An alternative is to measure RUDs in *Phacelia* as a proxy for the weeds. This approach
 598 of using other plants than the weeds is based on the assumption that the RUD of a substance is more
 599 driven by substance properties than by plant properties. This is likely to be the case but it is uncertain
 600 whether this assumption is defensible for the full range of plants and substances. Therefore we
 601 recommend to underpin this approach by analysing available data and further research. The alternative
 602 would be to measure RUD for the most relevant weed species; we do not advise this because the
 603 composition of attractive weed species in treated fields is likely to be very variable and we are not
 604 aware of data on their distribution in treated fields across the EU.

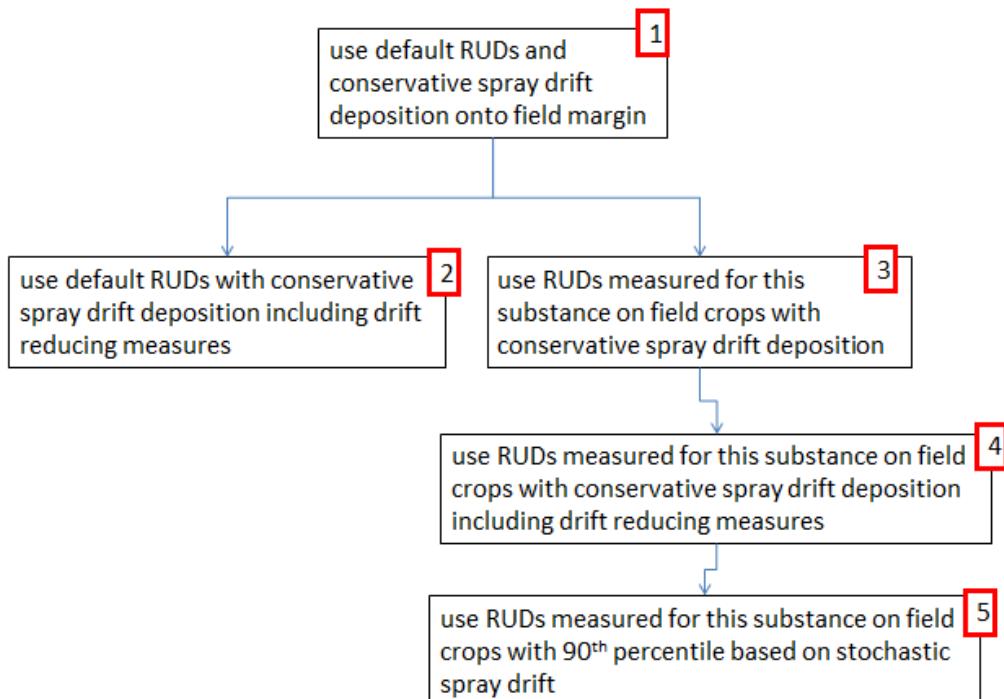
605
 606 The flow chart in Figure 3 considers only exposure via spray application and thus ignores the exposure
 607 of the weeds via root uptake in the soil and subsequent accumulation in nectar and pollen of the
 608 weeds. This possibility was ignored because it is likely to lead to lower concentrations in nectar and
 609 pollen than overspray.

610
 611 Because flowering weeds will often be present in the field at the time of application, the assessment of
 612 the PEC in the weeds in the treated field will often trigger the biggest exposure assessment problems
 613 of all the assessments in the flow chart of Figure 1 if the risk mitigation option (box 3) is for some
 614 reason impossible. In such case the landscape-level exposure assessment (yet to be developed) could
 615 be a useful higher-tier solution because weeds are unlikely to be present on a large fraction of the
 616 surface area of the treated field.

617
 618

619

620 **Figure 3:** Flow chart for the exposure assessments of the PECs for nectar and pollen in weeds in the
 621 treated field after spray applications. The box numbers refer to the general text above.


622
 623

624 **3.2.5. Concentrations in pollen and nectar in plants in field margins**

 625
 626 Flowering field margins can always be present at the application time, so their exposure has to be
 627 assessed. The target is the 90th percentile of the average concentration in nectar or pollen that enters a
 628 hive at the edge of the treated field. So it therefore seems justifiable to consider the average
 629 concentration of all attractive plants in the whole field margin of a treated field as the basis of the
 630 assessment: there are a priori no reasons to assume that the bees would preferably forage more on
 631 contaminated parts of the field margin than on parts that are not contaminated (e.g. because they were
 632 upwind during application).

 633
 634 The first step to assess pollen and nectar concentration in field margins is to calculate PECs with Eqn
 635 2 using default RUDs and default conservative spray drift deposition (box 1 of Figure 4). See
 636 Appendix K for interim guidance for the spray drift deposition. If the risk is not acceptable then spray
 637 drift can be reduced with risk mitigation measures (box 2). The alternative is to refine the RUDs for
 638 the weeds by using RUDs measured for this substance in field crops (box 3). This is the same
 639 approach as proposed for the weeds in the treated field in the previous section and has thus the same
 640 uncertainties. If the risk is not yet acceptable, drift reduction measures can be applied (box 4). If the
 641 risk is still not acceptable, the spray drift can be refined by calculating a 90th percentile deposition
 642 using a stochastic model (box 5); see Appendix K for the proposed approach based on this stochastic
 643 model.

 644
 645 As described before, the exposure assessment is based on the conservative assumption that the
 646 foraging area of a hive consists exclusively of the type of the plant considered (here the flowering
 647 plants in the field margin). This is likely to overestimate exposure especially for plants in field
 648 margins because the surface area of field margins is relatively small at the landscape level.

 649
 650
 651
 652

 653
 654 **Figure 4:** Flow chart for the exposure assessments of the PECs for nectar and pollen in the field
 655 margin of treated crops after spray application(s). The box numbers refer to the general text above

656

657 **3.2.6. Concentrations in pollen and nectar in adjacent crops**

658

659 As described before, a substance that is sprayed onto a treated crop that is not flowering at the time of
660 application, may lead to effects on an adjacent crop that is flowering at the time of application.
661 Consider for example two adjacent apple orchards of which the treated orchard is not flowering
662 whereas the adjacent orchard is flowering or a potato crop that is sprayed whereas adjacent to the
663 potato crop there is a flowering oil seed rape field.

664

665 Following the same reasoning as that for the field margins, we propose to consider the average spray
666 drift deposition in the whole adjacent-crop field: there is a priori no reason to assume that the bees
667 would preferably forage more on the contaminated strip of adjacent crop that is closest to the treated
668 field.

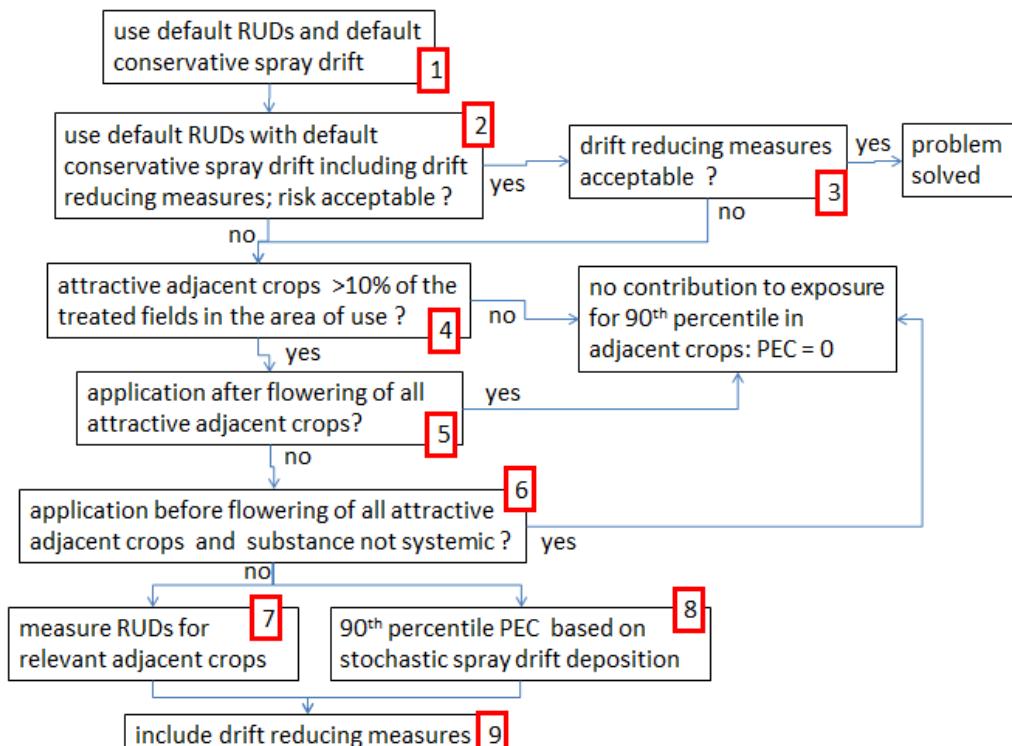
669

670 The first step in the exposure assessment of adjacent crops (box 1 in Figure 5), is to calculate the PEC
671 with Eqn 2 based on the default RUDs and conservative default spray drift deposition (f_{dep} in Eqn 2).
672 See Appendix K for interim guidance for the spray drift deposition. If the risk is not yet acceptable, the
673 exposure can be mitigated by applying drift reduction measures (box 2). If the risk is acceptable and
674 the notifier considers the drift reduction measures no problem (box 3), then the problem is solved.
675 Otherwise it can be checked whether there is an attractive adjacent crops area bigger than 10% of the
676 surface area of the treated fields (box 4). If this is not the case, the 90th percentile hive is unlikely to be
677 influenced by an attractive adjacent crop and the exposure resulting from these plants can be ignored.
678 At this moment the assessment in box 4 cannot be performed easily because no geostatistical analyses
679 of the desired frequencies of occurrence of attractive crops are available. We recommend to perform
680 such analyses at EU level using crop maps that are currently available at a resolution of 1 km² for all
681 EU countries (e.g. <http://eusoils.jrc.ec.europa.eu/library/Data/EFSA/>).

682

683 As long as the results of these analyses are not available, this box can be ignored and the exposure
684 assessment can continue assuming that this percentage is indeed above 10% (conservative approach
685 because the exposure has to be assessed then anyhow). The next step is to check whether application is
686 after flowering of the attractive adjacent crops (box 5). If yes, the PEC can be assumed to be zero.
687 Next step (box 6) is to check whether application is before flowering of all attractive adjacent crops
688 and if the substance is not systemic. If yes, the PEC can be assumed to be zero again. If no, the
689 substance is applied during flowering or it is both systemic and applied before flowering. Then there
690 are two options. The first is to measure RUDs for the relevant adjacent crops (box 7). Relevant means
691 only those attractive adjacent crops that would in isolation lead to 'no'-answers in the boxes 5 and 6.
692 The second is to refine the 90th percentile spray drift deposition based on a modelling study based on a
693 stochastic wind angle and wind speed (box 8; see Appendix K for details of the modelling study). The
694 90th percentile PEC has to be based on the spatial population of hives as defined in the exposure
695 assessment goal, i.e. all hives at the edge of treated fields. So if the relevant attractive adjacent crops
696 only occur for e.g. 20% of the treated fields, then the 90th percentile PEC can be assessed by taking the
697 50th percentile PEC of the spray drift deposition probability density function (because the 90th
698 percentile is the 50th percentile of the top 20% of the statistical population). See Appendix L for the
699 general approach for assessing such percentiles.

700


701 As described before, geostatistical analyses of the frequencies of occurrence of attractive adjacent
702 crops are currently not available. As a consequence, it can be assumed that the relevant attractive crops
703 are adjacent to all treated fields (conservative assumption).

704

705 If the risk is still not acceptable, box 9 provides the risk mitigation option of spray drift reducing
706 measures.

707

708

709
710
711

712 **Figure 5:** Flow chart for the exposure assessments of the PECs for nectar and pollen in adjacent
713 crops after spray applications. The box numbers refer to the general text above

714

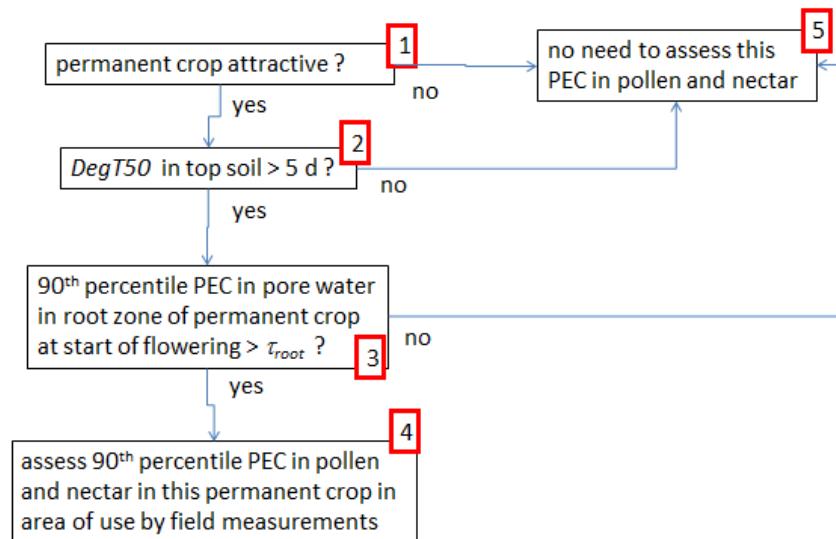
715 **3.2.7. Concentrations in pollen and nectar in plants in permanent crops in the next year and
716 in succeeding annual crops**

717
718 For permanent crops it is possible that soil residues of substances lead to root uptake in the following
719 year and are subsequently transported via the plants to nectar and pollen (especially for systemic
720 substances). This may also happen for annual crops that are grown one year after the treated annual
721 crop. Vegetables such as cabbage, carrots and beans may be grown two times in a growing season
722 (e.g. six of the nine FOCUS groundwater scenarios have been parameterised for such double crops;
723 FOCUS, 2009). So a spray application to the first crop may lead to uptake of substances via the roots
724 in the second crop and accumulation in nectar and pollen of this second crop. This may be relevant for
725 attractive double crops such as beans. This section provides guidance for the exposure assessment of
726 the concentrations in nectar and pollen in these three types of crops.

727
728 Root uptake of substances seems to occur for all organic micropollutants and seems to be mainly a
729 function of the octanol-water partition coefficient and the molar mass (Sur et al., 2012). So it is
730 impossible to exclude a priori that non-systemic substances are transported to nectar and pollen.
731 Therefore this exposure assessment applies to both non-systemic and systemic substances. We
732 recommend analysing available data on residues in nectar and pollen resulting from root uptake to
733 underpin that non-systemic substances will not be transported to nectar and pollen in amounts that
734 could become relevant for the risk assessment of bees. If this indeed can be underpinned, this exposure
735 assessment could be limited to systemic substances.

736
737 There is a consensus in literature that the plant uptake of Plant Protection Products and their
738 metabolites at a certain depth in soil is proportional to their concentration in the pore water in the soil

739 at that depth. This concept has already been used for decades in the simulation models that have been
 740 used for the regulatory assessment of leaching to groundwater and surface water at national and EU
 741 levels (e.g. Leistra & Dekkers, 1976). We therefore propose using the average pore water
 742 concentration in the root zone of the plant as a criterion to assess the likelihood of significant plant
 743 uptake (as a lower tier approach).


744
 745 The next question is then what value of this pore water concentration should be used for triggering
 746 further work. The first consideration is that the concentration in the nectar and pollen can be
 747 considerably larger than the concentration in the water that is taken up by the roots (especially for
 748 systemic substances). The second consideration is that the density of pollen and nectar is in the order
 749 of 1 kg/L, so a concentration of 1 µg/L in nectar or pollen corresponds to about 1 µg/kg. Combining
 750 these two, we propose that the trigger concentration in pore water (in µg/L) should be ten times
 751 smaller than a 'safe' concentration in nectar and pollen (in µg/kg). It seems appropriate to use, as the
 752 safe concentration, the regulatory acceptable concentration in nectar or pollen due to oral exposure
 753 (RAC_{oral}) that will be assessed in Chapter 7. So we propose:

754
 755 $\tau_{root} = 100 RAC_{oral}$ (Eqn 3)
 756

757 with τ_{root} in µg/L and RAC_{oral} in mg/kg (the factor 100 is needed because of the unit mg/kg for the
 758 RAC_{oral} ; the basis of the logic is that if RAC_{oral} is e.g. 1 µg/kg τ_{root} has to be 0.1 µg/L).

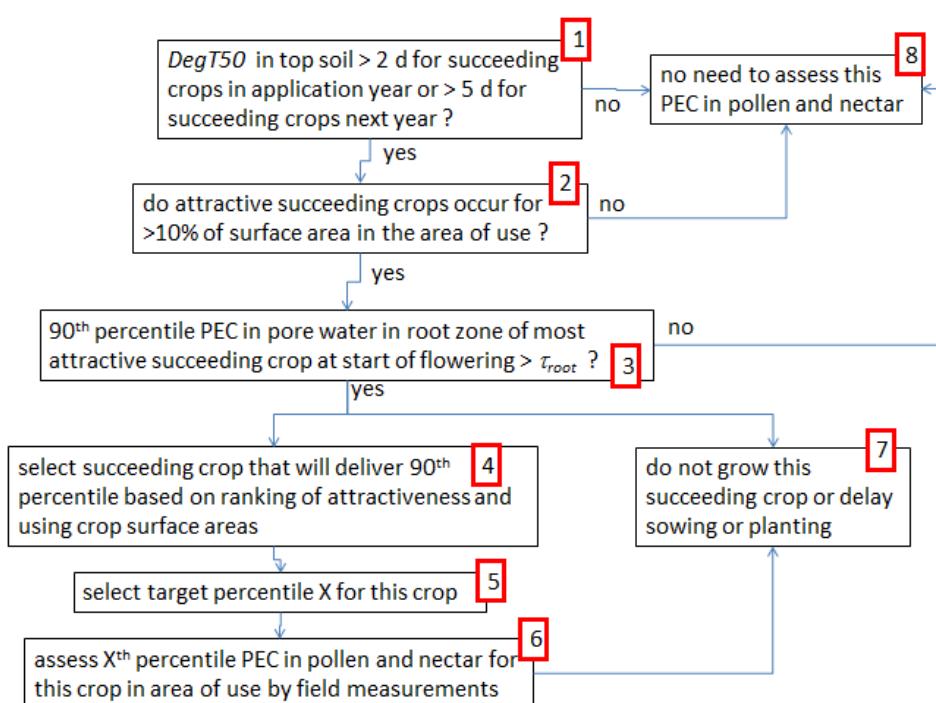
759
 760 We consider first the exposure assessment for permanent crops in the year after the application (Figure
 761 6). Box 1 tests whether the permanent crop is attractive. The next step is a simple trigger for the
 762 $DegT_{50}$ in top soil at 20°C and at moisture content at field capacity. The $DegT_{50}$ is the half-life in the
 763 soil matrix in soil (so excluding dissipation processes at the soil surface). This is part of the endpoint
 764 list and thus available. The concept behind this trigger is that if this $DegT_{50}$ is short enough, the pore
 765 water concentration in the root zone will be low enough a year after application. We propose
 766 tentatively $DegT_{50} > 5$ d. The trigger value has to be chosen so that the later steps in the flow chart are
 767 unnecessary even for the most toxic substance, the most critical scenario and the highest application
 768 rate. The proposed value of 5 d is tentative and will have to be underpinned by scenario calculations
 769 for the full range of substance properties. If this trigger is exceeded, the 90th percentile of the average
 770 pore water concentration in the root zone at the time of the start of the flowering next year has to be
 771 assessed and compared to τ_{root} (box 3). This 90th percentile refers to the area of use of the substance
 772 (considering of course the variability in meteorological conditions from year to year). No scenarios
 773 have yet been developed for this 90th percentile. As long as these scenarios are not available, we
 774 propose to use the FOCUS groundwater scenario that is most relevant for the area of use of the
 775 substance (these scenarios have been parameterised for apples for all nine scenario locations; FOCUS,
 776 2009). These FOCUS scenarios intend to assess the 90th percentile of the pore water concentration
 777 leaching at 1 m depth. A scenario selection procedure depends on the target quantity: so it can be
 778 expected that a 90th percentile scenario for the leaching concentration at 1 m depth will differ
 779 significantly from a 90th percentile scenario for the average pore water concentration in the root zone.
 780 However, development of a scenario targeted to the concentration in the root zone will take time.
 781 When such scenarios are developed, they can be best targeted to the total mass taken up from the start
 782 of the growing season to the moment of flowering because this is likely to be a better indicator of the
 783 concentration in nectar and pollen than the average concentration in the root zone.

784
 785 If the assessment in box 3 of Figure 6 does not solve the problem, the 90th percentile PEC in nectar
 786 and pollen has to be assessed via field measurements (box 4); see Appendix J for guidance on how this
 787 should be done.

788
789
790

791 **Figure 6:** Flow chart for the exposure assessments of the PECs for nectar and pollen in permanent
792 crops in the year after one or more spray application(s). The box numbers refer to the general text
793 above

794
795 So we can now move on to the exposure assessment for nectar and pollen of succeeding annual crops
796 (Figure 7). As described before, both succeeding crops in the application year are considered as well
797 as succeeding crops in the next year. The first step (box 1) is to check whether the DegT50 in top soil
798 at 20°C and at a moisture content at field capacity are low enough to prevent exposure. We propose a
799 trigger of 2 days for succeeding crops in the application year and 5 days for crops grown the year after.
800 Also these triggers need to be underpinned by scenario calculations for the full range of substance
801 properties. The next step (box 2) is to check whether attractive succeeding crops occur for more than
802 10% of the area of use of the substance. If not, less than 10% of statistical population of the hives will
803 be exposed via these types of plants and these types of plants can thus be ignored when assessing the
804 90th percentile exposure of the hives. If they do occur above 10%, then box 4 indicates that the 90th
805 percentile of the average concentration in the pore water in the root zone at the start of flowering
806 should be assessed and compared to t_{root} (box 3).
807


808 For the annual crops grown in the next year, we propose to follow the same approach as for the
809 permanent crops: use the FOCUS groundwater scenario that is most relevant to the area of use of the
810 substance. FOCUS (2009) parameterised scenarios for some twenty annual crops including e.g. oil
811 seed rape. This should be considered as an interim approach just like for the permanent crops (see
812 previous paragraph for explanation). For the succeeding crops grown in the year of application of the
813 substance, the FOCUS leaching scenarios seem less appropriate because leaching is a process of years
814 whereas the exposure of these crops has to be assessed e.g. three months after application of the
815 substance (FOCUS, 2009). For these crops we recommend to use the guidance developed by EFSA
816 (2012b) for assessment of the 90th percentile of the average pore water concentration in the top 20 cm
817 of soil in the context of the risk assessment for soil organisms.
818

819 In view of the above, we recommend developing targeted scenarios for assessing the plant uptake of
820 substances in attractive permanent and in attractive annual succeeding crops and that these are also
821 used to support the selection of the combinations of soil and meteorological conditions that are likely
822 to lead to the highest risk of carryover of residues to plants growing next year.
823

824 If box 3 of Figure 7 does not solve the problem, field measurements of concentrations in nectar and
 825 pollen are needed to assess the 90th percentile PEC. The spatial statistical population of the hives
 826 consists of the hives at the edge of the treated fields (Section 1.2). So the 90th percentile PEC in pollen
 827 and nectar should be assessed considering the frequency of all succeeding crops. Let us assume for
 828 example that there is only one attractive succeeding crop that occupies 30% of the area of use of the
 829 substance in the year after application. These 30% are now considered to be the upper 30 percent of
 830 the distribution of the PEC values. In such a case the 90th percentile can be calculated as the 67th
 831 percentile of the frequency distribution of the measured PECs in nectar and pollen (because 90 is at
 832 2/3 between 70 and 100; see Appendix L for the general approach to calculate such a percentile). So
 833 we recommend selecting the succeeding crop that will deliver the 90th percentile based on a ranking of
 834 the attractiveness of the succeeding crops in combination with their surface area in the area of use of
 835 the substance (box 4). Next the target percentile X for this attractive succeeding crop corresponding to
 836 the overall 90th percentile can be assessed (box 5; see Appendix L for details) by measuring the
 837 concentrations of nectar and pollen in field experiments (box 6).
 838

839 Should it be difficult to assess the spatial distribution of succeeding crops, the exposure assessment
 840 can of course always be simplified by using conservative assumptions (e.g. assessing the 90th
 841 percentile of the most attractive succeeding crop).
 842

843 As indicated in Figure 7, there is also the risk mitigation option to not grow the succeeding crop that
 844 causes the problem or to delay sowing or planting of this crop until the soil residues have declined to
 845 an acceptable level (box 7).
 846
 847

848
 849
 850

851 **Figure 7:** Flow chart for the exposure assessments of the PECs for nectar and pollen in succeeding
 852 annual crops following one or more spray application(s) in the treated crop. The box numbers refer to
 853 the general text above
 854

855 For non-toxic substances τ_{root} may be larger than 100 µg/L. In such cases, it may be overkill to assess
856 the 90th percentile PEC in pore water in the root zone by simulations with numerical models and it
857 may suffice to use a worst-case upper limit of this PEC. At this stage, it is still impossible to give this
858 upper limit because no experience with such scenario calculations has yet been gained.
859
860
861

862 **3.2.8. The likely hierarchy of the Exposure Assessments for the different types of plants in
863 regulatory practice**

864
865
866 Currently, the risk assessor has to first apply the conservative screening (box 1 of Figure 1) and
867 thereafter go through all flow charts in parallel (Figure 1). It would be easier if we could define a
868 hierarchy between these flow charts. However, the flow charts of Figures 2 to 6 are in general
869 complex and most of them contain options to reduce the exposure via risk mitigation. As described in
870 Figure 1, risk mitigation measures may lead to the need for going iteratively through part of the flow
871 charts because applying a risk mitigation measure may lead to another use of the substance.
872 Nevertheless we attempt here to shed some light on this hierarchy.
873

874 The assessment for the treated crop (Figure 2) and for crops grown after the treated crop (Figures 6
875 and 7) have no link to any of the other assessments and also have no link to each other. The
876 assessments for (i) the weeds in the treated field (Figure 3), (ii) the plants in the field margins (Figure
877 4), and (iii) adjacent crops (Figure 5) have in common that their exposure is based on the possibility
878 that these plants flower at the time of application of the substance. So an option for a hierarchy could
879 be to start with weeds in the treated field because they may receive the full dose (but not always: see
880 box 4 of Figure 3), then to continue with the plants in field margins where the deposition is usually
881 less and then to end with the adjacent crops.
882

883 The 90th percentile exposure PEC for the adjacent crops is likely to be lower than that for the field
884 margins for two reasons. The first is that flowering attractive adjacent crops are only present at a
885 fraction of the border of treated fields at the application time whereas flowering plants in field margins
886 may always be present at the application time (it can only be different in the highly exceptional case
887 that the adjacent crop would have much higher crop-specific RUD values than other field crops). The
888 second reason is that the average concentration in the nectar and pollen in an attractive adjacent crops
889 is lower than in flowering plants in field margins because spray drift deposition decreases strongly
890 with distance to the treated field. So probably the exposure assessment for the adjacent crops is
891 superfluous now because it will lead to lower exposure than for the field margins. However, the whole
892 exposure assessment is based on the conservative assumption that the foraging area of a hive consists
893 exclusively of the type of plant considered (see Section 3.1.6). In the longer term this conservative
894 approach is likely to be replaced with a more realistic landscape-level exposure approach (see
895 Appendix H). Then it may occur that flowering of certain plant species in the field margin of a field
896 may lead to less exposure of the hive than e.g. an adjacent flowering oil seed rape crop because the
897 number of these plants in the field margin is much less than the number of crop plants in the first few
898 metres of the adjacent field. So the flow chart for the adjacent crops is likely to have little added value
899 now but will probably have its come back after landscape-level approaches have been developed.
900
901
902
903
904
905

906 **3.3. Exposure Assessment for solids**

907

908 **3.3.1. Introduction**

909

910 Solids are defined as seed treatments, pellets, granules etc. Solid formulations (e.g. wettable powders)
911 that are mixed with water and then sprayed are part of the spray exposure assessment. The EU
912 regulation (article 3, item 17) prescribes that Plant Protection Products that are used as seed treatments
913 are registered at the EU level, so not at zonal or Member State level. This is based on the concepts (i)
914 that the use of the Plant Protection Product is linked to the coating of the seed, so not to the sowing of
915 the seed, and (ii) that there should be free trade of treated seeds across the EU. So the area of use of
916 the substance for seed treatments is the whole surface area in the EU where the crop of treated seed is
917 grown.

918

919 The EU regulation does not prescribe registration of granules at the EU level. So the exposure
920 assessments of seed treatments are different in this respect. Therefore we describe here first the
921 guidance for seed treatments and thereafter that for granules.

922

923

924 **3.3.2. Exposure Assessment for seed treatments**

925

926

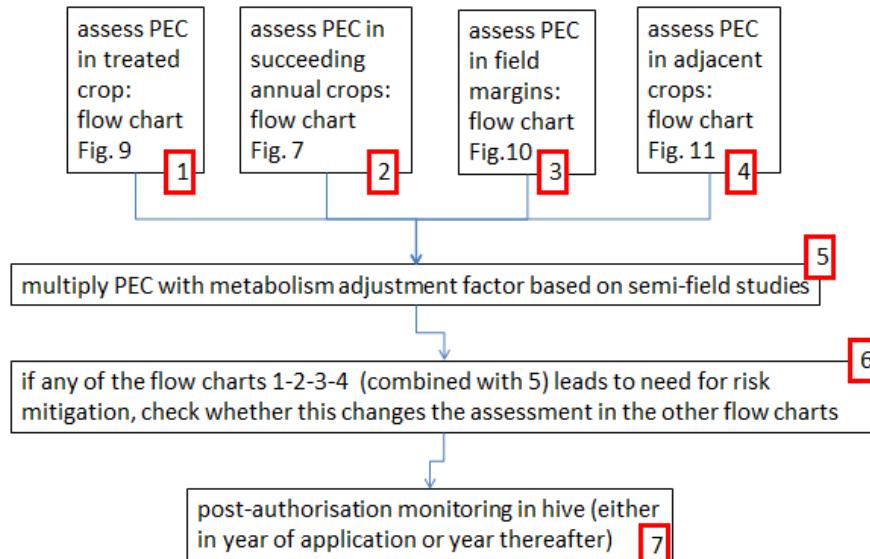
927 **3.3.2.1. The exposure assessments for the different types of nectar and pollen collected by the bees**

928

929

930 Following the same reasoning as for the spray applications, the PEC in nectar and pollen after seed
931 treatments has to be assessed for all the different types of plants sampled by the bees. The scheme in
932 Figure 8 shows the same types of plants as for the spray applications (in Figure 1) except the weeds in
933 the treated field. The weeds in the treated field are unlikely to be an issue in view of the application
934 via the seed treatment: no weeds will be present in the field when the crop is sown and uptake of
935 weeds via the roots is unlikely because the substance is concentrated around the treated seed.
936 Therefore uptake via the roots of weeds is likely to be negligibly small in the application year.
937 Admittedly weeds may lead to higher exposure in the treated field than the treated crop if this does not
938 flower. However, there is currently no up-to-date guidance for soil exposure resulting from seed
939 treatments: EFSA (2012b) developed such guidance for spray applications but not for other types of
940 application such as seed treatments. Therefore we recommend to develop such guidance for seed
941 treatments and to use this to assess the uptake by the weeds in the treated field. As long as this has not
942 yet happened, we suggest ignoring these plants in the bee exposure assessment.

943


944 The flow chart in Figure 8 (in box 5) also contains the option to use the metabolism adjustment factor
945 as described in Section 2.1. If such an adjustment factor has already have been derived from studies
946 with spray applications, then this factor may be used here as well because there are a priori no reasons
947 to assume that the metabolism in the bee or in the hive is influenced by the route of exposure of the
948 nectar or pollen in the flower. The flow chart in Figure 8 (in box 7) also contains the option of post-
949 authorisation monitoring as in Figure 1. See Section 2.1 for guidance on the monitoring procedure.

950

951 The mechanism of the exposure in the treated crop (box 1) and in succeeding annual crops (box 2)
952 differs completely from that in the field margin and in an attractive adjacent crop (boxes 3 and 4). The
953 treated crop is exposed because its seed is coated with the substance which leads to uptake by the roots
954 of the crop. This substance is then taken up and transported to the nectar and pollen of the treated crop.
955 Similarly the roots of succeeding crops may take up soil residues from seed treatments. However,

956 plants in field margins and of an attractive adjacent crop are exposed through the dust that is generated
 957 by sowing the treated crop and that is deposited onto them. Therefore we describe first the exposure
 958 assessments driven by root uptake and then those driven by dust deposition.

959
 960

961

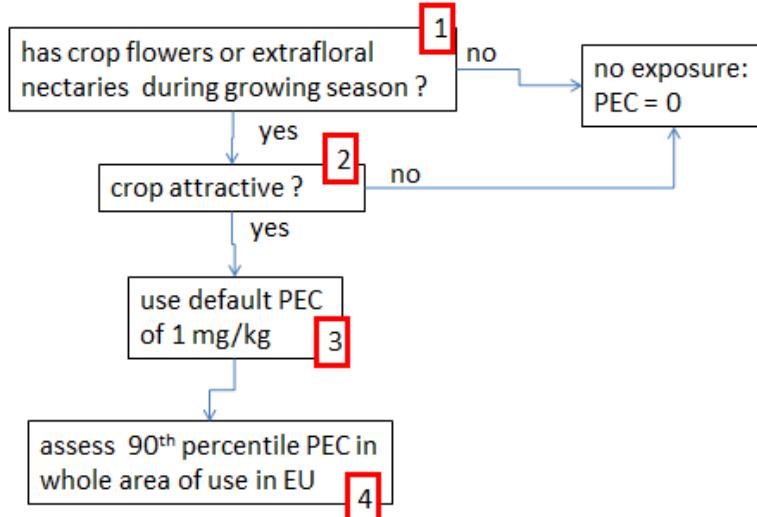
962 **Figure 8:** Scheme chart for the exposure assessments for the different types of plants sampled by the
 963 bees after seed treatments.

964
 965
 966

967 In principle it is possible that dust deposition will occur on bees that are foraging on honeydew in field
 968 margins or in adjacent crops or that such dust deposition will contaminate such honeydew which is
 969 then taken up by foraging bees. For the spray applications we included a risk mitigation option to
 970 avoid this (box 2 in Figure 2). We propose not assessing this exposure of honeydew due to dust
 971 deposition because we expect that it will lead to less exposure of the bees than the flowering plants in
 972 the field margin.

973
 974

975 3.3.2.2. Concentrations in pollen and nectar in the treated crop


976

977 The first two steps (Figure 9, boxes 1 and 2) in the exposure assessment for the treated crop are the
 978 same as for the spray applications: there is only exposure in the hive if the crop has attractive sources
 979 for nectar or pollen. See Appendix G. The next step is to use a conservative default value for the PEC
 980 from seed treatments (box 3). We propose to use for this purpose a PEC of 1 mg/kg irrespective of the
 981 dosage and the type of seed. The Appendix I 'Pesticide residue levels in nectar and pollen and the
 982 residue unit doses (RUDs)' contains data which would lead to less conservative default values.
 983 However, there are only data for three insecticides that belong to the same chemical class. We feel that
 984 this is too weak a basis for setting conservative RUD values for the whole population of Plant
 985 Protection Products and therefore propose the conservative PEC of 1 mg/kg.

986

987 If this would still not lead to acceptable risks, the 90th percentile PEC could be derived by residue
 988 analysis in five field studies in the area of use of the substance (i.e. in this case the whole cropped area
 989 in the EU) as described in Section 3.2.4.

990
 991

992

993 **Figure 9:** Flow chart for the exposure assessments of the PECs for nectar and pollen in the treated
 994 crop after seed treatments. The box numbers refer to the general text above

995
 996

997 3.3.2.3. Concentrations in pollen and nectar in succeeding annual crops

998
 999 After the growing cycle of the seed-treated crop, another attractive crop may be grown in the same
 1000 year or in the next year. So it is possible that part of the substance brought into the soil with the seed is
 1001 taken up by succeeding annual crops which may lead to concentrations in pollen and nectar that may
 1002 cause problems. We expect that this exposure will usually be small because it can be expected that a
 1003 large part of the substance brought into the soil with the treated seed will be taken up by the crop plant
 1004 that grows from this seed and because the remaining soil residue probably will behave as a slow-
 1005 release formulation. In view of time constraints, we are unable to analyse the available relevant
 1006 information in the literature and the dossiers in detail. Therefore we propose to assess this exposure
 1007 with the same flow chart as for the spray applications (Figure 7), but of course using the whole surface
 1008 area grown with this seed-treated crop in the EU as a basis for the assessment of the 90th spatial
 1009 percentile (see Section 3.2.1). The flow chart for the spray applications uses the groundwater scenarios
 1010 developed by FOCUS (2009) and the soil exposure scenarios developed by EFSA (2012b). However,
 1011 these scenarios have been developed for spray applications and do not consider the processes resulting
 1012 from application with the seed. As described above, these scenarios probably overestimate the soil
 1013 exposure resulting from seed treatments. As a consequence, the flow chart in Figure 7 may trigger
 1014 field studies (in box 6) while this is not strictly necessary. Therefore we recommend developing soil
 1015 exposure scenarios for seed treatments in analogy to the scenarios developed for spray applications by
 1016 EFSA (2012b).

1017
 1018
 1019
 1020
 1021

1022
1023

1024 3.3.2.4. Concentrations in pollen and nectar in field margins

1025

1026 Introduction

1027

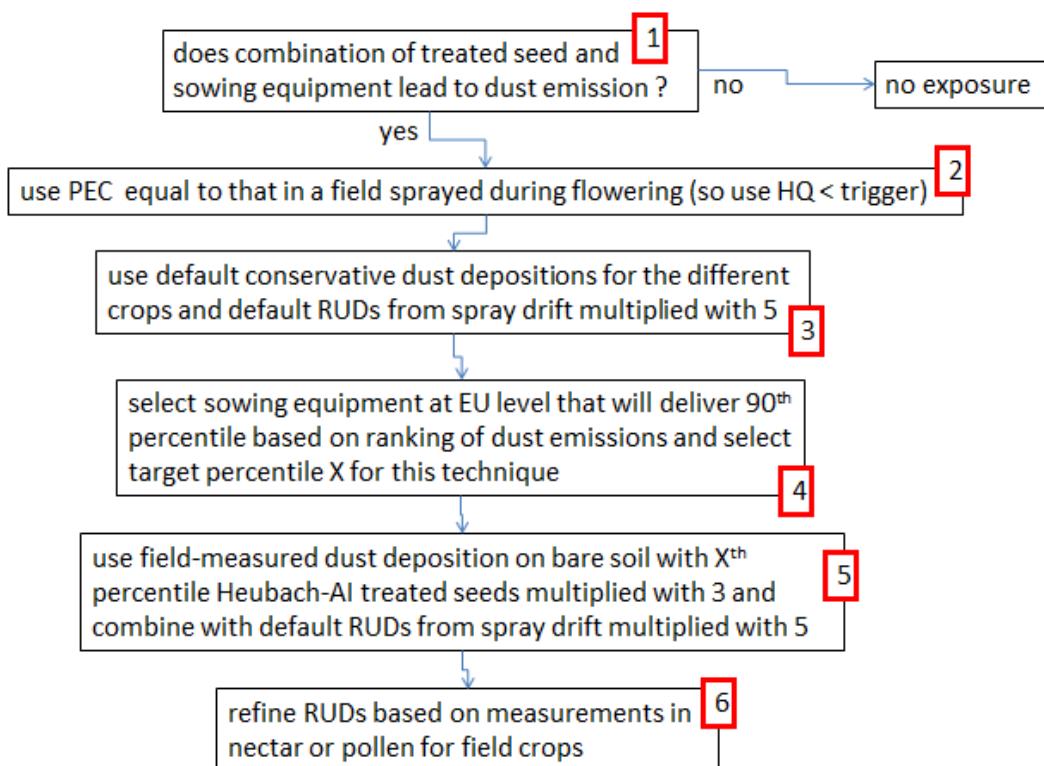
1028 Also for the seed treatments we are interested in the average concentration in nectar and pollen in the
1029 whole field margin of the treated field, so also considering the parts of the field margin that are not
1030 exposed because they were upwing during application.

1031

1032 As described before, field margins are exposed because of dust drift deposition. As described in
1033 Appendix K, the emission of the substance via the dust is almost completely determined by
1034 technological factors (quality of the seed coating and the sowing equipment). Severe bee-killing
1035 incidents have been reported as the result of dust emission after sowing seeds pneumatically and
1036 considerable improvements have been achieved in recent years to reduce these emissions by using
1037 better equipment in a number of Member States (e.g. Germany); see EFSA (2012a). As described in
1038 Section 3.1, the area of use of substances applied as seed treatments is the whole surface area in the
1039 EU where the crop, whose seed is treated, is grown. If we base the exposure assessment of a seed
1040 treatment on this total area, the 90th percentile case is likely to be a case with a sowing equipment with
1041 a comparatively high level of emission. This would have the consequence that one part of the EU
1042 cannot use a substance applied as a seed treatment because technological developments in another part
1043 of the EU are lagging behind. It is uncertain whether this is the intention of the SCoFCAH. An
1044 alternative approach would be to link an authorisation at EU level to a certain class of sowing
1045 machines (similar to the classes for emission reduction of spray drift; see Huijsmans & van de Zande,
1046 2011). These two approaches are fundamentally different: the first approach assesses the exposure
1047 based on the current reality of sowing equipments used across the EU whereas the second approach
1048 prescribes the class of sowing equipment needed for a certain seed treatment (which would have the
1049 consequence that the use is considered not acceptable for classes of sowing equipment that generate
1050 more dust emission). We describe below exposure assessment methodologies for both approaches so
1051 that the SCoFCAH can make an informed choice.

1052

1053


1054 Approach based on sowing equipment as used in reality in the EU

1055

1056 The first step of the exposure assessment (box 1 of Figure 10) is whether the combination of treated
1057 seed and sowing equipment will lead to dust emission (see Appendix G for detailed guidance). The
1058 next step (box 2) is a simple conservative step in which it is assumed that the dose in the treated field
1059 (kg/ha) is sprayed over the field margin. This has the consequence that the acute risk assessment can
1060 be based on HQ < trigger for contact exposure. If this criterion is not fulfilled (box 3), the exposure is
1061 assessed using conservative default dust deposition figures combined with default RUD values for
1062 pollen and nectar derived from spray applications multiplied with a factor 5. Use of RUDs from sprays
1063 may seem strange at first, however the background is as follows: Spray applications usually consist of
1064 spraying a liquid volume of 500 L/ha; this is a water layer of 0.05 mm. Evaporation rates of water
1065 during daytime are in the order of 10 mm/d in Europe in spring and summer, so in the order of 0.5
1066 mm/h. This means that the water of the spray application usually evaporates within an hour. So a spray
1067 liquid will usually become a solid in the field within less than an hour. Therefore it seems justified to
1068 assess the concentration in nectar and pollen based on RUDs from spray applications. However there
1069 are important differences between spray applications and dust deposition: the dust particles may stick
1070 to the hairs of the foragers and the foragers may collect them (assuming that they are pollen) whereas
1071 this is unlikely to occur with dried remnants of a spray solution. Therefore we tentatively introduce a

1072 safety factor of 5. We recommend underpinning this in near future by analysing existing data on dust
 1073 deposition and resulting concentrations in pollen and nectar reaching the hive.
 1074 We propose the following conservative default dust deposition (mass of substance per surface area of
 1075 the adjacent field expressed as percentage of the mass of substance applied per surface area of treated
 1076 field) to be used z1% for oil seed rape, 1.3% for cereals, 0.003% for sugar beets and 2.3% for any
 1077 other crop (see Appendix K for justification).
 1078

1079 The next step (box 4) is to assess the distribution of the different sowing equipments (mechanical
 1080 sowing, pneumatic sowing with and without deflectors) across the EU. These have to be ranked in
 1081 order of increasing dust emission and the percentage of the surface area of this crop that is sown with
 1082 this equipment, needs to be estimated (e.g. based on an EU wide questionnaire). Then the sowing
 1083 equipment has to be selected that will deliver the 90th percentile assuming that only the sowing
 1084 equipment determines the emission. For example, if the equipment with the highest deposition is used
 1085 on 15% of the surface area, this equipment will deliver the 90th percentile. If the equipment with the
 1086 highest deposition is used on 7% of the surface area, then this equipment will not deliver the 90th
 1087 percentile and the equipment with the one but highest deposition has to be considered. Furthermore the
 1088 target percentile X for this equipment needs to be assessed in box 4. Let us assume for example that
 1089 50% of the cereals is sown mechanically and 50% pneumatically. The pneumatic equipment will lead
 1090 to more deposition so this is the upper 50% of the frequency distribution. So taking the 80th percentile
 1091 of the pneumatic exposure should then give the overall 90th percentile. This 80th percentile is the
 1092 'target percentile X for this equipment' as described in box 4. See Appendix L for the general
 1093 calculation procedure of this target percentile.
 1094
 1095

1096
 1097
 1098

1099 **Figure 10:** Flow chart for the exposure assessments of the PECs for nectar and pollen in field margins
 1100 after seed treatments based on the sowing equipments as used in reality across the EU. The box
 1101 numbers refer to the general text above

1102

1103 So now we know now which percentile to assess considering all field margins adjacent to treated
1104 fields where this application equipment is used and move to box 5. As described before, the dust
1105 emission is strongly driven by the mass of dust released in the Heubach test and the concentration of
1106 active ingredient in this dust. We propose to combine these two factors by defining the 'Heubach-AI'
1107 value as the mass of active ingredient per 100 kg seeds or 100 000 seeds in the Heubach test. We
1108 propose to base the assessment of this X^{th} percentile on measurements of the Heubach-AI on portions
1109 of seed sampled from all seed treatment facilities for this crop-substance combination in the EU. The
1110 population of seed treatment facilities differs strongly for the different crops: e.g. in Germany there are
1111 about 15 such facilities for oil seed rape and about 1000 such facilities for cereals. Also the variation
1112 in the Heubach-AI values is likely to differ strongly for the different crops. Taking again the example
1113 of Germany: the variation of Heubach-AI values for oil seed rape is likely to be much smaller than that
1114 for maize because the 15 facilities for oil seed rape have agreed to work on the basis of the same
1115 protocol whereas the about 1000 facilities for cereals have not yet done so. For the assessment of the
1116 90th percentile exposure case this is not a problem: the sampling of the seed treatment facilities across
1117 the EU will take care of the current reality.

1118
1119 The above approach assumes that the sowing equipment has a much larger effect on the emission than
1120 the Heubach-AI value and that these are not correlated. They may be correlated if e.g. the sowing
1121 equipment with the highest emission is used in a certain region of the EU and the farmers in this
1122 region have a preference for seed treatment facilities in this region and if these facilities produce
1123 treated seeds with Heubach-AI values that differ systematically from the other facilities in the EU.
1124 Then this approach will lead to a systematic error in the estimated 90th percentile. Therefore we
1125 recommend to underpin or refine the proposed approach by analysing relevant information in the
1126 literature and the dossiers.

1127
1128 So based on Heubach-AI tests using seeds sampled from the relevant population of seed treatment
1129 facilities, a portion of treated seed can be identified that corresponds to the X^{th} percentile of the
1130 Heubach-AI value. We recommend as a next step (box 5) performing a field experiment in which the
1131 deposition of the substance on bare soil is measured as a function of the distance of the treated field (at
1132 least over 20 m) using this portion of treated seed. In such experiments the wind angle and wind speed
1133 has to be measured continuously (e.g. every minute) at different heights above the soil surface up to at
1134 least 5 m. The wind angle during application should be within 30° of the line along which the
1135 collecting vessels for the dust deposition have been placed. If the angle appears to be larger at the end,
1136 the measured deposition should be corrected (no guidance yet available, so for the time being this
1137 correction can be ignored). Wind speed should be between 2 and 3 m/s. The background of this
1138 recommendation is that little is yet known about the effect of wind speed on dust deposition in which
1139 case experiments can be best carried out at an intermediate wind speed. The deposition in the first hour
1140 after application should be measured but also the deposition in the next 23 hours. Also the mass of
1141 active ingredient applied to the treated field should be carefully assessed.

1142
1143 The resulting deposition should be multiplied by 10 to account for the filtering capacity of the plants
1144 in the field margin and be divided by 3 to account for the overestimation of the average dust
1145 deposition because the wind angle in the measurements is limited to 60° of the possible 360° (see
1146 Appendix K). These factors 10 and 3 are preliminary figures that should be underpinned by further
1147 research. The factor 10 is based on the draft SANCO Guidance Document in which a worst-case study
1148 is reported in which 12.4 times more substance was recovered in a vertical gauze net than in Petri
1149 dishes on the soil surface. So in combination this shows that the resulting deposition should be
1150 multiplied by 10/3 which is rounded to 3.

1151
1152 The deposition of substance resulting from the above exercise has to be combined with the default
1153 RUDs from spray drift multiplied by 5 (box 5); this is the same approach as was used in box 3.

1154
1155 In case box 5 does not lead to an acceptable risk, we propose to refine the RUDs of the plants by using
1156 RUDs measured for this substance on field crops in dust deposition experiments. This is based on the
1157 assumption that the RUD of a substance is more driven by substance properties than by plant

1158 properties. This is likely to be the case but it is uncertain whether this assumption can be extended for
 1159 the full range of plants and substances. Therefore we recommend underpinning this approach by
 1160 analysing available data and further research. The alternative would be to measure RUD for the most
 1161 relevant weed species; we do not advise this because the composition of attractive weed species in
 1162 treated fields is likely to be very variable and we are not aware of data on their distribution in treated
 1163 fields across the EU.

1164

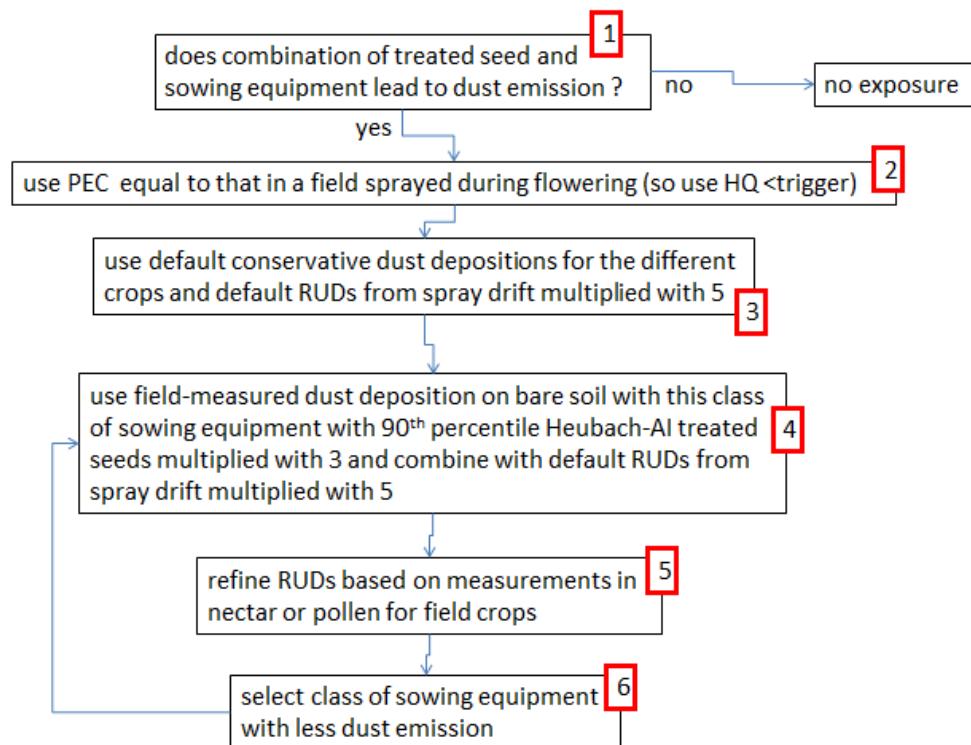
1165 It is of course possible to add a risk mitigation box at the bottom of Figure 10 that says 'exclude
 1166 sowing equipment with highest dust emission' with an arrow that goes back to box 4. This would be a
 1167 compromise between the approach in this section and that in the next section.

1168

1169

1170 Approach based on certain classes of sowing equipments

1171


1172 We now need to consider the alternative approach: i.e. to link an authorisation at EU level to a certain
 1173 class of sowing machines. This is just a simplification of the approach in the previous section because
 1174 only one class of sowing equipment needs to be considered.

1175

1176 The first three boxes in the flow chart in Figure 11 are identical to those in Figure 10. In box 4 the
 1177 same approach is used as in box 5 of Figure 10 with the simplification that a portion of treated seeds
 1178 should be used that represents a 90th percentile Heubach-AI value. Box 5 is again identical to box 6 of
 1179 Figure 10. If this class of sowing equipment results in unacceptable risks then there is a risk mitigation
 1180 option to select a less problematic class of sowing equipment (box 6 in Figure 11) and to go back to
 1181 box 4.

1182

1183

1184
 1185

1186 **Figure 11:** Flow chart for the exposure assessments of the PECs for nectar and pollen in field margins
 1187 after seed treatments considering a certain class of sowing equipments. The box numbers refer to the
 1188 general text above

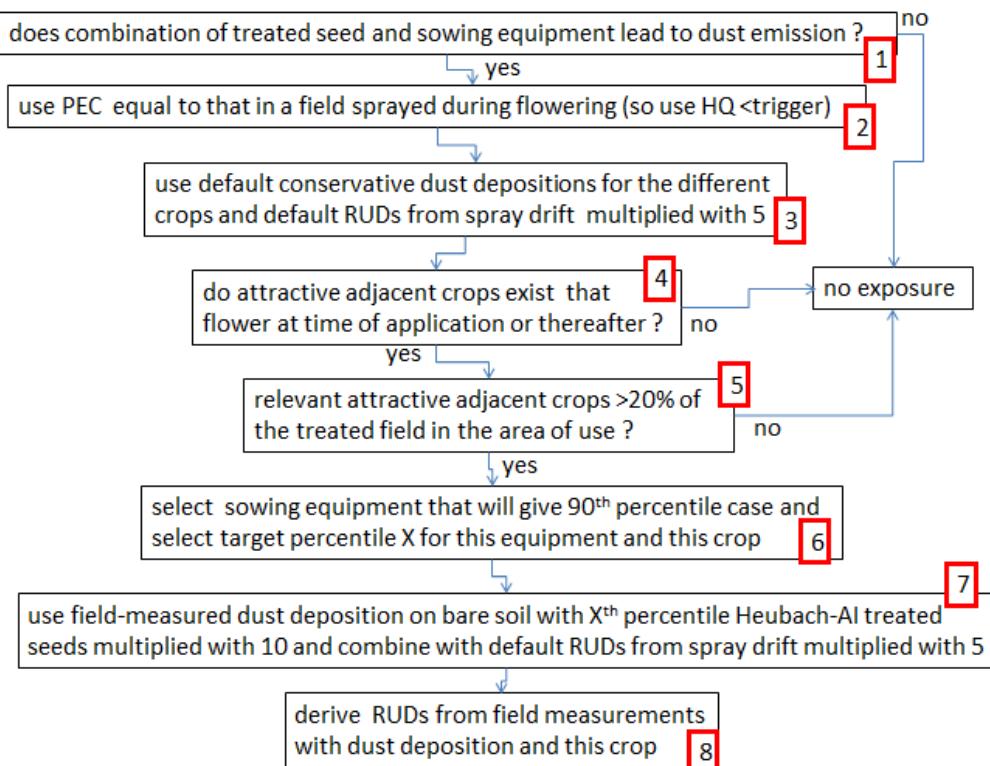
1189
 1190 The approach in Figure 11 is stricter than the compromise discussed at the end of the previous section
 1191 because Figure 11 checks each class of sowing equipment separately whereas the compromise
 1192 considers all classes of sowing equipments as one pool (e.g. not considering the worst class of
 1193 equipment if this class was used for less than 10% of the treated fields).
 1194
 1195

1196 Concentrations in pollen and nectar in adjacent crops

1197
 1198 Also for the seed treatments we are interested in the average concentration in nectar and pollen over
 1199 the full width of the field of the adjacent crops.
 1200

1201 For the assessment of the concentrations in pollen and nectar in adjacent crops there is the same choice
 1202 as that for the field margins: either base the assessment on the sowing equipments that are used in
 1203 reality across the EU or base it on a certain class of sowing equipments.
 1204

1205 We limit the assessment for the adjacent crops to the option of the equipments that are used in reality
 1206 across the EU. The option of assessing a certain class of sowing equipments can be developed quickly
 1207 in analogy to Figure 11 after the SCoFCAH has decided between the two options.
 1208


1209 The first three steps (boxes 1-2-3 in Figure 12) are the same as in Figures 10 and 11 but note that the
 1210 values for the conservative dust deposition in box 3 of Figure 12 are higher than those in Figures 10
 1211 and 11: as described in Appendix K these should here be 3.4% for maize, 1.4% for oil seed rape, 1.9%
 1212 for cereals, 0.005% for sugar beets and 3.4% for other crops. The values for the adjacent crop are
 1213 higher than those for the field margin because the 'dilution factor' for the decline with distance to the
 1214 treated field for the adjacent crop is 0.48 whereas the 'dilution factor' for the wind angle for the field
 1215 margin is 0.33 (see Appendix K for details).
 1216

1217 The next step (box 4) is to assess whether attractive adjacent crops exist that flower at the time of
 1218 application or thereafter (otherwise the dust emission will not lead to exposure of hives). If more than
 1219 one such crop exists, then it should be checked whether they will occur at the border of more than 20%
 1220 of the treated fields (box 5). The background of this 20% is as follows: only 50% of adjacent crops
 1221 will be exposed because 50% will be upwind during application so will receive no dust deposition. So
 1222 if less than 20% of the treated fields have attractive adjacent crops, less than 10% of the hives at the
 1223 edges of treated fields will be exposed via foraging of the adjacent crop. If this is the case, the
 1224 exposure resulting from the adjacent crops can be ignored because this exposure will probably not
 1225 influence the concentration for the 90th percentile of all hives at the edge of treated fields. Please note
 1226 that this 20% is only justified because seed treatments are by definition applied only once per growing
 1227 season. In case of spray applications which may be repeated many times in a growing season
 1228 (especially in fruit crops), the statistics of the drift deposition are more complicated than here.
 1229 Therefore the limit in box 4 of Figure 5 (spray applications) was set to 10% whereas in box 4 of Figure
 1230 this 20% is used.
 1231

1232 In principle it is possible (using crop maps available at EU level) to analyse the statistics of occurrence
 1233 of attractive adjacent crops at zonal and member state level and to use the results for all future risk
 1234 assessments for seed treatments (thus making the use of this flow chart considerably easier and
 1235 increasing harmonisation of these risk assessments at zonal and member state level). We recommend
 1236 therefore that this exercise is carried out.
 1237

1238 So after having passed box 5, we have one or more attractive crops that in total occur at the border of
 1239 more than 20% of the treated fields and we have to assess the frequency distribution of the average
 1240 concentration in nectar and pollen of the population of all these adjacent crop fields. The question is
 1241 now which factors drive mainly the variability of this frequency distribution. The main factors are
 1242 likely to be (i) the sowing equipment and the Heubach-AI values of the treated seed (influencing
 1243 emission), (ii) wind direction and wind speed (influencing deposition), (iii) RUDs of the adjacent crop
 1244 (influencing the relationship between deposition and concentration in nectar and pollen). The
 1245 attractiveness of an adjacent crop does not of course influence the concentrations in nectar and pollen
 1246 in this crop, so this is not considered here. However, this may become important at a later stage when
 1247 the average concentration in the hive is assessed (using a landscape-level exposure assessment). Of
 1248 these main factors, the sowing equipment, the Heubach-AI values and the RUDs do not depend on the
 1249 weather at the moment of application. However, the wind speed and wind direction are of course
 1250 influenced by this weather. Therefore we propose assessing the effect of wind speed and wind
 1251 direction differently from the other factors, i.e. by stochastic modelling (Monte-Carlo simulations)
 1252 based on the natural variability of wind speed and wind direction; see Appendix K for details.
 1253

1254 We consider the sowing equipment the most important driver of the concentrations, so we start in box
 1255 6 by selecting the sowing equipment that will give the 90th percentile case. Furthermore the target
 1256 percentile X of this subpopulation of crop and sowing equipment is selected that will give the overall
 1257 90th percentile. The procedure is somewhat complicated so it is best explained via an example. Let us
 1258 assume that there are attractive adjacent crops for 30% of all treated fields and that there are two
 1259 classes of sowing equipment: i.e. mechanic and pneumatic. Pneumatic gives the highest dust
 1260 deposition and is used in 80% of the cases whereas mechanical is used in 20% of the cases. First step
 1261 is to divide the total percentage of adjacent crops by 2 because half of the fields are upwind during
 1262 application. So we have 15% treated fields left of which 12% is pneumatic and 3% is mechanic. So of
 1263 these 30% of the treated fields, 12% have the combination of a downwind attractive crop and
 1264 pneumatic sowing. The target percentile X of this subpopulation is then $100 \times (2/12) = 17$ because 2 of
 1265 the 12% are below the 90th percentile. See Appendix L for the general calculation procedure of such
 1266 percentiles.
 1267
 1268

1269
 1270

1271
1272

1273 **Figure 12:** Flow chart for the exposure assessments of the PECs for nectar and pollen in adjacent
1274 crops after seed treatments based on the sowing equipments as used in reality across the EU. The box
1275 numbers refer to the general text above

1276
1277 The next step (box 7) is the same step as in Figures 10 and 11 but the field measurements here are
1278 multiplied by 10 and not by 3 as in Figures 10 and 11 because of the difference in statistics of the drift
1279 depositions between the field margin and the adjacent crop as explained in Appendix K. The last step
1280 (box 8) is to measure RUDs for this crop and dust deposition which can then replace the default
1281 RUDs.

1282
1283 If certain steps in the flow chart are impossible due to lack of available information, it is always an
1284 option to use a more conservative and more simple approach. For example, in case of the above
1285 example of 30% adjacent crop and 60% pneumatic, it could have been assumed that 100% of this
1286 adjacent crop occurs in combination with 100% pneumatic, which would give $X = 80$ (because 50% of
1287 adjacent crops are upwind and have zero deposition) instead of $X = 17$ in the above case.

1288
1289 The relationship between the assessments for the field margin and the adjacent crop is for seed
1290 treatments different from that for the spray applications. As described in Section 2.8, the PEC for the
1291 adjacent crop is expected to be lower than that for the plants in the field margin for the spray
1292 applications. However, for the seed treatments the situation is not clear because there are two opposite
1293 effects: as described before, the average dust deposition onto a downwind adjacent attractive crop is
1294 higher than the average dust deposition onto a field margin (Appendix K) but downwind adjacent
1295 crops will occur only for a fraction of the treated fields which will lower the target percentile X in box
1296 6 of Figure 12.

1297
1298

1299 **3.3.3. Exposure Assessment for granules**

1300

1301 **3.3.3.1. Introduction**

1302

1303 The assessment of the concentrations in pollen and nectar resulting from granule applications has
1304 similarities with both that resulting from spray applications and that resulting from seed treatments.
1305 The similarities with the spray applications are that the substance is usually applied to the whole soil
1306 surface (so not only to the seeds) and that registration decisions are made at national level. The
1307 similarity with the seed treatments is that granule application also leads to dust emission. Therefore the
1308 exposure assessment for the granules contains both elements of the assessment for the spray
1309 applications and elements of the assessment for the seed treatments.

1310

1311 Granules can be applied in different ways: (i) simply broadcasted, (ii) incorporated into the soil, and
1312 (iii) buried with the seed. They can be applied both in permanent and in annual crops. When buried
1313 with the seed, the similarity in behaviour of the substance with the seed treatments is of course larger
1314 than for the other application methods. Our guidance intends to cover all granule application methods.
1315 During application, dust is formed from the granules which can be deposited onto the crop (if present)
1316 or onto plants in field margins or onto adjacent crops. In view of all these possibilities we propose to
1317 use the scheme of Figure 1 to assess the concentrations in nectar and pollen from the different types of
1318 plants. The first screening step (box 1) is very conservative for granules because it is unlikely that a
1319 granule grain will end up in the flower of a weed and because the dust deposition onto the treated field
1320 is probably only a small fraction of the dose.

1321

1322

1323 **3.3.3.2. Concentrations in pollen and nectar in the treated crop**

1324

1325 For the assessment of the concentrations in pollen and nectar in the treated crop we propose using the
1326 flow chart of Figure 2 (designed for the spray applications). The only complication is the estimation of
1327 the default RUDs in box 6. As indicated in Figure 2, the exposure via the treated crop is only
1328 considered relevant for systemic substances that are applied before flowering.

1329

1330 We propose the following procedure for box 6: (i) if granules are applied before emergence, the
1331 default RUDs for granules is based on the information available for the seed treatments (in which case
1332 a PEC of 1 mg/kg would be recommended; see box 3 of Figure 9), so RUDs based on uptake via the
1333 roots instead of based on overspray; (ii) if granules are applied after emergence, the default RUDs
1334 from spray applications are used (which will often lead to much higher PECs than this 1 mg/kg).

1335

1336 In both cases the PECs in pollen and nectar as estimated in box 6 of Figure 2 for the granules will
1337 usually be overly conservative. In the first case because the substance applied as treated seed is in
1338 much closer contact with the plant roots than when applied as a granule (except in the case of granules
1339 that are buried with the seed). In the second case because the treated crop is likely to catch much less
1340 substance from a granule application than from a spray application (same argumentation as in previous
1341 section for weeds in the treated field).

1342

1343

1344

1345

1346

1347 3.3.3.3. Concentrations in pollen and nectar in weeds in the treated field

1348

1349 For the assessment of the concentrations in pollen and nectar in weeds in the treated field we propose
1350 to use the flow chart of Figure 3 (designed for the spray applications). Also here the default RUDs are
1351 likely to overestimate exposure.

1352

1353 3.3.3.4. Concentrations in pollen and nectar in plants in field margins

1354

1355 Also for the granules we are interested in the average concentration in nectar and pollen in the whole
1356 field margin of the treated field, so considering also the parts of the field margin that are not exposed
1357 because they were upwind during application.

1358

1359 For the assessment of the concentrations in pollen and nectar in plants in field margins, we propose
1360 using a new flow chart (Figure 13) because the flow charts for the seed treatments (Figures 10 and 11)
1361 cannot be used without modifications. Unlike seed treatments, granule applications are not registered
1362 at EU level. At Member State level it does not seem to make sense to assess 90th percentiles for
1363 different types of application equipments so we follow here the same approach as in Section 3.2.4.2
1364 and in Figure 10, i.e. assessing the 90th percentile that will occur in agricultural reality.

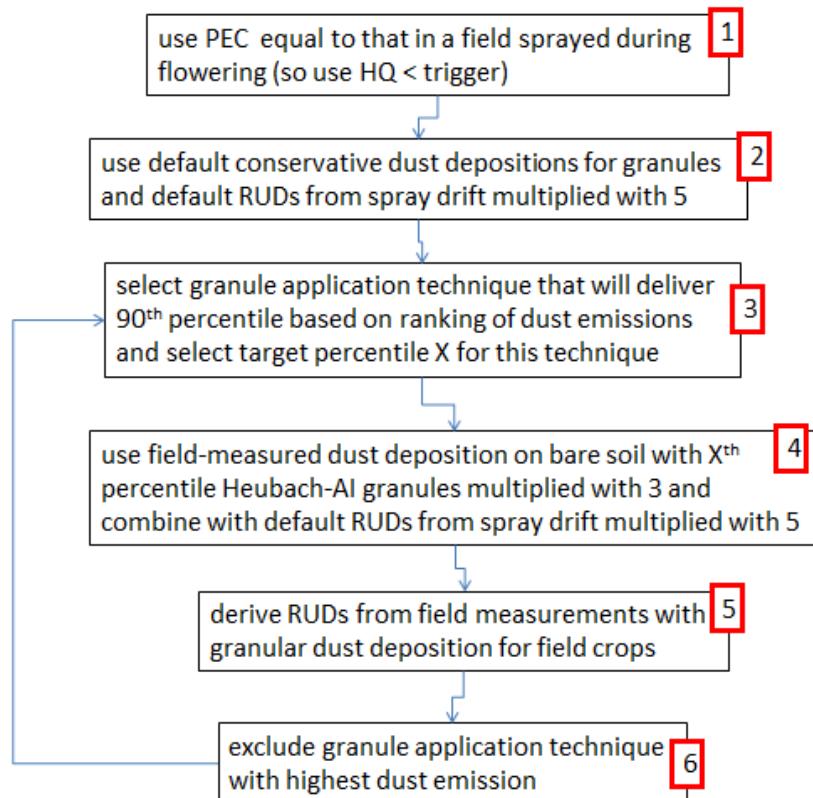
1365

1366 The first step (box 1) is to assume that the field margin has a PEC that is equal to that in a field
1367 sprayed during flowering, based on the HQ for contact exposure (so very conservative). The second
1368 step is to use default conservative dust depositions in combination with default RUDs from spray drift
1369 multiplied with 5. The background of the RUDs from spray drift multiplied by 5 is described at the
1370 start of Section 3.2.4.2. We propose to set the conservative default dust deposition to 11% (see
1371 Appendix K).

1372

1373 The next step (box 3) is to select the application technique that will deliver the 90th percentile dust
1374 deposition (similar to the approach in Figure 10 and Figure 12). EFSA (2004) showed that a spinning
1375 disc will generate considerably less dust deposition than a boom spreader. So this implies that it is
1376 necessary to estimate which percentage of the granule applications is with a spinning disc and with a
1377 boom spreader. From this information the target percentile X for this technique has to be derived (see
1378 Appendix K for details).

1379


1380 It is a point of debate which factor should be used to determine the select the case for the percentile X.
1381 In principle there are two candidates: the dustiness of the formulation or the meteorological conditions
1382 (wind speed). For the seed treatments we proposed to use the Heubach-AI value considering the
1383 different seed treatment facilities in the area of use. EFSA (2004) sent a questionnaire to all Member
1384 States asking for the information on granule dust measurements that they require from notifiers.
1385 Twelve Member States responded; the conclusion was that there are no generally accepted criteria for
1386 this in granular formulations. So it is likely that there is considerable variation between the dustiness
1387 of different portions of granule formulation. Based on this we propose to assess this target percentile X
1388 on the basis of the Heubach-AI value of the granule. There is of course the problem that Heubach-AI
1389 values are not part of the current regulatory dossier. However, it may be possible to estimate the
1390 Heubach-AI values with the existing CIPAC methods to measure the dustiness of granules (see EFSA,
1391 2004, for a description of these methods). To bridge the gap between the Heubach test and the CIPAC
1392 methods, data are needed on Heubach-AI values for a range of granules for which the CIPAC
1393 information is already available. We recommend generating this data as it may facilitate the
1394 introduction of this new approach in regulatory practice.

1395

1396 So the next step (box 4) is to perform a field experiment on dust deposition on bare soil with a portion
1397 of granule formulation that approaches the Xth percentile of the Heubach-AI values. See Section
1398 3.2.4.2 for instructions on the experimental conditions. The measured result has to be multiplied by 10
1399 to account for the filtering capacity of the plants. The result has to be combined with default RUDs

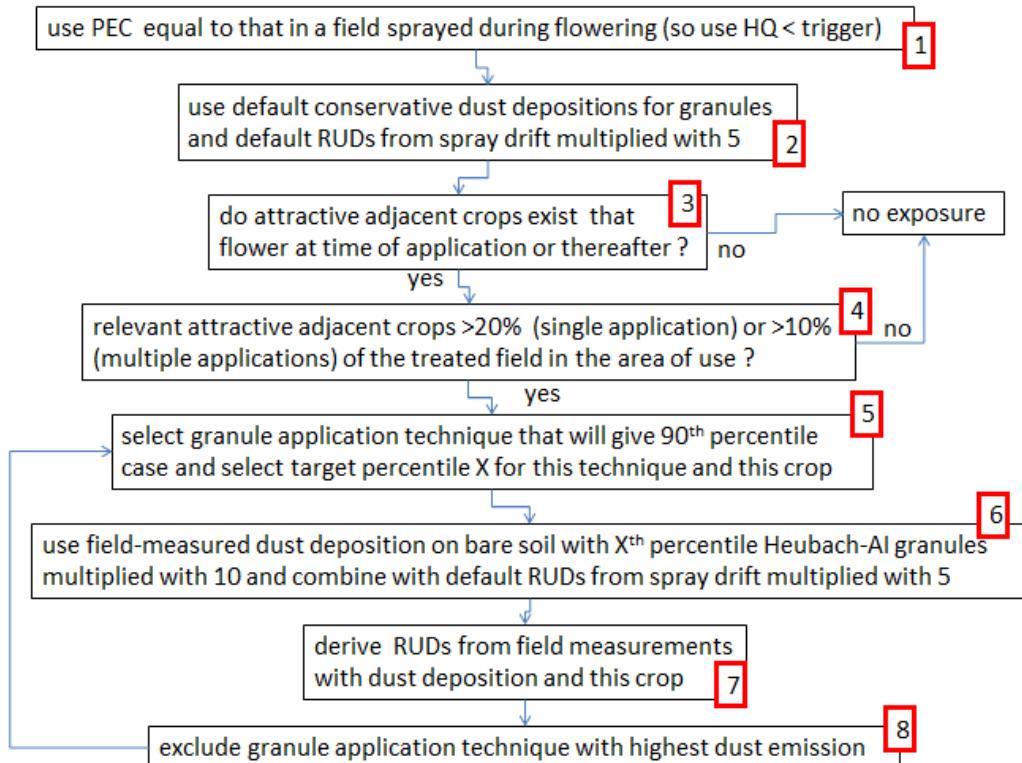
1400 from spray drift multiplied by 5 as described before. The next step is to refine the RUDs based on dust
 1401 deposition experiments on field crops. If the risk is still unacceptable, it may be an option to mitigate
 1402 the exposure by excluding the application technique that gives the highest deposition (box 6) and to go
 1403 back to box 3.

1404
 1405
 1406

1407
 1408

1409 **Figure 13:** Flow chart for the exposure assessments of the PECs for nectar and pollen in field margins
 1410 after granule applications. The box numbers refer to the general text above

1411
 1412


1413 3.3.3.5. Concentrations in pollen and nectar in adjacent crops

1414
 1415 The assessment of the concentrations in pollen and nectar in adjacent crops can be assessed following
 1416 the same principles as for the spray applications and seed treatments (Figures 5 and 12 in Sections 2.6
 1417 and 3.2.5). As in the case of the seed treatments, it is a priori unknown whether the 90th percentile
 1418 concentrations in the adjacent crops are higher or lower than those in the plants in the field margin
 1419 because there are two opposite effects: the average dust deposition on a downwind adjacent attractive
 1420 crop is higher than the average dust deposition on a field margin (Appendix K) but downwind adjacent
 1421 crops will occur only for a fraction of the treated fields which will lower the 90th percentile
 1422 concentration.

1423
 1424 We propose the flow chart in Figure 14. This differs only slightly from that for the seed treatments in
 1425 Figure 12, so only those parts that are different from Figure 12 are discussed here. Unlike Figure 12
 1426 there is no first box that checks whether the combination of granule and application equipment leads to
 1427 dust emission because dust emission can never be excluded for granules. The conservative default dust

1428 deposition for the granules in box 2 is 15% (as explained in Appendix K) which is considerably higher
 1429 than the values for the seed treatments (Table K1). The trigger percentage in box 4 is 20% for single
 1430 applications and 10% for multiple applications because, unlike seed treatments, granule applications
 1431 may occur several times in a growing season. Unlike Figure 12, Figure 14 contains a risk mitigation
 1432 box at the bottom that allows for elimination of application techniques that lead to too high risks.

1433
 1434
 1435
 1436

1437
 1438

1439 **Figure 14:** Flow chart for the exposure assessments of the PECs for nectar and pollen in adjacent
 1440 crops after granule applications. The box numbers refer to the general text above.

1441
 1442
 1443

1444 3.3.3.6. Concentrations in pollen and nectar in permanent crops in the next year and in succeeding
 1445 annual crops.

1446 The assessment of the concentrations in pollen and nectar in permanent crops in the next year and in
 1447 succeeding annual crops can be based on the flow charts for the spray applications (Figures 6 and 7).

1449
 1450
 1451
 1452
 1453
 1454

1455 **3.4. Recommendations for further work to improve or underpin the proposed exposure**
1456 **assessment guidance**

1457

1458

1459 We recommend developing guidance for a landscape-level approach for the exposure of the average
1460 concentration in nectar and pollen entering the hive because without such guidance the exposure
1461 assessment of this concentration is likely to be unnecessarily conservative. Such guidance has to be
1462 based on a quantitative model for assessing these concentrations considering a variety of attractive
1463 crops within the foraging surface area. We recommend developing the quantitative model (see
1464 Appendix H for a first attempt) and underpinning this by extensive field calibrations. Special attention
1465 should be paid to the effect of differences in attractiveness of different crops on the average
1466 concentration entering the hive because this may influence the assessment of the 90th percentile in case
1467 of different attractive adjacent crops.

1468

1469 We recommend developing guidance at EU level for assessing whether a significant fraction of the
1470 surface area of treated fields is likely to be covered by attractive weeds for more than 10% of the area
1471 of use of substances. This guidance is likely to become a useful element of the exposure assessment of
1472 concentrations in nectar and pollen in weeds in treated fields.

1473

1474 We recommend analysing available data on RUDs in attractive weeds and crops resulting from spray
1475 applications to underpin the hypothesis that the RUD of a substance in attractive weeds can be
1476 predicted from the RUD of this substance in treated crops. If the available data are insufficient, we
1477 recommend performing research to test this hypothesis. This hypothesis offers a higher-tier option for
1478 the exposure assessments of concentrations in nectar and pollen in weeds in (1) treated fields and (2)
1479 field margins.

1480

1481 We recommend performing geostatistical analyses (using currently available crop maps; e.g.
1482 <http://eusoils.jrc.ec.europa.eu/library/Data/EFSA/>) to assess the likelihood of occurrence of attractive
1483 crops (1) grown adjacent to the treated crop and (2) grown in the treated field after the treated crop.
1484 We recommend summarising the results of these analyses in the form of user-friendly software that
1485 produces the frequency distributions of these attractive crops for all major crops at Member State and
1486 zonal level. We also recommend analysing the width of these adjacent fields and their geometry in
1487 relation to the treated field because these have a large effect on the average deposition of spray drift on
1488 these adjacent fields.

1489

1490 We recommend performing spatial analyses to identify the most relevant crops adjacent to seed
1491 treatment applications at zonal and member state level to streamline the exposure assessment resulting
1492 from dust deposition in adjacent crops.

1493

1494 We recommend performing (1) a geostatistical study to underpin or revise the proposed field margin
1495 width of 2 m and to check to what extent all edges of the field are surrounded by field margins, (2) a
1496 modelling study in which the spray drift deposition onto field margins and onto adjacent fields with
1497 attractive crops is simulated as a function of a stochastic wind angle and a stochastic wind speed from
1498 which the 90th percentile spray deposition cases can be derived (see van der Zande et al., 2012, for an
1499 example of such a study for spray deposition on surface water). This modelling study should also
1500 consider the effect of repeated applications. Furthermore we recommend analysing all spray drift data
1501 available in the EU to underpin the assumptions on which this modelling study should be based. We
1502 also recommend considering in this analysis the fact that the plants in field margins and of the adjacent
1503 crop may perhaps 'catch' more drift than bare soil.

1504

1505 We recommend developing targeted scenarios for assessing the plant uptake of substances in attractive
1506 permanent and attractive annual succeeding crops because such scenarios may be useful for assessing
1507 the need of residue analyses in nectar and pollen in such crops. It is advisable to check whether the

1508 proposed trigger $\text{DegT50} < 5 \text{ d}$ (box 1 of Figure 6) is appropriate after these scenarios have been
1509 developed.

1510
1511 In view of the large uncertainty in the average concentration in nectar and pollen entering the hive in
1512 higher-tier experiments, we recommend measuring this concentration in such future higher-tier
1513 experiments.

1514
1515 We recommend analysing available data on residues in nectar and pollen resulting from root uptake to
1516 underpin that non-systemic substances are not transported to nectar and pollen in amounts that could
1517 become relevant for the risk assessment of bees.

1518
1519 We recommend performing research to underpin or revise the assumption that differences in RUD
1520 values between different adjacent crops play only a minor role in the assessment of the 90th percentile
1521 exposure concentration in nectar and pollen in adjacent crops (both for spray applications and solid
1522 applications).

1523
1524 We recommend analysing existing data on concentrations in nectar and pollen in the hive that result
1525 from exposure to dust deposition (originating both from seed treatments and granules) in order to
1526 assess to what extent these can be predicted on the basis of RUDs resulting from spray drift deposition
1527 multiplied by a factor of 5.

1528
1529 We recommend performing research to underpin or refine the factor 10 used to extrapolate dust
1530 deposition on bare soil to dust deposition on attractive plants in field margins and on attractive
1531 adjacent crops.

1532
1533 We recommend performing stochastic simulation studies using calibrated physical models in which
1534 the dust deposition on attractive adjacent crops is simulated as a function of wind speed and wind
1535 angle to obtain a less conservative and thus more realistic assessment of the 90th percentile deposition.

1536
1537 We recommend developing soil exposure scenarios for seed treatments in analogy to the scenarios
1538 developed for spray applications by EFSA (2012b) in order to improve the exposure assessment of
1539 weeds in the treated field and of attractive crops grown after the treated-seed crop.

1540
1541 We recommend analysing relevant information in the literature and the dossiers on the effect of
1542 sowing equipment and Heubach-AI values (as defined in Section 3.4.2.1) on emission of dust during
1543 sowing of treated seeds to underpin the assumption that the sowing equipment (mechanical versus
1544 pneumatic, with and without deflectors) has a much larger effect than the Heubach-AI value.

1545
1546 We recommend measuring Heubach-AI values for a range of granules and to try to correlate these to
1547 information in the dossier on the dustiness of these granules (CIPAC methods).

1548
1549 We recommend collecting and analysing all available data on dust deposition of granules on plants in
1550 adjacent crops in order to reduce the 15% conservative default deposition.

1553
1554

1555 **4. Laboratory, semi-field and field studies**

1556 Several points for improvement and future research related to the available test protocols were
1557 identified in EFSA, 2012a. Weaknesses were identified in particular in relation to field studies. In
1558 order to rely on the studies in the risk assessment it is recommended that the points listed in the
1559 relevant appendices (Appendices M, N, O) are systematically checked for each study that is submitted
1560 and included in the risk assessment. Studies which do not address the points should not be relied on in
1561 the regulatory risk assessment.

1562

1563 **4.1. Acute laboratory (oral+ contact LD 50), 10-d laboratory adult (LC50), Aupinel larvae**
1564 **test**

1565 The endpoints from these studies should be collated as follows:
1566

Toxicity study	Endpoint
LD50 contact (Appendix M)	µg/bee
LD50 oral (Appendix M)	µg/bee
LC50 adult (Appendix M)	mg/kg
NOEC larvae (Appendix M)	mg/kg

1567
1568 Please see the relevant Appendix M for further details.
1569

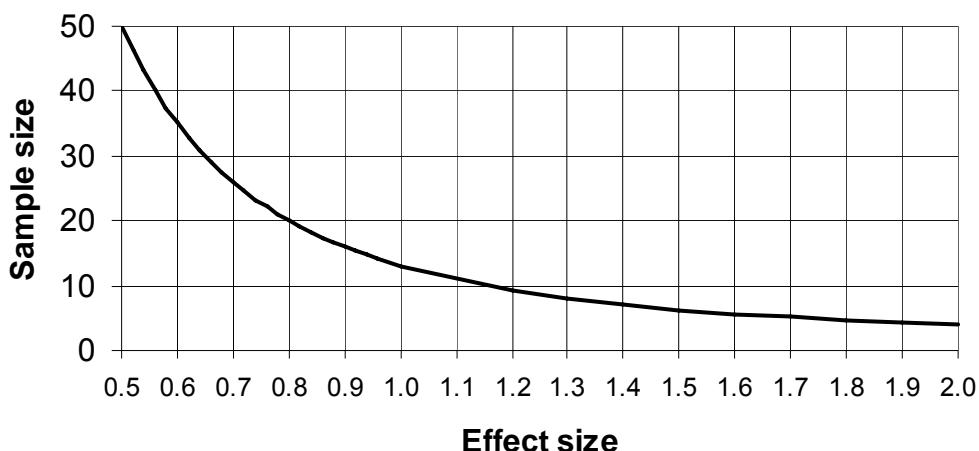
1570 Proposals are made for test protocols for studies with *Bombus terrestris* and *Osmia* spp. (see
1571 Appendices P and Q).
1572

1573 **4.1.1. Test for bioaccumulative toxicity in oral dose administered to honey bees**

1574 Testing protocol

1575 1. Using at least 3 cages of 10 newly enclosed workers per dose with ad libitum access to feeder syrup
1576 (using a minimum of 4 doses plus a control and measure intake at 24 at 48 hrs (replace with fresh
1577 feed)), determine the concentration of the PPP compound ($\mu\text{g L}^{-1}$) in dietary syrup necessary to cause
1578 50% mortality after 48 hours of exposure. Denote this concentration (units of $\mu\text{g L}^{-1}$) by $\text{LC}_{50,48\text{h}}$.

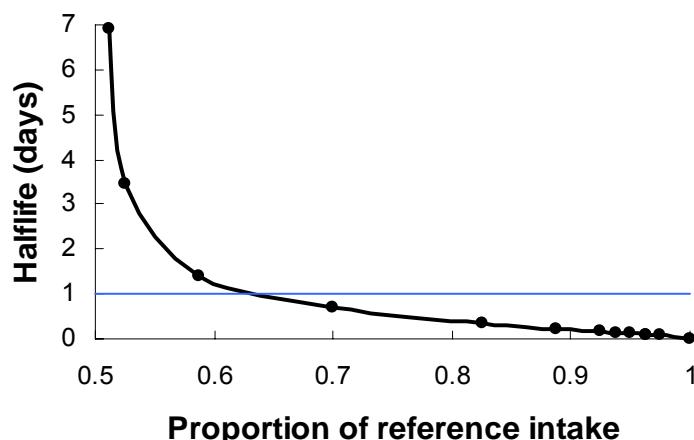
1579 2. Using the same experimental units and conditions, administer feeder syrup at two concentrations of
1580 the compound: $\text{LC}_{50,48\text{h}}$ and $0.25\text{LC}_{50,48\text{h}}$ (which has a molarity of one quarter that of $\text{LC}_{50,48\text{h}}$) and
1581 measure syrup consumption rates (replace with fresh feed each day) and mortality daily until each
1582 cage has accumulated 50% mortality. Cages receiving syrup of the lower concentration ($0.25\text{LC}_{50,48\text{h}}$)
1583 are expected to reach this mortality in approximately eight days or less (see below). The suggested
1584 level of replication is 10 cages of each concentration (but see power requirements in step 4 below).


1585 3. For each cage, determine the total (cumulative) quantity of compound (μg) consumed in each cage
1586 when 50% mortality occurred. For a cage exposed to the high concentration ($\text{LC}_{50,48\text{h}}$) treatment,
1587 denote this amount by Q_H and by Q_L for a cage at the low concentration ($0.25\text{LC}_{50,48\text{h}}$).

1588 4. For each separate concentration ($\text{LC}_{50,48\text{h}}$ and $0.25\text{LC}_{50,48\text{h}}$), determine the mean quantity of
1589 compound consumed (total) in each treatment group of cages, denoted as $E(Q_H)$ and $E(Q_L)$
1590 respectively. If $E(Q_L)$ is lower than $E(Q_H)$, there is potential for bioaccumulation, so test the
1591 difference between these two means with an appropriate statistical analysis (e.g. one-tailed t-test if the
1592 assumptions are met). The experiment is valid if the power of the test to detect a 35% difference in E

1593 (Q) between the two concentration treatments is at least 80%. This difference is calculated relative to
 1594 the high concentration treatment: % difference = $100 * [E(Q_H) - E(Q_L)] / E(Q_H)$. A procedure for
 1595 power analysis is given in Fig 14.

1596 5. Designate the PPP as showing a potential for bioaccumulation if $E(Q_L)$ is lower than $E(Q_H)$ and the
 1597 statistical test shows a significant difference between the two sets of Q_H and Q_L and the estimated half
 1598 life of the toxicant is ≥ 1 day (calculate $E(Q_L)/E(Q_H)$ and estimate the half-life by using this value on
 1599 the x-axis of Fig 15; the estimated half-life is the corresponding value on the y-axis). This threshold is
 1600 chosen for the following reason: once an animal is no longer exposed to a toxicant, the expected time
 1601 for the toxicant to be virtually eliminated from the animal's body is five times the toxicant's half-life
 1602 because $0.5^5 < 5\%$. Five days is a significant proportion of an adult bee's lifespan.


1603

1604

1605 **Figure 15:** Sample size required to detect the size of a given effect using a one-tailed t-test with 80%
 1606 confidence, which is the conventional requirement for adequate statistical power. 'Effect size' is
 1607 calculated as: $E = (0.35 \times \text{mean measurement of control group}) / \text{standard deviation of control group}$.
 1608 Relationship obtained using `power.t.test (d = *, sd = 1, sig.level = 0.05, power = 0.8, type = "two.sample",`
 1609 `alternative="one.sided")` in R statistical software, where * denotes the effect size (E).

1610

1611

1612 **Figure 16:** Idealized relationship between estimated half-life and the observed total dietary intake of
 1613 the compound in the low concentration exposure that precedes 50% mortality as a proportion of the
 1614 total intake in the high concentration exposure (i.e. *proportion of reference intake* = $E(Q_L)/E(Q_H)$).

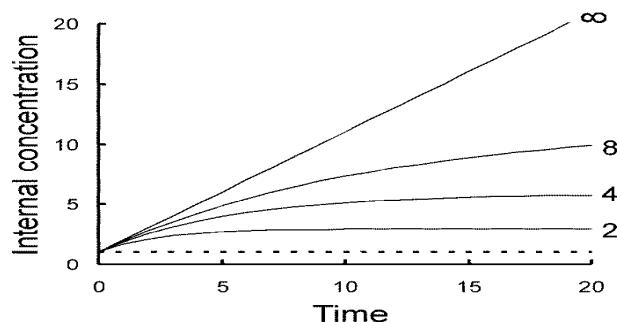
1615

1616 Principles of the test

1617 Haber's law predicts the same level of response under two exposures that produce an equivalent
 1618 constant toxic load, where toxic load is defined as the product of the environmental concentration and
 1619 time. If L denotes the toxic load necessary to cause a given effect among exposed subjects, C is the
 1620 exposure concentration and t is the exposure duration, then Haber's Law is given by

1621

1622 $C \times t = L$ (Eqn 4)


1623 When Eqn 4 applies, the effect shows 'first order time-dependence'.

1624

1625 Assuming that daily consumption of syrup is constant and independent of the concentration of
 1626 toxicant, an equivalent toxic load is produced by $C_1 = LC_{50,48h}$ for $t_1 = 2$ days and $C_2 = 0.25(LC_{50,48h})$ for
 1627 $t_2 = 8$ days because the fourfold reduction in dietary concentration is compensated by the fourfold
 1628 increase in the duration of the exposure. If the daily consumption rates of syrup are approximately
 1629 equivalent, regardless of the concentration of the toxicant, then the total amount of toxicant consumed
 1630 will be directly proportional to the duration of exposure and the use of Q_H and Q_L to test Haber's Law
 1631 simply involves a transformation of measurement units.

1632 If, on the other hand, the toxicant is an antifeedant, the consumption rates of syrup depend on the
 1633 concentration of the toxicant and so the daily consumption rates may be higher in the cages exposed to
 1634 the low concentration syrup ($0.25(LC_{50,48h})$). In this case, the cages exposed to low concentration syrup
 1635 manifest 50% mortality faster than expected simply through rapid consumption of the toxicant and $t_2 <$
 1636 8 days is not due to bioaccumulation. However, the test protocol has taken this into account. Toxic
 1637 load has units of 'molar hours' because it is the product of concentration and exposure time and, in
 1638 principle, it is proportional to the number of molecular contacts between the toxicant and its target site.
 1639 For a perfectly non-accumulating toxicant, each molecule is eliminated instantly after contacting the
 1640 target site and so the toxic load is also equivalent to the total amount of toxicant ingested. Since an
 1641 equivalent effect is expected from an equivalent toxic load, it is appropriate to test Haber's Law by
 1642 comparing the total amount of toxicant consumed to bring about a fixed endpoint, such as 50%
 1643 mortality, between the two exposures.

1644 For a persistent toxicant that bioaccumulates during continuous ingestion, Haber's Law, as stated in
 1645 Eqn 4, will fail to describe the exposure-concentration relationship because the concentration of the
 1646 toxicant at its site of action increases with time even when the dietary concentration is constant (Figure
 1647 16).

1648

1649 **Figure 17:** Relationships between the internal concentration of a toxicant and time for five
1650 various compounds with various degrees of persistence and bioaccumulation. Each curve relates to a
1651 hypothetical individual that ingests one unit of dietary toxicant per unit time but the five compounds
1652 vary in their biological half-life; one is eliminated completely by the end of each time unit (dashed
1653 horizontal line) and

1654 If the toxicant's effects become disproportionately large as the duration of the exposure increases
1655 despite constant dietary concentration, the effect shows 'second order time-dependence', i.e. the toxic
1656 load necessary for a given level of fatalities is:

1657 $C \times t^b = L$ (Eqn 5)

1658 where $b > 1$.

1659

1660 If we consider $C_1 = LC_{50,48h}$ and $t_1 = 2$ days, the exposure duration required to produce an equivalent
1661 toxic load $C_2 = 0.25(LC_{50,48h})$ when $b > 1$ is found by solving

1662

1663 $C_1 \times 2^b = 0.25C_1 \times t_2^b$ (Eqn 6)

1664 which yields

1665

1666 $t_2 = \sqrt[b]{4 \times 2^b} = 2\sqrt[b]{4} \sqrt[b]{(4 \times 2^b)} = 2\sqrt[b]{4}$ (Eqn 7)

1667

1668 Note that this relationship does not depend on the concentration of a.i. in the syrup used for the short
1669 exposure. For a non-bioaccumulative toxicant ($b = 1$), the required exposure duration is 8 days, as
1670 required. For a bioaccumulative toxicant (e.g. $b = 2$), the required exposure duration is less than 4
1671 days.

1672

1673

1674

1675 **4.2. Semi-field and field studies**

 1676
 1677 Semi-field and field studies are required when concerns have not been adequately addressed at lower
 1678 tiers. This could mean that the First Tier assessment and/or the refined assessment using more
 1679 appropriate exposure data has not been satisfactorily addressed to enable a decision to be made as
 1680 regards whether the use can be permitted without risk mitigation measures. The choice and design of
 1681 any Higher Tier study should be such that it addresses concerns highlighted at lower tiers. Guidance is
 1682 provided below on when it is appropriate to either carry out a semi-field or field study. Detailed
 1683 protocols are presented in Appendices N and O, outlining how a semi-field or field study for
 1684 regulatory purposes should be carried out.

 1685
 1686 When to do a semi-field or field study

 1687
 1688 The table below is a guide on when to carry out either a semi-field or field study. This guidance is
 1689 aimed at addressing the risks/concerns highlighted at the First Tiers of the risk assessment scheme.

Risk quotient breached	Discussion	Proposed study
Risk quotient for a spray application is breached for adult acute oral LD50 only	When only the risk quotient for adult acute oral LD50 is breached concern is only related to acute oral effects, i.e. all other risk quotients pass, hence in order to determine the 'real' risk under more realistic conditions it is proposed that a semi-field study is conducted.	As the effects are short-term a study according to EPPO170 with a focus on mortality.
Risk quotient for a spray application is breached for adult acute contact LD50 only	When only the risk quotient for adult acute contact LD50 is breached concern is only related to acute contact effects, i.e. all other risk quotients pass, hence in order to determine the 'real' risk under more realistic conditions it is proposed that a semi-field study is conducted.	As the effects are short-term a study according to EPPO170 with a focus on mortality.
Risk quotient for a spray application is breached for adult chronic oral LC50 only	When only the risk quotient for adult chronic oral LD50 is breached concern is only related to chronic oral effects, i.e. all other risk quotients pass, hence in order to determine the 'real' risk under more realistic conditions it is proposed that a semi-field study is conducted that is appropriately extended to ensure that long-term effects on adult bees and the colony can be determined.	As the effects are short-term a study according to OECD 75 – the Opinion and the Defra R and D (PS2367) highlighted some potential changes.
Assessment for bioaccumulative risk highlights a concern	When only the assessment for bioaccumulative risk raises a concern, then for the 'real' risk under more realistic conditions it is proposed that a semi-field study is conducted that is appropriately extended to ensure that long-term effects on adult bees and the colony can be determined.	As the effects are short-term a study according to OECD 75 – the Opinion and the Defra R and D (PS2367) highlighted some potential changes.
Risk quotient for a spray application is breached for larvae assessment only	When only the risk quotient for the larvae assessment is breached concern is only related to effects on larvae, i.e. all other risk quotients pass, hence in order to	As the effects are short-term a study according to OECD 75 – the Opinion and the Defra

Risk quotient breached	Discussion	Proposed study
	determine the 'real' risk under more realistic conditions it is proposed that a semi-field study is conducted that is appropriately extended to ensure that effects on larvae and the colony can be determined.	R and D (PS2367) highlighted some potential changes.

1691
 1692 If a risk assessment breaches more than one risk quotient, e.g. the risk quotient for acute oral adults
 1693 and larvae are breached, then it is proposed that the applicant should carry out the most comprehensive
 1694 study, i.e. the study should be designed to address all the concerns raised at lower tiers.

1695
 1696 If as a result of conducting a semi-field study, concern is highlighted, then there is either a need to
 1697 ensure that appropriate risk mitigation is used to ensure that exposure and hence risk to honey bees is
 1698 kept to a minimum, or a field study should be conducted to address the concerns raised at all the tiers.

1699
 1700
 1701 **Design of a semi-field and field study**

1702
 1703 If as a result of the initial risk assessment concern is raised, i.e. one or more risk quotients are
 1704 breached, then further work is required. To avoid further studies, it may be possible to refine the risk
 1705 assessment by refining either the exposure assessment or the effects assessment; in addition, it may
 1706 also be possible to refine the risk assessment using risk mitigation measures (this is in effect refining
 1707 the exposure estimate to an 'acceptable' level). If an unacceptable risk remains, it must be further
 1708 investigated by studies, which are described below.

1709
 1710 Details as to how to carry out and interpret semi-field and field studies and as to how to use them in
 1711 risk assessment are provided in Appendices N and O. In carrying out field studies it is important to
 1712 ensure that adequate exposure has been achieved and it is therefore necessary to carry out residue
 1713 studies (see Appendix J) to determine the likely residues in pollen and nectar of flowers in treated
 1714 fields. It is also necessary to carry out semi-field studies so that the residue in pollen and nectar in
 1715 flowers on treated plants can be compared to that likely to be present in pollen and nectar in the hive.
 1716 Briefly, the rationale is as follows: semi-field studies typically force bees to forage exclusively on
 1717 treated flowers, which means that the in-hive residues will be at their highest levels. In-hive residues
 1718 may have lower concentrations than the residues in nectar and pollen from flowers for various reasons
 1719 (compound degradation, metabolism by bees). Once determined in a semi-field study, the differential
 1720 between floral and in-hive residues can be used to evaluate whether in-hive residues have reached
 1721 adequate levels in field studies, i.e. information about the flower-hive differential is used, along with
 1722 the residue data set collected according to Appendix J to determine if exposure in a field study has
 1723 been sufficient. This is illustrated by the following:

1724

- 1725 • As part of the exposure assessment, it is necessary to determine the residues in pollen and
 1726 nectar in flowers from treated plants from residue studies (see Appendix J). These data
 1727 indicate that the residues in pollen and nectar are P_{flower} and N_{flower} mg/kg respectively.
- 1728 • Semi-field studies are conducted and the residues in pollen and nectar in the treated plants are
 1729 P^*_{flower} and N^*_{flower} mg/kg, whilst the residues in the pollen and nectar in the hive are P_{hive} and
 1730 N_{hive} mg/kg respectively.
- 1731 • This information is used to calculate two adjustment factors, i.e. $P^*_{flower} / P_{hive} = A_{pollen}$, for the
 1732 pollen adjustment factor; and $N^*_{flower} / N_{hive} = A_{nectar}$, for the nectar adjustment factor. These
 1733 factors are used to determine the expected level of residues in the hive under field conditions.
 1734 Specifically, if the residues in the treated flowers at the field study are P'_{flower} and N'_{flower} then
 1735 the in-hive residue levels are expected to be $A_{pollen} \times P'_{flower}$ and $A_{nectar} \times N'_{flower}$. The effect
 1736 of this calculation is illustrated by considering a hypothetical pesticide that degrades before it

1737 reaches the hive. In this case, the in-hive residue in the semi-field study is zero, $A_{\text{pollen}} = A_{\text{nectar}}$
1738 $= 0$, and the expected in-hive residues in a field study are $A_{\text{pollen}} \times P'_{\text{flower}} = 0$ and $A_{\text{nectar}} \times$
1739 $N'_{\text{flower}} = 0$.

- 1740 • These factors are used to adjust the exposure estimates and the risk assessment re-run (see
1741 Figure 1 of Chapter 3).
- 1742 • If a field study is conducted, then the in-hive concentration of pollen and nectar should be
1743 greater than that measured under semi-field conditions.

1744

1745 In addition to the conventional semi-field and field studies and in order to address concerns raised in
1746 EFSA (2012a) regarding the ability of field studies to adequately assess potential adverse effects on
1747 behaviour of bees, and in particular effects on orientation and a subsequent effect on the ability of bees
1748 to return to the colony, it is proposed that a homing study should be carried out. Details are provided
1749 in Section 3 of Appendix O.

1750

1751

1752 **5. Trigger values**

1753 The risk assessment scheme and associated trigger values need to ensure that the protection goal
1754 (negligible effects on colonies, see chapter 2) is achieved at all levels of the tiered risk assessment.

1755

1756 In defining the Specific Protection Goal (SPG) reference has been made to the level of mortality that
1757 colonies next to a treated crop can sustain over a certain time period without undue harm. (i.e. the
1758 colony will not be lost).

1759

1760 In order to determine if a Plant Protection Product and its associated use pose an acceptable risk, and
1761 hence the SPG can be met, it is necessary to develop appropriate trigger values.

1762

1763 Currently, in risk assessments carried out under 1107/2009 a Hazard Quotient, or HQ, approach is
1764 used to determine whether the acute risk from a pesticide applied as a spray poses an 'acceptable'⁷
1765 risk. A HQ is the ratio between the application rate in g/ha and the LD50oral or LD50contact in
1766 µg/bee, i.e. g/ha ÷ LD50. If the resulting ratio is 50 or less, then the risk is deemed to be acceptable. A
1767 key issue to consider is whether a HQ of 50 or less is comparable to the protection goal.

1768

1769 The HQ trigger has been reviewed by Mineau et al., (2008) and Thompson and Thorbahn (2009).
1770 There are several limitations (see Appendix R in EFSA, 2012a) which make it difficult to link the HQ
1771 of 50 to the suggested protection goal of negligible effects on colonies. Therefore an alternative
1772 method to derive trigger values is suggested in the current Guidance Document and described in
1773 Appendix U.

1774

1775 It was considered appropriate to use the same trigger values for solid formations as for spray
1776 formulations (see Appendix U).

1777

1778 The risk assessment scheme and associated trigger values enable an assessment that, if met, would
1779 protect x % of sites (i.e. treated fields) where honey bee colonies are situated on the edge of treated
1780 fields. The trigger values are set so that an individual colony can tolerate an impact on foragers of a
1781 certain magnitude for a certain period of time (for negligible effects this is for example an increase of
1782 average daily mortality compared to controls by a factor of 1.5 for 6 days).

1783

1784 In order to calculate trigger values which should ensure that the protection goals are met, it was
1785 necessary to find information on background mortality of foragers under natural conditions. In the
1786 published literature only 7 studies were found where natural background levels of forager mortality
1787 could be derived. In 5 studies information was given on the forager mortality or on life span of
1788 foragers and in 2 studies only the total life span of adult bees was given. In order to increase the
1789 dataset also these two studies were included in the analysis and the forager life span was calculated
1790 assuming that the in-hive life span is 20 days. The average daily forager mortality rate ranged from
1791 5.3% to 20.8%. The 10th percentile was 7.9% and the median value was 13% (see Appendix T). The
1792 conservativeness of the trigger value depends on the choice of the background mortality. The lower
1793 the number of natural background mortality that is chosen for derivation of the trigger value the more
1794 conservative will be the resulting trigger value. Given the limited dataset it is proposed to use the
1795 lowest background mortality rate found in literature to derive the trigger values. This may be refined
1796 further as soon as more studies become available. For the calculation of the trigger values and further
1797 details see Appendix U.

1798

1799

1800 **The following trigger values are proposed for honey bees:**

1801

⁷ The term 'acceptable' is not defined, i.e. it is not related to a level of mortality or sub-lethal effects.

1802 The trigger value for acute oral and acute contact toxicity are for hazard quotients. HQ = application
1803 rate (in g a.s./ha) / toxicity (µg a.s./bee).

1804
1805 The trigger values for chronic oral toxicity and the larvae (NOEC) are for ETRs (ratio of Exposure and
1806 Toxicity, ETR = Exposure/Toxicity).

1807
1808 In order to conclude that the protection goal is met, the calculated HQ or ETR value needs to be lower
1809 than the suggested trigger value.

1810
1811 Acute oral toxicity (LD50): HQ < 33

1812
1813 Acute contact toxicity (LD50): HQ < 11

1814
1815 Chronic oral toxicity (LC50): ETR < 0.03

1816
1817 Larval toxicity (NOEC): < 0.1

1818
1819 The endpoint for larval toxicity is based on a concentration that does not cause any effects in the
1820 laboratory study compared to controls (NOEC). Therefore the protection goal of negligible effects is
1821 achieved if the 90th percentile exposure estimate does not exceed the NOEC. No additional assessment
1822 factor is needed to ensure that the protection goal is achieved. However, there are uncertainties related
1823 to potential differences in sensitivity in honey bee subspecies and lab to field extrapolation. An
1824 assessment factor of 10 is proposed in order to account for these uncertainties.

1825

1826

1827

1828 **The following trigger values are proposed for bumble bees:**

1829

1830 Bumble bee workers have a longer flight span than honey bee workers and thus lower daily mortality
1831 rates. The trigger value calculation was based on a daily background mortality of 4.4% (see Annex X
1832 on mortality rates). Bumble bee colonies are particularly susceptible to reduction of worker bee
1833 numbers because only large colonies produce queens (see Whitehorn et al., 2012). In order to account
1834 for the higher susceptibility to worker losses it is suggested to add an additional assessment factor of 5
1835 to the trigger value established for honey bees.

1836 The endpoint from the honey bee larvae test is used in the risk assessment for bumble bees. In order to
1837 account for uncertainties related to potential differences in sensitivity between honey bee larvae and
1838 bumble bee larvae it is suggested to add an additional assessment factor of 10.

1839
1840 Acute oral toxicity (LD50): HQ < 5.5

1841
1842 Acute contact toxicity (LD50): HQ < 1.76

1843
1844 Chronic oral toxicity (LC50): ETR < 0.024 or <0.0024*

1845
1846 Larval toxicity (NOEC): < 0.01

1847
1848
1849 *an additional assessment factor of 10 should be added to the ETR trigger if the assessment relies on
1850 the endpoint from honey bees in order to account for potential differences in species sensitivity.

1851

1852

1853

1854

1855 **The following trigger values are proposed for solitary bees:**

1856

1857 The trigger values for acute effects were calculated based on a daily background mortality of 5%
1858 (based on a flight span of 20 days for Osmia taken from Bosch et al. 2008). An assessment factor of 5
1859 is suggested in order to account for uncertainties related to potential differences in sensitivity among
1860 solitary bees.

1861 The endpoint from the honey bee larvae test is used in the risk assessment for solitary bees. In order to
1862 account for differences in sensitivity between honey bee larvae and solitary bee larvae it is suggested
1863 to add an additional assessment factor of 10.

1864

1865

1866 Acute oral toxicity (LD50): < 6.3

1867

1868 Acute contact toxicity (LD50): < 2

1869

1870 Chronic oral toxicity (LC50): ETR < 0.027 or <0.0027*

1871

1872 Larval toxicity (NOEC): < 0.01

1873

1874 *an additional assessment factor of 10 should be added to the ETR trigger if the assessment relies on
1875 the endpoint from honey bees in order to account for potential differences in species sensitivity.

1876

Please note that the natural background mortality has a strong influence on the proposed trigger values for acute toxicity (contact and oral) and chronic oral toxicity. The proposed trigger values are based on the lowest values of background mortality found in literature as a precautionary approach because of the low number of studies available. If more data becomes available this value may be refined.

The trigger values include assessment factors to account for uncertainties related to lab to field extrapolation and potential differences in species sensitivity. These uncertainties could be reduced if more data becomes available.

Therefore it would be welcome if stakeholders could provide data to address these uncertainties in order to refine the trigger values.

1877

1878

1879

1880 6. Introduction to the risk assessment scheme for honey bees

1881

1882 6.1. Acute and chronic risk assessment

1883

1884 For risk assessment of adult honey bees following a spray application, the contact and oral acute
1885 (single dose) LD50 should be generated (using OECD guidelines 213 and 214) as these reflect the
1886 hazard associated with single acute exposures. Both routes of exposure should be evaluated as there is
1887 currently insufficient data to predict the contact LD50 from the oral LD50 and vice versa. It is
1888 important that the OECD guidelines are complied with in detail, e.g. that the study is extended if
1889 increasing mortality is observed and all sub-lethal effects are reported. Data on the toxicity of the
1890 active ingredient and the formulation should be reported (LD50, ECx and slope) as effects may differ,
1891 e.g. co-formulants may alter the rate of uptake and products may contain more than one active
1892 ingredient. These data are used to generate the Hazard Quotient (HQ) using the lowest of the LD50
1893 estimates and the application rate (μg a.i. or μg product as appropriate) at the First Tier. Although the
1894 HQ is not based on a detailed assessment of exposure to sprayed products it is a measure of risk which
1895 has been validated using field trial and incident data (Thompson and Thorbahn, 2009).

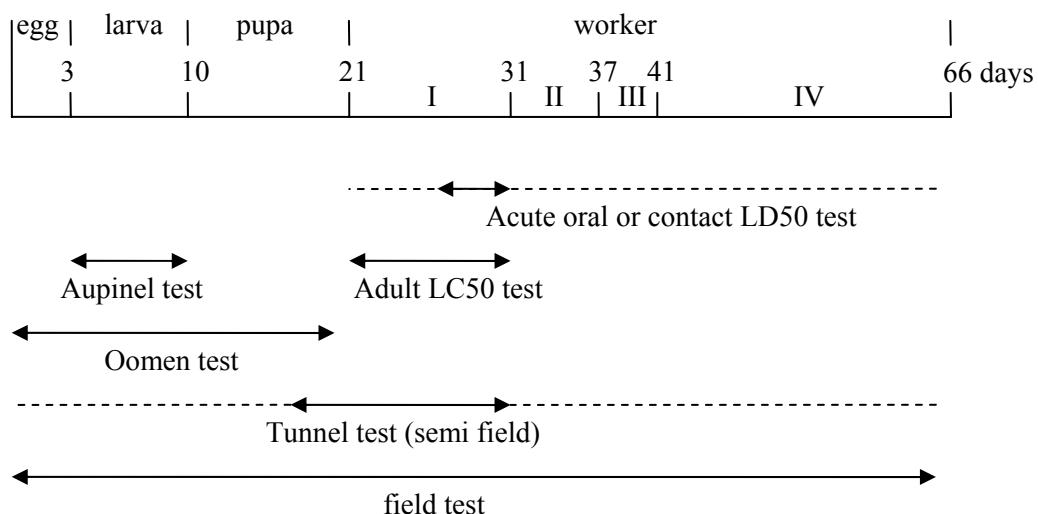
1896 For systemic pesticides applied as seed and soil treatments, exposure may be by intake of
1897 contaminated nectar or pollen, through guttation water or via dusts. As for the sprayed compounds, the
1898 acute oral LD50 should be evaluated but the contact exposure route is less relevant.

1899 It is recognised that single acute exposure scenarios are not representative of the exposure of foragers
1900 or in-hive honey bees for compounds which may persist for more than a single day in the environment,
1901 or in nectar and/or pollen returned to the hive. Currently there is insufficient evidence that toxicity
1902 following extended exposures can be reliably predicted from acute oral LD50 data. Until this can be
1903 demonstrated, a more extended oral toxicity study is recommended; in practice even when the
1904 database supports prediction for existing classes of active ingredient, it is recommended that these are
1905 conducted for active ingredients for new classes of active ingredient. Oral extended exposure studies
1906 should be undertaken for both the active ingredient and the product (detailed harmonised guidelines
1907 for their conduct are required) and again any observed sub-lethal effects should be reported. The data
1908 should be used to determine both the LC50 and NOEC and ECx and to investigate whether there are
1909 any indications of cumulative effects according to Chapter 4. Currently there is no data to support an
1910 HQ approach and therefore a more standard ETR approach is recommended based on the exposure of
1911 the adult honey bees and the LC50, NOEC and ECx.

1912 Insect growth regulators are a specific class of insecticides known to affect brood and not adult honey
1913 bees. Therefore all active ingredients and formulations with IGR properties must be assessed using the
1914 Oomen et al. (1992) brood dosing study to generate a NOEC as this covers all stages until emergence.
1915 Although Oomen et al. (1992) is not recognised as a fully validated guideline, the test methodology
1916 has been used for a number of years and there is extensive experience in its conduct and interpretation.
1917 It is recommended that it is submitted for consideration as an international guideline.

1918 For compounds within the hive, acute exposure of larvae is unlikely to occur and a chronic exposure is
1919 a more realistic scenario. At present there are insufficient data available to predict the toxicity to
1920 larvae from that in adults. Therefore until data is available to support such predictions chronic toxicity
1921 studies (exposure for the developmental period of the larvae as a minimum) should be conducted with
1922 both the active ingredient and the product (for spray applications) to ensure the safety of co-formulants
1923 returned to the hive on pollen and in nectar after spray applications are assessed. These studies may be
1924 conducted with a laboratory study (similar to that proposed by Aupinel et al. (2009) but adapted to
1925 cover the chronic dosing scenario) or by adaptation of the Oomen et al. (1992) study to generate dose-
1926 response data. Neither of these test methods are currently recognised as validated guidelines and it is
1927 recommended that this is considered as a priority. The data should be used to both determine the
1928 NOEC and ECx and to investigate whether there are any indications of cumulative effects according to
1929 Chapter 4 (for bee-toxic compounds it is more appropriate to use a laboratory study where daily
1930 assessments are possible). Again a more standard ETR approach is appropriate based on the exposure
1931 of the larvae and the NOEC or ECx.

1932 In Figure 17 the parts of a bee life cycle covered by the toxicity tests are depicted. The acute oral or
1933 contact test only covers a small part of the honey bee worker stage (preferably bees from the cleaning
1934 and feeding phase of the worker bee life cycle). The Aupinel test covers the larval stage and the
1935 Oomen tests the egg, larval and pupal stage through to emergence. The semi-field exposure phase
1936 within the tunnel is limited to 10-14 days as this is as long as a colony can be kept within a tunnel
1937 without adverse effects on development, but they can be moved outside and kept for as long as is
1938 required. A field test can be kept as long as required, for instance when the hive is kept for 63 days in
1939 the field it will cover 3 brood cycles.


1940

1941

1942

1943

1944
1945
1946
1947

1948
1949 I = cleaning and feeding phase, II = wax producing and cell construction phase, III guiding and ventilating phase, and IV
1950 forager phase

1951 **Figure 18:** Part of the bee life cycle (i.e. worker bee) potentially covered by toxicity tests

1952
1953

1954 **6.2. Semi-field studies**

1955 Well-designed semi-field studies are considered as the worst-case exposure scenario (equivalent to at
1956 least 95% exposure scenario) as honey bees are confined to the treated crop. Due consideration should
1957 be given to the design of the semi-field studies to ensure that the crop is highly attractive (e.g.
1958 *Phacelia*) and that colonies are exposed to the treated crop, e.g. spray applications during periods of
1959 active foraging, removal of stores prior to exposure. For systemic compounds it is recognised that the
1960 exposure may be limited in semi-field studies due to the area of forage available. Therefore it is
1961 recommended that consideration be given to improvements in the OECD75 test design for systemic
1962 pesticides to extend the exposure period, e.g. by providing supplementary pollen and sucrose sources
1963 which contain the same residue levels as the treated crop and extension of the study to encompass a
1964 suitable post-exposure assessment period depending on the persistence of the chemical. The conduct
1965 of the semi-field studies should always take into account the findings in previous studies, e.g. if the
1966 study is triggered by concerns about adult acute mortality and sub-lethal effects then these aspects
1967 should be studied in detail in an EPPO 170 test design, e.g. behaviour of foragers, behaviour at the
1968 hive entrance, if the study is triggered by the larval study then a OECD 75 study design is appropriate.
1969 If concerns are raised by effects on both adults and larvae then further adaptation of OECD 75 is
1970 required to address adult effects identified in EPPO 170, e.g. behaviour of foragers, behaviour at the
1971 hive entrance and daily mortality in addition to detailed assessments of brood.

1972 A detailed description can be found in Appendices N and O.

1973

1974

1975

1976 **6.3. Field studies**

1977 Field studies are considered as realistic but not worst case when compared to semi-field studies and if
1978 well-designed may be identified as realistic worst case (i.e. the x^{th} percentile). However, to achieve
1979 this, due consideration should be given to ensuring that exposure is maximised in the study, e.g. the
1980 use of a highly attractive crop and minimisation of alternative forage sources around the treated area,
1981 removal of stores prior to exposure and extension of the assessment period to ensure effects can be
1982 detected. As for semi-field studies the endpoints should be directed primarily to the concerns raised by
1983 the previous studies but also encompass sub-lethal effects, e.g. on foraging activity.

1984 Details regarding methodology for assessment of uncertainties have not been included in discussion of
1985 the proposed risk assessment approach as these should be established as part of the development of the
1986 Guidance Document.

1987 Risk management has not been included in the discussion of the proposed risk assessment approach as
1988 these should also be established as part of the development of the Guidance Document.

1989

1990 **6.4. Exposure assessment in the risk assessment scheme**

1991 The risk assessment schemes for honey bees, bumble bees and solitary bees require exposure
1992 concentrations in order to calculate the ETR quotients at a number of places. The aim of the exposure
1993 assessment is to consider a x^{th} percentile case. So all the exposure concentrations in these risk
1994 assessment schemes should be equal to or higher than a x^{th} percentile case. These risk assessment
1995 schemes contain semi-field or field studies in the Higher Tiers at a number of places. These studies
1996 usually only consider one treatment level that is compared to an untreated control. To be consistent
1997 with the exposure assessment aim, the exposure in these semi-field or field studies should be equal to
1998 or higher than a x^{th} percentile case.

1999 **6.5. Risk assessment for bumble bees and solitary bees**

2000 The primary concerns for bumble bees and solitary bees were considered to be from insecticides,
2001 insecticidal and IGR pesticides and therefore the risk assessment proposed is primarily for these
2002 modes of action. A lower trigger should be used in the First Tier of the bumble bee and solitary bee
2003 risk assessment than that used in the honey bee risk assessment to take account of the cross-species
2004 extrapolation following acute and chronic exposure. Additional exposure scenarios, highlighted in
2005 Chapter 3, may be important for bumble bees and solitary bees, e.g. soil, and further research is
2006 needed to determine their relative importance and, if required, inclusion in risk assessment.

2007 There is a need for research to develop relevant standardised semi-field and field test designs for
2008 bumble bees and solitary bees. In some cases, e.g. bumble bees, these may be relatively
2009 straightforward, but for other species, such as univoltine solitary bees, methodology requires
2010 significant further work.

2011

2012

2013

2014 **6.6. Systemic compound**

2015 The definition of a systemic working mechanism is: property of a chemical substance which causes
2016 the substance to be taken up by the plant, be transported into the plant via the sap stream, and in this
2017 way be effective in several parts of the plant.

2018 If a substance is systemic, the risk to bees via nectar, pollen and honeydew must be assessed. An easy
2019 decision criterium to determine whether a substance will occur in nectar, pollen or honeydew is
2020 currently not available. A substance should therefore be considered systemic unless proven otherwise
2021 in a reasoned case or by providing actual residue measurements (both for spray and for SST
2022 compounds). As a refinement, the actual residue level in nectar, pollen or honeydew can be measured
2023 in supervised residue trials.

2024 Examples of sources to consult when determining whether a substance is systemic are:

- 2025 - Information on mode of action (Annex IIA 3 / Annex IIIA 1);
- 2026 - Plant metabolism studies and residue trials (Annex IIIA 6.2.1, 6.3 / Annex IIIA 8)
- 2027 - Input parameters of EU groundwater leaching model (FOCUS groundwater, Annex AIII 9.6; for
2028 systemic substances a Plant Uptake Factor of 0.5 is used; if no information otherwise the PUF is
2029 0)
- 2030 - Books or internet databases with pesticide properties (e.g. Pesticide Manual).

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050 7. Risk assessment schemes

The risk assessment schemes and the associated trigger values are based on initial considerations to follow a precautionary principle when not sufficient data were available. The proposed scheme is therefore very conservative in comparison to risk assessments for other groups of non-target organisms. The reviewers are invited to express their ideas on how to address the uncertainties appropriately and in particular to help expand the scientific background with more data.

2051

2052 7.1. Risk assessment scheme for honey bees

2053 7.1.1. Risk assessment scheme for honey bees for spray applications

2054

2055 1 Is exposure for honey bees negligible (see Note 1)?

2056

2057 if yes, classify risk as negligible

2058 if no, go to 2

2059

2060 2 Assessment of the risk from the sprayed application

2061

2062 The following data are required on the toxicity of the active substance/product (Note 2) to adults (see note 3):

2063

- 2064 • acute oral toxicity to adults conducted according to OECD 213
- 2065 • acute contact toxicity to adults conducted according to OECD 214
- 2066 • chronic toxicity study according to Appendix M

2067

2068 The following data are required on the toxicity of the active substance to larvae:

2069

2070 If the above acute data indicate that the compound is of low toxicity to adult bees, i.e. the LD50contact and LD50oral is >100 µg/bee and the LC50 is >100 mg/kg, then a study according to Appendix M (Aupinel method) is required.

2071

2072 If, however, the above data indicate that the a.s. is toxic to adult bees then a study according to Appendix M (Oomen study) is required.

2073

2074 The logic behind this is that in the latter scenario there is the potential for the a.s. to have some adverse effects on adult honey bees and the study covers potential brood care effects. In situations where brood care is not considered to be an issue, it is considered necessary only to assess the risk to larvae. Please note that toxicity has been used as a trigger to determine which study should be conducted; this is due to the fact that application rates may not be known when carrying out the First Tier studies. If the application rates are known, then the selection of the appropriate study can be based on risk, where a low risk is defined as one where the risk quotient for HQcontact and HQoral and ETRadult are not breached.

2075

2076 If the active substance is an insect growth regulator (IGR) a study according to Oomen (Appendix M) is always required because of the mode of action of the compound's potential to affect the growth/development of insects, which may also cause effects on adult bees.

2077

2078 The endpoints from these studies should be collated as follows:

2079

Toxicity study	Endpoint
LD50 contact	µg/bee
LD50 oral	µg/bee
LC50 adult	mg/kg*
NOEC larvae (Appendix M)	mg/kg
NOEC bee brood (Appendix M)	mg/kg

2091 *: This endpoint needs to be expressed also as µg/bee/day
2092
2093
2094 Calculate the Hazard Quotient (HQ) between the application rate and the lower of the
2095 LD50 toxicity values (g ha⁻¹/LD50 in µg per bee).
2096
2097 Calculate the Exposure Toxicity Ratio (ETR_{adult}) between the amount of residues that may
2098 be ingested by an adult bee in 1 day (see note 4) and the LC50 value.
2099
2100 Calculate the ETR_{larvae} between the concentration of residues that may occur in the feed of
2101 a larva (see note 4) and the no observed effect level (NOEC).
2102
2103 Note: the above assessment should be made either for the treated crop, adjacent crop, following crops,
2104 weeds in the treated field or the field margin, which represents the highest exposure. As a conservative
2105 screening step, the scenario for weeds in the treated field might be considered. See Chapter 3 for
2106 further information.
2107
2108 Assess whether there is evidence of cumulative toxicity according to Haber's Law in the
2109 toxicity tests with adult and larval honey bees (see Chapter 4.1.1.).
2110
2111 **if HQ (oral) < 33 and HQ (contact) < 11 and ETR_{adult} < 0.03 and if ETR_{larvae} < 0.1 and**
2112 **no evidence for cumulative toxicity go to 4**
2113 **if HQ (oral) ≥ 33 or HQ (contact) ≥ 11 or ETR_{adult} ≥ 0.03 or ETR_{larvae} ≥ 0.1 or evidence of**
2114 **cumulative toxicity go to 3**
2115
2116 Please see Chapter 5 for a summary regarding the derivation of these trigger values.
2117
2118 **3 Refinement of the risk assessment**
2119
2120 It is assumed that at least one risk quotient has been breached and therefore further work is required
2121 before the use and associated product can be authorised. This further work can involve either the
2122 refinement of the toxicity and/or the refinement of the exposure. Refinement of the toxicity can take
2123 the form of carrying out either semi-field and/or field studies. Further information on possible
2124 approaches are provided in Chapter 4 and Appendices N and O.
2125
2126 As regards the refinement of exposure, this can be carried out by determining exposure estimates for
2127 the product and use under appropriate conditions. Further information is provided in Chapter 3 and
2128 associated Appendices. It should be noted that the refinement of the exposure may also include the use
2129 of risk mitigation measures (see Chapter 9).
2130
2131 If it is proposed to refine the risk assessment via the production of revised exposure estimate then it is
2132 necessary to re-run the assessment carried out at Point 2 above to ensure that the risk is acceptable. If
2133 it is proposed to carry out refined effects studies, it is essential to ensure that the exposure scenario is
2134 appropriate and reflects the exposure estimates determined in Chapter 3.
2135
2136 It is essential to determine whether the refined risk assessment will ensure that the Specific Protection
2137 Goals (see Chapter 2) are met or not.
2138
2139 The refined risk assessment should include an estimate of the uncertainty of the assessment (see step
2140 4)
2141
2142 **4 Assessment of uncertainty**
2143
2144 Analyze uncertainties in the risk assessment as well as the underlying data to determine the
2145 uncertainty in the assessment and in particular whether the SPG will be met (see Chapter 10).

2146

2147

2148 **Notes**

2149

2150 Note 1 Bees can be exposed to pesticides both directly and indirectly. Direct exposure may result
2151 from spray of liquid formulations. Indirect exposure may result from systemic activity in
2152 plants. See the exposure flowchart for more detailed information. Examples of when
2153 exposure of bees is negligible: food storage in enclosed spaces, wound sealing and healing
2154 treatments and use in glasshouses without honey bees as pollinators.

2155

2156 Note 2 According to the data requirements for 1107/2009, formulation data are stated as required on
2157 honey bees. It may be possible to extrapolate data (toxicity endpoints) between similar
2158 formulations and also sometimes to estimate formulation toxicity from effects obtained in
2159 studies conducted with the technical active substance.

2160

2161 Testing of the formulation is required if:

2162

- 2163 1. the toxicity of a formulation containing one active substance cannot be reliably predicted
2164 to be either the same or lower than the active substance(s)
- 2165 2. the product contains more than one active substance

2166

2167 As regards point (1), the toxicity to bees of an active substance may be increased by formulations
2168 containing significant quantities of organic solvents and/or surfactants. Therefore, the toxicity of
2169 formulations should be assessed using the standard laboratory toxicity studies conducted with the
2170 proposed or similar formulation. A case should be made if data on the formulation are not considered
2171 necessary; such cases should include a justification as to why the co-formulants are unlikely to
2172 increase the toxicity of the formulation compared to the active substance on its own.

2173 As regards point (2), in principle the requirements for studies for formulations that contain more than
2174 one active substance are the same as for single active substance formulations. For a new formulation
2175 it would be expected that formulation studies should be submitted unless data from a similar product
2176 are available or can be accessed, or if a well reasoned case for non-submission can be provided.

2177 If formulation data are submitted on the toxicity of the two separate actives and a case made that the
2178 new formulation containing both active substances will not have a higher toxicity than the single
2179 active formulations, then there should be supporting evidence that there will not be synergistic or
2180 additive toxicity.

2181 Currently available evidence indicates that synergistic effects between two or more active substances
2182 are quite rare; however additive effects are more common and may be expected where two (or more)
2183 active substances have the same effect on honey bees. Therefore, where the toxicological action in
2184 honey bees of component active substances are similar, it would be appropriate for applicants to
2185 provide formulation toxicity studies. Alternatively, it may be possible to calculate the formulation
2186 toxicity on the assumption of additive toxicity and hence reduce the need for additional testing (see
2187 Chapter 8 for further details).

2188

2189

2190 Note 3 According to the regulatory requirements for active substances and products (SANCO, 2011)
2191 reports of acute oral and contact tests and a chronic toxicity test shall be submitted.

2192 There is a need to improve the testing protocols concerning bees, in particular to better
2193 address the chronic risk to bees and the identification and measurement of sub-lethal effects
2194 (e.g. effects on memory, learning capacity, orientation) to be used in the risk assessment.
2195 Pending the validation and adoption of new test protocols and of a new risk assessment
2196 scheme, all efforts shall be made to comprehensively address, with the existing protocols, the
2197 acute and chronic risk to bees, including those on colony survival and development.

2198 The tests shall provide the EC10, EC20, EC50 (or an explanation if they cannot be estimated)
2199 together with the NOEC. Sub-lethal effects, if observed, shall be reported.

2200

2201 Note 4 Appendix S gives practical advice on how to calculate the amount of residues that may be
 2202 ingested by an adult bee or the concentration to which bee larva may be exposed. For the
 2203 screening step the following shortcut values can be used (based on default RUDs):
 2204

	the overall residue intake ($\mu\text{g}/\text{bee}/\text{day}$) to be used in calculation of $\text{ETR}_{\text{adult}}$	overall residue concentration (mg/kg) to be used in calculation of $\text{ETR}_{\text{larvae}}$
Honey bee	16.2	21.8
Bumble bee	23.5	37.2
Solitary bee	16.1	137.1

2205 As the next step, PEC values (still based on default RUD values) may be calculated. The
 2206 corresponding ETR values can be calculated by using the following equations:
 2207
 2208

	the overall residue intake ($\mu\text{g}/\text{bee}/\text{day}$) to be used in calculation of $\text{ETR}_{\text{adult}}$	overall residue concentration (mg/kg) to be used in calculation of $\text{ETR}_{\text{larvae}}$
Honey bee	forager: $0.773 \times \text{PEC}_{\text{nectar}}$ nurse: $0.305 \times \text{PEC}_{\text{nectar}} + 0.0115 \times \text{PEC}_{\text{pollen}}$	$0.9935 \times \text{PEC}_{\text{nectar}} + 0.0065 \times \text{PEC}_{\text{pollen}}$
Bumble bee	$0.906 \times \text{PEC}_{\text{nectar}} + 0.0299 \times \text{PEC}_{\text{pollen}}$	$0.8741 \times \text{PEC}_{\text{nectar}} + 0.1259 \times \text{PEC}_{\text{pollen}}$
Solitary bee	$0.696 \times \text{PEC}_{\text{nectar}} + 0.0102 \times \text{PEC}_{\text{pollen}}$	$0.0996 \times \text{PEC}_{\text{nectar}} + 0.9004 \times \text{PEC}_{\text{pollen}}$

2209
 2210
 2211
 2212

2213 **7.1.2. Risk assessment scheme for honey bees for solid applications**

2214 In this context a solid application is defined as a Plant Protection Product that is applied as a solid or
 2215 on a solid and hence honey bees are exposed to a solid rather than a spray or liquid. Examples of solid
 2216 formulations are pellets, granules, baits, dusts and seed treatments (pelleted and non-pelleted). It does
 2217 not include a solid formulation that is mixed with water and applied as a spray, for example water
 2218 dispersible granules.

2219

2220

2221 **1 Is exposure for honey bees negligible (see Note 1)?**

2222

2223 **if yes, classify risk as negligible**

2224

2225 **if no, go to 2**

2226

2 Assessment of the risk from solid applications

2227

2228

2229

The following data are required on the toxicity of the active substance/product (Note 2) to adults (see Note 3):

2230

- acute oral toxicity to adults conducted according to OECD 213
- acute contact toxicity to adults conducted according to OECD 214
- chronic toxicity study according to Appendix M

2231

The following data are required on the toxicity of the active substance to larvae:

2232

If the above acute data indicate that the compound is of low toxicity to adult bees, i.e. the LD50contact and LD50oral is >100 µg/bee and the LC50 is >100 mg/kg then a study according to Appendix M (Aupinel method) is required.

2233

If, however, the above data indicate that the a.s. is toxic to adult bees then a study according to Appendix M (Oomen study) is required.

2234

The logic behind this is that in the latter scenario there is the potential for the a.s. to have some adverse effects on adult honey bees and the study covers potential brood care effects. In situations where brood care is not considered to be an issue, it is considered necessary only to assess the risk to larvae. Please note that toxicity has been used as a trigger to determine which study should be conducted; this is due to the fact that application rates may not be known when carrying out the First Tier studies. If the application rates are known, then the selection of the appropriate study can be based on risk, where a low risk is defined as one where the risk quotient for HQcontact and HQoral and ETRadult are not breached.

2235

If the active substance is an insect growth regulator (IGR) a study according to Oomen (Appendix M) is always required because the compound's mode of action will have the potential to affect the growth/development of insects and may also cause effects on adult bees.

2236

The endpoints from these studies should be collated as follows:

Toxicity study	Endpoint
LD50 contact	µg/bee
LD50 oral	µg/bee
LC50 adult	mg/kg*
NOEC larvae (Appendix M)	mg/kg
NOEC bee brood (Appendix M)	mg/kg

2237

*: This endpoint needs to be expressed also as µg/bee/day

2238

2260 Calculate the Hazard Quotient (HQ) between the application rate and the lower of the
2261 LD50 toxicity values (g ha⁻¹ /LD50 in µg per bee).

2262
2263 Calculate the Exposure Toxicity Ratio (ETR_{adult}) between the amount of residues that may
2264 be ingested by an adult bee in 1 day (see note 4) and the LC50 value.

2265
2266 Calculate the ETR_{larvae} between the concentration of residues that may occur in the feed of
2267 a larva (see note 4) and the no observed effect level (NOEC).

2268
2269 Note: the above assessment should be made either for the treated crop, adjacent crop, following crops,
2270 weeds in the treated field or the field margin, which represents the highest exposure. As a conservative
2271 screening step, the scenario for weeds in the treated field might be considered. See Chapter 3 for
2272 further information.

2273
2274 Assess whether there is evidence of cumulative toxicity according to Haber's Law in the
2275 toxicity tests with adult and larval honey bees (see note 5):

2276
2277 **if HQ (oral) < 33 and HQ (contac) < 11 and ETR_{adult} < 0.03 and if ETR_{larvae} < 0.1 and no
2278 evidence for cumulative toxicity go to 4**

2279 **if HQ (oral) ≥ 33 or HQ (contact) ≥ 11 or ETR_{adult} ≥ 0.03 or ETR_{larvae} ≥ 0.1 or evidence of
2280 cumulative toxicity go to 3**

2281
2282 Please see Note 6 for a brief summary regarding the derivation of these trigger values.

2283 2284 **3 Refinement of the risk assessment**

2285
2286 It is assumed that at least one risk quotient has been breached and therefore further work is required
2287 before the use and associated product can be authorised. This further work can involve either the
2288 refinement of the toxicity and/or the refinement of the exposure. Refinement of the toxicity can take
2289 the form of carrying out either semi-field and/or field studies. Further information on possible
2290 approaches are provided in Chapter 4 and Appendices N and O.

2291
2292 As regards the refinement of exposure, this can be carried out by determining exposure estimates for
2293 the product and use under appropriate conditions. Further information is provided in Chapter 3 and
2294 associated Appendices. It should be noted that the refinement of the exposure may also include the use
2295 of risk mitigation measures (see Chapter 9).

2296
2297 If it is proposed to refine the risk assessment via the production of revised exposure estimate then it is
2298 necessary to re-run the assessment carried out at Point 2 above to ensure that the risk is acceptable. If
2299 it is proposed to carry out refined effects studies, it is essential to ensure that the exposure scenario is
2300 appropriate and reflects the exposure estimates determined in Chapter 3.

2301
2302 It is essential to determine whether the refined risk assessment will ensure that the Specific Protection
2303 Goals (see Chapter 2) are met or not.

2304
2305 The refined risk assessment should include an estimate of the uncertainty of the assessment (see step
2306 4)

2307 2308 **4 Assessment of uncertainty**

2309
2310 Analyze uncertainties in the risk assessment as well as the underlying data to determine the
2311 uncertainty in the assessment and in particular whether the SPG will be met (see chapter 10).

2312
2313
2314

2315 **Notes**

2316

2317 Note 1 Bees can be exposed to pesticides both directly and indirectly. Direct exposure may result
2318 from spray of liquid formulations. Indirect exposure may result from systemic activity in
2319 plants. See the exposure flowchart for more detailed information. Examples of when
2320 exposure of bees is negligible: food storage in enclosed spaces, wound sealing and healing
2321 treatments and use in glasshouses without honey bees as pollinators.

2322

2323 Note 2 According to the data requirements for 1107/2009, formulation data are stated as required on
2324 honey bees. It may be possible to extrapolate data (toxicity endpoints) between similar
2325 formulations and also sometimes to estimate formulation toxicity from effects obtained in
2326 studies conducted with the technical active substance.

2327

2328 Testing of the formulation is required if:

2329

- 2330 1. the toxicity of a formulation containing one active substance cannot be reliably predicted
2331 to be either the same or lower than the active substance(s)
- 2332 2. the product contains more than one active substance

2333

2334 As regards point (1), the toxicity to bees of an active substance may be increased by formulations
2335 containing significant quantities of organic solvents and/or surfactants. Therefore, the toxicity of
2336 formulations should be assessed using the standard laboratory toxicity studies conducted with the
2337 proposed or similar formulation. A case should be made if data on the formulation are not considered
2338 necessary; such a case should include a justification as to why the co-formulants are unlikely to
2339 increase the toxicity of the formulation compared to the active substance on its own.

2340 As regards point (2), in principle the requirements for studies for formulations that contain more than
2341 one active substance are the same as for single active substance formulations. For a new formulation
2342 it would be expected that formulation studies should be submitted unless data from a similar product
2343 are available or can be accessed, or if a well reasoned case for non-submission can be provided.

2344 If formulation data are submitted on the toxicity of the two separate actives and a case made that the
2345 new formulation containing both active substances will not be any more toxic than the single active
2346 formulations, then there should be supporting evidence that there will not be synergistic or additive
2347 toxicity.

2348 Currently available evidence indicates that synergistic effects between two or more active substances
2349 are quite rare; however additive effects are more common and may be expected where two (or more)
2350 active substances have the same effect on honey bees. Therefore, where the toxicological action of
2351 component active substances are similar in honey bees, it would be appropriate for applicants to
2352 provide formulation toxicity studies. Alternatively, it may be possible to calculate the formulation
2353 toxicity on the assumption of additive toxicity and hence reduce the need for additional testing (see
2354 Chapter 8 for further details).

2355

2356

2357 Note 3 According to the regulatory requirements for active substances and products (SANCO, 2011)
2358 reports of acute oral and contact tests and a chronic toxicity test shall be submitted.

2359 There is a need to improve the testing protocols concerning bees, in particular to better
2360 address the chronic risk to bees and the identification and measurement of sub-lethal effects
2361 (e.g. effects on memory, learning capacity, orientation) to be used in the risk assessment.
2362 Pending the validation and adoption of new test protocols and of a new risk assessment
2363 scheme, all efforts shall be made to comprehensively address, with the existing protocols, the
2364 acute and chronic risk to bees, including those on colony survival and development.

2365 The tests shall provide the EC10, EC20, EC50 (or an explanation if they cannot be estimated)
2366 together with the NOEC. Sub-lethal effects, if observed, shall be reported.

2367

2368 Note 4 Appendix S gives practical advice on how to calculate the amount of residues that may be
2369 ingested by an adult bee or the concentration to which bee larvae may be exposed. For the

2370 screening steps, shortcut values and simplified equations may be used as reported in Note 4 of
2371 the risk assessment scheme for honey bees for spray applications, but the figures need to be
2372 multiplied with the adjustment factor of 5. For PECnectar and PECpollen for seed treatment
2373 for the target crop, the default of 1 mg/kg needs to be used.
2374
2375
2376

2377 **7.2. Risk assessment scheme for bumble bees**

 2378 **7.2.1. Risk assessment scheme for bumble bees for spray applications**

2379 The proposed risk assessment scheme for bumble bees is only in a preliminary phase. There is no
 2380 reason to use a different type of scheme than that of honey bees. But before it will be possible to run
 2381 this scheme additional research has to be done (see EFSA, 2012a, chapter 5).

2382 **2** Is exposure for bumble bees negligible (see Note 1)?

2383 **if yes, classify risk as negligible**

2384 **if no, go to 2**

2385 **2** Is the compound an insecticide, or an insect growth regulator or does the compound have
 2386 insecticidal activity (see Note 2)?

2387 **if yes, go to 3**

2388 **if no, go to 8**

2389 *Remark: A risk assessment for bumble bees is only carried out for insecticides, insect growth
 2390 regulators or compounds with insecticidal activity, in contrast to honey bees where
 2391 the risk is assessed for each compound.*

2392 **3 Assessment of the risk from sprayed applications**

2393 The following data are required on the toxicity of the active substance/product (Note 3) to
 2394 adult bumble bees (see Note 4):

- 2395 • acute oral toxicity to adult bumble bees
- 2396 • acute contact toxicity to adult bumble bees
- 2397 • chronic toxicity study for adult and larval honey bees as surrogate species
 2398 (depending on the findings for honey bees, the study for larvae is either a study
 2399 similar to the Aupinel method or a study similar to the Oomen method when the
 2400 assessment for the brood care should also be taken into account (see honey bee
 2401 scheme for more information)).

2402 If the active substance is an insect growth regulator (IGR) a study according to Appendix M
 2403 (Oomen study) should be carried out because the compound's mode of action will have the
 2404 potential to affect the growth/development of insects and may also cause effects on adult
 2405 bees.

2406 The endpoints from these studies should be collated as follows:

Toxicity study	Endpoint
LD50 contact	µg/bumble bee
LD50 oral	µg/bumble bee
LC50 adult	mg/kg*
NOEC larvae (Appendix M)	mg/kg
NOEC bee brood (Appendix M)	mg/kg

2407 *: This endpoint needs to be expressed also as µg/bee/day

2408 Establish adult oral and contact LD50 for bumble bees (see Note 5).

2421 Calculate the hazard quotient (HQ) between the application rate and the LD50 toxicity
2422 values (g ha⁻¹/LD50 in µg of active ingredient per bumble bee).

2423
2424 Assess possible longer term impacts on adult bumble bees (Note 6) using the endpoints of the
2425 LC50 study with *Apis* worker bees **as a surrogate** for bumble bees.

2426 Calculate the exposure toxicity ratio (ETR_{adults}) of the amount of residues that may be
2427 ingested by bumble bees in 1 day and the LC50 value.

2428
2429 Assess possible impacts on bumble bee larvae (Note 6) using *Apis* larvae test endpoint **as a**
2430 **surrogate** for bumble bee larvae.

2431 Calculate the exposure toxicity ratio (ETR_{larvae}) between the concentration of residues that
2432 may be occur in the feed of bumble bee larvae and the no observed effect level (NOEC).

2433
2434 Note: the above assessment should be made either for the treated crop, adjacent crop, following crops,
2435 weeds in the treated field or the field margin, which represents the highest exposure. As a conservative
2436 screening step, the scenario for weeds in the treated field might be considered. See Chapter 3 for
2437 further information.

2438
2439 Assess whether there is evidence for cumulative toxicity according to Haber's Law in the
2440 toxicity tests (see Note 7).

2442 **If HQ (oral) < 5.5 and HQ (contact) < 1.76 and ETR_{adult} < 0.024/<0.0024 and if ETR_{larvae}
2443 < 0.01 and no evidence for cumulative toxicity go to 5**

2444 **If HQ (oral) ≥ 5.5 or HQ (contact) ≥ 1.76 or ETR_{adult} ≥ 0.024/≥ 0.0024 or ETR_{larvae} ≥ 0.01
2445 or evidence of cumulative toxicity go to 4**

2446
2447 Please see Chapter 5 for a brief summary regarding the derivation of these trigger values.

2448 4 Refinement of the risk assessment

2449
2450 It is assumed that at least one risk quotient has been breached and therefore further work is required
2451 before the use and associated product can be authorised. This further work can involve either the
2452 refinement of the toxicity and/or the refinement of the exposure. Refinement of the toxicity can take
2453 the form of carrying out either semi-field and/or field studies. Further information on possible
2454 approaches are provided in Chapter 4 and Appendices N and O.

2455
2456 As regards the refinement of exposure, this can be carried out by determining exposure estimates for
2457 the product and use under appropriate conditions. Further information is provided in Chapter 3 and
2458 associated Appendices. It should be noted that the refinement of the exposure may also include the use
2459 of risk mitigation measures (see Chapter 9).

2459
2460 If it is proposed to refine the risk assessment via the production of revised exposure estimate then it is
2461 necessary to re-run the assessment carried out at Point 2 above to ensure that the risk is acceptable. If
2462 it is proposed to carry out refined effects studies, it is essential to ensure that the exposure scenario is
2463 appropriate and reflects the exposure estimates determined in Chapter 3.

2463
2464 It is essential to determine whether the refined risk assessment will ensure that the Specific Protection
2465 Goals (see Chapter 2) are met or not.

2465
2466 The refined risk assessment should include an estimate of the uncertainty of the assessment (see step
2467 4)

2468 4 Assessment of uncertainty

2475 Analyze uncertainties in the risk assessment as well as the underlying data to determine the
2476 uncertainty in the assessment and in particular whether the SPG will be met (see Chapter 10).

2477

2478

2479

2480 **Notes**

2481

2482 Note 1 Bumble bees can be exposed to pesticides both directly and indirectly. Direct exposure may
2483 result from spray of liquid formulations. Indirect exposure may result from systemic activity
2484 in plants. See the exposure flowchart for more detailed information. Examples of when
2485 exposure of bees is negligible: food storage in enclosed spaces, wound sealing and healing
2486 treatments and use in glasshouses without bumble bees as pollinators.

2487

2488 Note 2 The outcome of the honey bee assessment scheme can be used for deciding whether risk
2489 assessment for bumble bees also has to be carried out. A compound has to be assessed for
2490 bumble bees in case it was necessary in the honey bee scheme to revise the default exposure
2491 values or when an assessment of Higher Tier studies had to be carried out. Data for the non-
2492 target arthropods could also be used for assessing the potential insecticidal activity of a
2493 compound. For most of the compounds the two standard non target arthropods are tested
2494 (*Typhodromus pyri* and *Aphidius rhopalosiphii*). When the quotient of the application rate
2495 multiplied by a MAF factor and the LR50 is greater than 2 the compound could be considered
2496 as having insecticidal activity. In addition efficacy studies with other insects or studies carried
2497 out with insects in the screening process could be [a](#) source for assessing potential insecticidal
2498 activity.

2499

2500 Note 3 Note when to assess product or not. According to the data requirements for 1107/2009,
2501 formulation data on honey bees are stated as required. It may be possible to extrapolate data
2502 (toxicity endpoints) between similar formulations and also sometimes to estimate formulation
2503 toxicity from effects obtained in studies conducted with the technical active substance.

2504

2505 Testing of the formulation is required if:

2506

- 2507 1. the toxicity of a formulation containing one active substance cannot be reliably predicted
2508 to be either the same or lower than the active substance(s)
- 2509 2. the product contains more than one active substance

2510

2511 As regards point (1), the toxicity to bees of an active substance may be increased by
2512 formulations containing significant quantities of organic solvents and/or surfactants.
2513 Therefore, the toxicity of formulations should be assessed using the standard laboratory
2514 toxicity studies conducted with the proposed or similar formulation. A case should be made if
2515 data on the formulation are not considered necessary; such a case should include a justification
2516 as to why the co-formulants are unlikely to increase the toxicity of the formulation compared
2517 to the active substance on its own.

2518 As regards point (2), in principle the requirements for studies for formulations that contain
2519 more than one active substance are the same as for single active substance formulations. For a
2520 new formulation it would be expected that formulation studies should be submitted unless data
2521 from a similar product are available or can be accessed, or a well reasoned case for non-
2522 submission can be provided.

2523 If formulation data are submitted on the toxicity of the two separate actives and a case made
2524 that the new formulation containing both active substances will have a higher toxicity than the
2525 single active formulations, then there should be supporting evidence that there will not be
2526 synergistic or additive toxicity.

2527 Currently available evidence indicates that synergistic effects between two or more active
2528 substances are quite rare; however additive effects are more common and may be expected
2529 where two (or more) active substances have the same effect on honey bees. Therefore, where

2530 the toxicological action of component active substances are similar in honey bees it would be
2531 appropriate for applicants to provide formulation toxicity studies. Alternatively, it may be
2532 possible to calculate the formulation toxicity on the assumption of additive toxicity and hence
2533 reduce the need for additional testing (see Chapter 8 for further details).
2534

2535 Note 4 In the definitive version of regulatory requirements for active substances (SANCO, 2011)
2536 bumble bees as such are not mentioned.
2537 There is a need to improve the testing protocols concerning bumble bees, in particular to
2538 better address the chronic risk to bumble bees and the identification and measurement of sub-
2539 lethal effects (e.g. effects on memory, learning capacity, orientation) to be used in the risk
2540 assessment. Pending the validation and adoption of new test protocols and of a new risk
2541 assessment scheme, all efforts shall be put in place to comprehensively address, with the
2542 existing protocols, the acute and chronic risk to bumble bees, including those on colony
2543 survival and development.
2544 The tests shall provide the EC10, EC20, EC50 (or an explanation if they cannot be estimated)
2545 together with the NOEC. Sub-lethal effects, if observed, shall be reported
2546

2547 Note 5 *Bombus terrestris* is proposed as test species. Test protocols for this species are suggested in
2548 Appendix P.
2549

2550 Note 6 Appendix S gives practical advice on how to calculate the amount of residues that may be
2551 ingested by an adult bee or the concentration to which bee larvae may be exposed. For the
2552 screening steps shortcut values and simplified equations may be used as reported in Note 4 of
2553 the risk assessment scheme for honey bees for spray applications.
2554

2555 Note 7 Either assume that honeybees are an adequate surrogate for bioaccumulative toxicity or
2556 replicate design of test but using bumblebees.
2557

2558 Note 8 At the moment no standardized guidelines are available for Higher Tier testing but protocols
2559 for semi-field and field studies are proposed in Appendix P. Endpoints measured in these tests
2560 are: bee mortality rate, queen production rate, progeny survival.
2561
2562
2563
2564

2565 **7.2.2. Risk assessment scheme for bumble bees for solid applications**

2566 The proposed risk assessment scheme for bumble bees is only in a preliminary phase. There is no
 2567 reason to use a different type of scheme than that for honey bees. But before it will be possible to run
 2568 this scheme additional research has to be done (see EFSA, 2012a, chapter 5).

2569 In this context a solid application is defined as a Plant Protection Product that is applied as a solid or
 2570 on a solid and hence honey bees are exposed to a solid rather than a spray or liquid. Examples of solid
 2571 formulations are pellets, granules, baits, dusts and seed treatments (pelleted and non-pelleted). It does
 2572 not include a solid formulation that is mixed with water and applied as a spray, for example water
 2573 dispersible granules.

2574
 2575 **3** Is exposure for bumble bees negligible (see Note 1)?

2577 **if yes, classify risk as negligible**
 2578 **if no, go to 2**

2579
 2580 **2** Is the compound an insecticide, or an insect growth regulator or does the compound have
 2581 insecticidal activity (see Note 2)?

2582 **if yes, go to 3**
 2583 **if no, go to 8**

2584
 2585 *Remark: A risk assessment for bumble bees is only carried out for insecticides, insect growth*
 2586 *regulators or compounds with insecticidal activity, in contrast to honey bees where*
 2587 *the risk is assessed for each compound.*

2588
 2589 **3 Assessment of the risk from solid applications**

2590
 2591 The following data are required on the toxicity of the active substance/product (Note 3) to
 2592 adult bumble bees (see note 4):

2593
 2594 • acute oral toxicity to adult bumble bees
 2595 • acute contact toxicity to adult bumble bees
 2596 • chronic toxicity study for adult and larval honey bees as surrogate species
 2597 (depending on the findings for honey bees, the study for larvae is either a study
 2598 similar to the Aupinel method or a study similar to the Oomen method when the
 2599 assessment for the brood care should also be taken into account (see honey bee
 2600 scheme for more information)).

2601
 2602 If the active substance is an insect growth regulator (IGR) a study according to Appendix M
 2603 (Oomen study) should be performed because the compound's mode of action will have the
 2604 potential to affect the growth/development of insects and may also cause effects on adult
 2605 bees.

2606
 2607 The endpoints from these studies should be collated as follows:

Toxicity study	Endpoint
LD50 contact	µg/ bumble bee
LD50 oral	µg/ bumble bee
LC50 adult	mg/kg*
NOEC larvae (Appendix M)	mg/kg
NOEC bee brood (Appendix M)	mg/kg

2609 *: This endpoint needs to be expressed also as µg/bee/day
 2610

2611 Establish adult oral and contact LD50 for bumble bees (see Note 5).
2612 Calculate the hazard quotient (HQ) between the application rate and the LD50 toxicity
2613 values (g ha^{-1} / LD50 in μg of active ingredient per bumble bee).
2614
2615 Assess possible longer term impacts on adult bumble bees (Note 6) using the endpoints of the
2616 LC50 study with *Apis* worker bees **as a surrogate** for bumble bees.
2617 Calculate the exposure toxicity ratio (ETR_{adults}) of the amount of residues that may be
2618 ingested by bumble bees in 1 day and the LC50 value.
2619
2620 Assess possible impacts on bumble bee larvae (Note 6) using *Apis* larvae test endpoint **as a**
2621 **surrogate** for bumble bee larvae.
2622 Calculate the exposure toxicity ratio (ETR_{larvae}) between the concentration of residues that
2623 may occur in the feed of a bumble bee larvae and the no observed effect concentration
2624 (NOEC).
2625
2626 Note: the above assessment should be made either for the treated crop, adjacent crop, following crops,
2627 weeds in the treated field or the field margin, which represent the highest exposure. As a conservative
2628 screening step, the scenario for weeds in the treated field might be considered. See Chapter 3 for
2629 further information.
2630
2631 Assess whether there is evidence for cumulative toxicity according to Haber's Law in the
2632 toxicity tests (see note 7).
2633
2634 **if HQ (oral) < 5.5 and HQ (contact) < 1.76 and ETR_{adult} < 0.024/≤ 0.0024 and if ETR_{larvae}**
2635 **< 0.01 and no evidence for cumulative toxicity go to 5**
2636 **if HQ (oral) ≥ 5.5 or HQ (contact) ≥ 1.76 or ETR_{adult} ≥ 0.024/≥ 0.0024 or ETR_{larvae} ≥ 0.01**
2637 **or evidence of cumulative toxicity go to 4**
2638
2639 Please see Chapter 5 for a brief summary regarding the derivation of these trigger values.
2640
2641 **4 Refinement of the risk assessment**
2642
2643 It is assumed that at least one risk quotient has been breached and therefore further work is required
2644 before the use and associated product can be authorised. This further work can involve either the
2645 refinement of the toxicity and/or the refinement of the exposure. Refinement of the toxicity can take
2646 the form of carrying out either semi-field and/or field studies. Further information on possible
2647 approaches are provided in Chapter 4 and Appendices N and O.
2648
2649 As regards the refinement of exposure, this can be carried out by determining exposure estimates for
2650 the product and use under appropriate conditions. Further information is provided in Chapter 3 and
2651 associated Appendices. It should be noted that the refinement of the exposure may also include the use
2652 of risk mitigation measures (see Chapter 9).
2653
2654 If it is proposed to refine the risk assessment via the production of revised exposure estimate then it is
2655 necessary to re-run the assessment carried out at Point 2 above to ensure that the risk is acceptable. If
2656 it is proposed to carry out refined effects studies, it is essential to ensure that the exposure scenario is
2657 appropriate and reflects the exposure estimates determined in Chapter 3.
2658
2659 It is essential to determine whether the refined risk assessment will ensure that the Specific Protection
2660 Goals (see Chapter 2) are met or not.
2661
2662 The refined risk assessment should include an estimate of the uncertainty of the assessment (see step
2663 4)
2664
2665

2666 4 **Assessment of uncertainty**

2667
2668 Analyze uncertainties in the risk assessment as well as the underlying data to determine the
2669 uncertainty in the assessment and in particular whether the SPG will be met (see Chapter 10).

2670

2671

2672

2673 **Notes**

2674

2675 Note 1 Bumble bees can be exposed to pesticides both directly and indirectly. Direct exposure may
2676 result from spray of liquid formulations. Indirect exposure may result from systemic activity
2677 in plants. See the exposure flowchart for more detailed information. Examples of when
2678 exposure of bees is negligible: food storage in enclosed spaces, wound sealing and healing
2679 treatments and use in glasshouses without bumble bees as pollinators.

2680

2681 Note 2 The outcome of the honey bee assessment scheme can be used for deciding whether risk
2682 assessment for bumble bees also has to be carried out. A compound has to be assessed for
2683 bumble bees in case it was necessary in the honey bee scheme to revise the default exposure
2684 values or when an assessment of Higher Tier studies had to be carried out. Data for the non-
2685 target arthropods could also be used for assessing the potential insecticidal activity of a
2686 compound. For most of the compounds the two standard non target arthropods are tested
2687 (*Typhodromus pyri* and *Aphidius rhopalosiphi*). When the quotient of the application rate
2688 multiplied by a MAF factor and the LR50 is greater than 2 the compound could be considered
2689 as having insecticidal activity. In addition efficacy studies with other insects or studies carried
2690 out with insects in the screening process could be a source for assessing potential insecticidal
2691 activity.

2692

2693 Note 3 Note when to assess product or not. According to the data requirements for 1107/2009,
2694 formulation data on honey bees are stated as required. It may be possible to extrapolate data
2695 (toxicity endpoints) between similar formulations and also sometimes to estimate
2696 formulation toxicity from effects obtained in studies conducted with the technical active
2697 substance.

2698

2699 Testing of the formulation is required if:

2700

- 2701 1. the toxicity of a formulation containing one active substance cannot be reliably predicted
2702 to be either the same or lower than the active substance(s)
- 2703 2. the product contains more than one active substance

2704

2705 As regards point (1), the toxicity to bees of an active substance may be increased by
2706 formulations containing significant quantities of organic solvents and/or surfactants.
2707 Therefore, the toxicity of formulations should be assessed using the standard laboratory
2708 toxicity studies conducted with the proposed or similar formulation. A case should be made
2709 if data on the formulation are not considered necessary, including a justification as to why
2710 the co-formulants are unlikely to increase the toxicity of the formulation compared to the
2711 active substance on its own.

2712

2713 As regards point (2), in principle the requirements for studies for formulations that contain
2714 more than one active substance are the same as for single active substance formulations. For
2715 a new formulation it would be expected that formulation studies should be submitted unless
2716 data from a similar product are available or can be accessed, or a well reasoned case for non-
2717 submission can be provided.

2718

2719 If formulation data are submitted on the toxicity of the two separate actives and a case made
2720 that the new formulation containing both active substances will not have a higher toxicity
than the single active formulations, then there should be supporting evidence that there will
not be synergistic or additive toxicity.

2721 Currently available evidence indicates that synergistic effects between two or more active
2722 substances are quite rare; however additive effects are more common and may be expected
2723 where two (or more) active substances have the same effect on honey bees. Therefore,
2724 where the toxicological action in honey bees of component active substances are similar, it
2725 would be appropriate for applicants to provide formulation toxicity studies. Alternatively, it
2726 may be possible to calculate the formulation toxicity on the assumption of additive toxicity
2727 and hence reduce the need for additional testing (see Chapter 8 for further details).
2728

2729 Note 4 In the definitive version on regulatory requirements for active substances (SANCO, 2011)
2730 bumble bees as such are not mentioned.

2731 There is a need to improve the testing protocols concerning bumble bees, in particular to
2732 better address the chronic risk to bumble bees and the identification and measurement of sub-
2733 lethal effects (e.g. effects on memory, learning capacity, orientation) to be used in the risk
2734 assessment. Pending the validation and adoption of new test protocols and of a new risk
2735 assessment scheme, all efforts shall be put in place to comprehensively address, with the
2736 existing protocols, the acute and chronic risk to bumble bees, including those on colony
2737 survival and development.

2738 The tests shall provide the EC₁₀, EC₂₀, EC₅₀ (or an explanation if they cannot be estimated)
2739 together with the NOEC. Sub-lethal effects, if observed, shall be reported
2740

2741 Note 5 *Bombus terrestris* is proposed as test species. Test protocols for this species are suggested in
2742 Appendix P.
2743

2744 Note 6 Appendix S gives practical advice how to calculate the amount of residues that may be
2745 ingested by an adult bee or the concentration to which bee larvae may be exposed. For the
2746 screening steps shortcut values and simplified equations may be used as reported in Note 4
2747 of the risk assessment scheme for honey bees for spray applications, but the figures need to
2748 be multiplied with the adjustment factor of 5. For PECnectar and PECpollen for seed
2749 treatment for the target crop, the default of 1 mg/kg needs to be used.
2750

2751 Note 7 Either assume that honey bees are an adequate surrogate for bioaccumulative toxicity or
2752 replicate design of test but using bumble bees.
2753

2754 Note 8 At the moment no standardized guidelines are available for Higher Tier testing but protocols
2755 for semi-field and field studies are proposed in Appendix P. Endpoints measured in these tests
2756 are: bee mortality rate, queen production rate, progeny survival.
2757
2758
2759

2760

2761 **7.3. Risk assessment scheme for solitary bees**

2762 **7.3.1. Risk assessment scheme for solitary bees for spray applications**

2763

2764 The proposed risk assessment scheme for solitary bees is only in a preliminary phase. There is no
 2765 reason to use a different type of scheme than that for honey bees. But before it will be possible to run
 2766 this scheme additional research has to be done (see EFSA, 2012a, chapter 5).

2767

2768 **4 Is exposure for solitary bees negligible (see Note 1)?**

2769

2770 **if yes, classify risk as negligible**

2771 **if no, go to 2**

2772

2773 **2 Is the compound an insecticide, or an insect growth regulator or does the compound have**
 2774 **insecticidal activity (see Note 2)?**

2775 **if yes, go to 3**

2776 **if no, go to 8**

2777

2778 *Remark: A risk assessment for solitary bees is only carried out for insecticides, insect growth*
 2779 *regulators or compounds with insecticidal activity, in contrast to honey bees where*
 2780 *the risk is assessed for each compound.*

2781

2782 **3 Assessment of the risk from sprayed applications**

2783

2784 The following data are required on the toxicity of the active substance/product (Note 3) to
 2785 adult bees (see note 4):

2786

- acute oral toxicity to adult solitary bees
- acute contact toxicity to adult solitary bees
- chronic toxicity study for adult and larval honey bees as surrogate species
 (depending on the findings for honey bees, the study for larvae is either a study
 similar to the Aupinel method or a study similar to the Oomen method when the
 assessment for the brood care should also be taken into account (see honey bee
 scheme for more information)).

2794

2795 If the active substance is an insect growth regulator (IGR) a study according to Appendix M
 2796 (Oomen study) should be performed because the compounds' mode of action will have the
 2797 potential to affect the growth/development of insects and may also cause effects on adult
 2798 bees.

2799

2800 The endpoints from these studies should be collated as follows:

2801

Toxicity study	Endpoint
LD50 contact	µg/solitary bee
LD50 oral	µg/solitary bee
LC50 adult	mg/kg*
NOEC larvae (Appendix M)	mg/kg
NOEC bee brood (Appendix M)	mg/kg

2802

2803 *: This endpoint needs to be expressed also as µg/bee/day

2804 Establish adult oral and contact LD50 for solitary bees (see Note 5).
2805 Calculate the hazard quotient (HQ) between the application rate and the LD50 toxicity
2806 values (g ha^{-1} / LD50 in μg of active ingredient per solitary bee).
2807
2808 Assess possible longer term impacts on adult solitary bees (Note 6) using the endpoints of the
2809 LC50 study with *Apis* worker bees **as a surrogate** for solitary bees.
2810 Calculate the exposure toxicity ratio ($\text{ETR}_{\text{adults}}$) of the amount of residues that may be
2811 ingested by solitary bees in 1 day and the LC50 value.
2812
2813 Assess possible impacts on solitary bee larvae (Note 6) using *Apis* larvae test endpoint **as a**
2814 **surrogate** for solitary bee larvae.
2815 Calculate the exposure toxicity ratio ($\text{ETR}_{\text{larvae}}$) between the concentration of residues that
2816 may occur in the feed of solitary bee larvae and the no observed effect level (NOEL).
2817
2818 Note: the above assessment should be made either for the treated crop, adjacent crop, following crops,
2819 weeds in the treated field or the field margin, which represents the highest exposure. As a conservative
2820 screening step, the scenario for weeds in the treated field might be considered. See Chapter 3 for
2821 further information.
2822
2823 Assess whether there is evidence for cumulative toxicity according to Haber's Law in the
2824 toxicity tests (see note 7).
2825
2826 **If HQ (oral) < 6.3 and HQ (contact) < 2 and $\text{ETR}_{\text{adult}} < 0.027/0.0027$ and if $\text{ETR}_{\text{larvae}} < 0.01$ and no evidence for cumulative toxicity go to 5**
2827
2828 **If HQ (oral) ≥ 6.3 or HQ (contact) ≥ 2 or $\text{ETR}_{\text{adult}} \geq 0.027/0.0027$ or $\text{ETR}_{\text{larvae}} \geq 0.01$ or evidence of cumulative toxicity go to 4**
2829
2830
2831
2832 Please see Chapter 5 for a brief summary regarding the derivation of these trigger values.

2833 4 Refinement of the risk assessment

2836 It is assumed that at least one risk quotient has been breached and therefore further work is required
2837 before the use and associated product can be authorised. This further work can involve either the
2838 refinement of the toxicity and/or the refinement of the exposure. Refinement of the toxicity can take
2839 the form of carrying out either semi-field and/or field studies. Further information on possible
2840 approaches are provided in Note 8 and Appendix Q.
2841

2842 As regards the refinement of exposure, this can be carried out by determining exposure estimates for
2843 the product and use under appropriate conditions. Further information is provided in Chapter 3 and
2844 associated Appendices. It should be noted that the refinement of the exposure may also include the use
2845 of risk mitigation measures (see Chapter 9).
2846

2847 If it is proposed to refine the risk assessment via the production of revised exposure estimate then it is
2848 necessary to re-run the assessment carried out at Point 2 above to ensure that the risk is acceptable. If
2849 it is proposed to carry out refined effects studies, it is essential to ensure that the exposure scenario is
2850 appropriate and reflects the exposure estimates determined in Chapter 3.
2851

2852 It is essential to determine whether the refined risk assessment will ensure that the Specific Protection
2853 Goals (see Chapter 2) are met or not.
2854

2855 The refined risk assessment should include an estimate of the uncertainty of the assessment (see step
2856 4)
2857

2858 5 Assessment of uncertainty

2859
2860 Analyze uncertainties in the risk assessment as well as the underlying data to determine the
2861 uncertainty in the assessment and in particular whether the SPG will be met (see Chapter 10).
2862
2863

2864 Notes

2865
2866 Note 1 Solitary bees can be exposed to pesticides both directly and indirectly. Direct exposure may
2867 result from spray of liquid formulations. Indirect exposure may result from systemic activity
2868 in plants. See the exposure flowchart for more detailed information. Examples of when
2869 exposure of bees is negligible: food storage in enclosed spaces, wound sealing and healing
2870 treatments and use in glasshouses without solitary bees as pollinators.
2871

2872 Note 2 The outcome of the honey bee assessment scheme can be used for deciding whether risk
2873 assessment for solitary bees also has to be carried out. A compound has to be assessed for
2874 solitary bees in case it was necessary in the honey bee scheme to revise the default exposure
2875 values or when an assessment of Higher Tier studies had to be carried out. Data for the non-
2876 target arthropods could also be used for assessing the potential insecticidal activity of a
2877 compound. For most of the compounds the two standard non target arthropods are tested
2878 (*Typhodromus pyri* and *Aphidius rhopalosiphii*). When the quotient of the application rate
2879 multiplied by a MAF factor and the LR50 is greater than 2 the compound could be considered
2880 as having insecticidal activity. In addition efficacy studies with other insects or studies carried
2881 out with insects in the screening process could be a source for assessing potential insecticidal
2882 activity.
2883

2884 Note 3 Note when to assess product or not. According to the data requirements for 1107/2009,
2885 formulation data on honey bees are stated as required. It may be possible to extrapolate data
2886 (toxicity endpoints) between similar formulations and also sometimes to estimate
2887 formulation toxicity from effects obtained in studies conducted with the technical active
2888 substance.
2889

2890 Testing of the formulation is required if:

2891 |
2892 1. the toxicity of a formulation containing one active substance cannot be reliably
2893 predicted to be either the same or lower than the active substance(s)
2894 2. the product contains more than one active substance
2895

2896 As regards point (1), the toxicity to bees of an active substance may be increased by
2897 formulations containing significant quantities of organic solvents and/or surfactants.
2898 Therefore, the toxicity of formulations should be assessed using the standard laboratory
2899 toxicity studies conducted with the proposed or similar formulation. A case should be
2900 made if data on the formulation are not considered necessary; such a case should include a
2901 justification as to why the co-formulants are unlikely to increase the toxicity of the
2902 formulation compared to the active substance on its own.

2903 As regards point (2), in principle the requirements for studies for formulations that contain
2904 more than one active substance are the same as for single active substance formulations.
2905 For a new formulation it would be expected that formulation studies should be submitted
2906 unless data from a similar product are available or can be accessed, or a well reasoned case
2907 for non-submission can be provided.

2908 If formulation data are submitted on the toxicity of the two separate actives and a case
2909 made that the new formulation containing both active substances will not have a higher
2910 toxicity than the single active formulations, then there should be supporting evidence that
2911 there will not be synergistic or additive toxicity.

2912 Currently available evidence indicates that synergistic effects between two or more active
2913 substances are quite rare; however additive effects are more common and may be expected

2914 where two (or more) active substances have the same effect on honey bees. Therefore,
2915 where the toxicological action of component active substances in honey bees are similar, it
2916 would be appropriate for applicants to provide formulation toxicity studies. Alternatively,
2917 it may be possible to calculate the formulation toxicity on the assumption of additive
2918 toxicity and hence reduce the need for additional testing (see Chapter 8 for further details).
2919
2920

2921 Note 4 In the definitive version on regulatory requirements for active substances (SANCO, 2011)
2922 solitary bees as such are not mentioned.

2923 There is a need to improve the testing protocols concerning solitary bees, in particular to
2924 better address the chronic risk to solitary bees and the identification and measurement of sub-
2925 lethal effects (e.g. effects on memory, learning capacity, orientation) to be used in the risk
2926 assessment. Pending the validation and adoption of new test protocols and of a new risk
2927 assessment scheme, all efforts shall be put in place to comprehensively address, with the
2928 existing protocols, the acute and chronic risk to solitary bees, including those on colony
2929 survival and development.

2930 The tests shall provide the EC₁₀, EC₂₀, EC₅₀ (or an explanation if they cannot be estimated)
2931 together with the NOEC. Sub-lethal effects, if observed, shall be reported

2932
2933 Note 5 *Osmia cornuta* or *Osmia bicornis* (= *O. rufa*) are proposed as test species. Test protocols for
2934 these species are available in Appendix Q.

2935
2936 Note 6 Appendix S gives practical advice on how to calculate the amount of residues that may be
2937 ingested by an adult bee or the concentration to which bee larvae may be exposed. For the
2938 screening steps shortcut values and simplified equations may be used as reported in Note 4 of
2939 the risk assessment scheme for honey bees for spray applications.

2940
2941 Note 7 Either assume that honey bees are an adequate surrogate for bioaccumulative toxicity or
2942 replicate the design of test the but using solitary bees.

2943
2944 Note 8 At the moment no standardized guidelines are available for Higher Tier testing but protocols
2945 for semi-field and field studies are proposed in Appendix Q. Endpoints measured in these
2946 tests are: bee mortality rate, cell production rate, foraging and in-nest times, progeny survival.

2950 7.3.2. Risk assessment scheme for solitary bees for solid applications

2951 The proposed risk assessment scheme for solitary bees is only in a preliminary phase. There is no
2952 reason to use a different type of scheme than that for honey bees. But before it will be possible to run
2953 this scheme additional research has to be done (see EFSA, 2012a, Chapter 5).

2954 In this context a solid application is defined as a Plant Protection Product that is applied as a solid or
2955 on a solid and hence honey bees are exposed to a solid rather than a spray or liquid. Examples of solid
2956 formulations are pellets, granules, baits, dusts and seed treatments (pelleted and non-pelleted). It does
2957 not include a solid formulation that is mixed with water and applied as a spray, for example water
2958 dispersible granules.

2959
2960 5 Is exposure for solitary bees negligible (see Note 1)?

2961
2962 if yes, classify risk as negligible
2963 if no, go to 2

2965 2 Is the compound an insecticide, or an insect growth regulator or does the compound have
 2966 insecticidal activity (see Note 2)?

2967 **if yes, go to 3**

2968 **if no, go to 8**

2969

2970 *Remark: A risk assessment for solitary bees is only carried out for insecticides, insect growth*
 2971 *regulators or compounds with insecticidal activity, in contrast to honey bees where*
 2972 *the risk is assessed for each compound.*

2973

2974 3 **Assessment of the risk from solid applications**

2975

2976 The following data are required on the toxicity of the active substance/product (Note 3) to
 2977 adult bees (see note 4):

2978

- 2979 • acute oral toxicity to adult solitary bees
- 2980 • acute contact toxicity to adult solitary bees
- 2981 • chronic toxicity study for adult and larval honey bees as surrogate species
 2982 (depending on the findings for honey bees the study for larvae is either a study
 2983 similar to the Aupinel method or a study similar to the Oomen method when the
 2984 assessment for the brood care should also be taken into account (see honey bee
 2985 scheme for more information)).

2986

2987 If the active substance is an insect growth regulator (IGR) a study according to Appendix M
 2988 (Oomen study) should be performed because the compound's mode of action will have the
 2989 potential to affect the growth/development of insects and may also cause effects on adult
 2990 bees.

2991

2992 The endpoints from these studies should be collated as follows:

2993

Toxicity study	Endpoint
LD50 contact	µg/solitary bee
LD50 oral	µg/solitary bee
LC50 adult	mg/kg*
NOEC larvae (Appendix M)	mg/kg
NOEC bee brood (Appendix M)	mg/kg

2994 *: This endpoint needs to be expressed also as µg/bee/day

2995

2996 Establish adult oral and contact LD50 for solitary bees (see Note 5).

2997

2998 Calculate the hazard quotient (HQ) between the application rate and the LD50 toxicity
 2999 values (g ha⁻¹ / LD50 in µg of active ingredient per solitary bee).

3000

3001 Assess possible longer term impacts on adult solitary bees (Note 6) using the endpoints of the
 3002 LC50 study with *Apis* worker bees **as a surrogate** for solitary bees.

3003

3004 Calculate the exposure toxicity ratio (ETR_{adults}) of the amount of residues that may be
 3005 ingested by solitary bees in 1 day and the LC50 value.

3006

3007 Assess possible impacts on solitary bee larvae (Note 6) using *Apis* larvae test endpoint **as a**
 3008 **surrogate** for solitary bee larvae.

3009

3010 Calculate the exposure toxicity ratio (ETR_{larvae}) between the concentration of residues that
 3011 may occur in the feed of solitary bee larvae and the no observed effect level (NOEL).

3012

3013 Note: the above assessment should be made either for the treated crop, adjacent crop, following crops,
 3014 weeds in the treated field or the field margin, which represents the highest exposure. As a conservative

3012 screening step, the scenario for weeds in the treated field might be considered. See Chapter 3 for
3013 further information.

3014
3015 Assess whether there is evidence for cumulative toxicity according to Haber's Law in the
3016 toxicity tests (see note 7).

3017
3018 **If HQ (oral) < 6.3 and HQ (contact) < 2 and ETR_{adult} < 0.027/<0.0027 and if ETR_{larvae} <**
3019 **0.01 and no evidence for cumulative toxicity go to 5**
3020 **If HQ (oral) ≥ 6.3 or HQ (contact) ≥ 2 or ETR_{adult} ≥ 0.027/≥ 0.0027 or ETR_{larvae} ≥ 0.01 or**
3021 **evidence of cumulative toxicity go to 4**

3022
3023
3024 Please see Chapter 5 for a brief summary regarding the derivation of these trigger values.

3025
3026
3027
3028 **4 Refinement of the risk assessment**

3029
3030 It is assumed that at least one risk quotient has been breached and therefore further work is required
3031 before the use and associated product can be authorised. This further work can involve either the
3032 refinement of the toxicity and/or the refinement of the exposure. Refinement of the toxicity can take
3033 the form of carrying out either semi-field and/or field studies. Further information on possible
3034 approaches are provided in Note 8 and Appendix Q.

3035
3036 As regards the refinement of exposure, this can be carried out by determining exposure estimates for
3037 the product and use under appropriate conditions. Further information is provided in Chapter 3 and
3038 associated Appendices. It should be noted that the refinement of the exposure may also include the use
3039 of risk mitigation measures (see Chapter 9).

3040
3041 If it is proposed to refine the risk assessment via the production of revised exposure estimate then it is
3042 necessary to re-run the assessment carried out at Point 2 above to ensure that the risk is acceptable. If
3043 it is proposed to carry out refined effects studies, it is essential to ensure that the exposure scenario is
3044 appropriate and reflects the exposure estimates determined in Chapter 3.

3045
3046 It is essential to determine whether the refined risk assessment will ensure that the Specific Protection
3047 Goals (see Chapter 2) are met or not.

3048
3049 The refined risk assessment should include an estimate of the uncertainty of the assessment (see step
3050 4).

3051
3052 **5 Assessment of uncertainty**

3053
3054 Analyze uncertainties in the risk assessment as well as the underlying data to determine the
3055 uncertainty in the assessment and in particular whether the SPG will be met (see Chapter 10).

3056
3057
3058

3059 **Notes**

3060
3061 Note 1 Solitary bees can be exposed to pesticides both directly and indirectly. Direct exposure may
3062 result from spray of liquid formulations. Indirect exposure may result from systemic activity
3063 in plants. See the exposure flowchart for more detailed information. Examples of when
3064 exposure of bees is negligible are: food storage in enclosed spaces, wound sealing and healing
3065 treatments and use in glasshouses without solitary bees as pollinators.

3067 Note 2 The outcome of the honey bee assessment scheme can be used for deciding whether risk
3068 assessment for solitary bees also has to be carried out. A compound has to be assessed for
3069 solitary bees in case it was necessary in the honey bee scheme to revise the default exposure
3070 values or when an assessment of Higher Tier studies had to be carried out. Data for the non-
3071 target arthropods could also be used for assessing the potential insecticidal activity of a
3072 compound. For most of the compounds the two standard non target arthropods are tested
3073 (*Typhodromus pyri* and *Aphidius rhopalosiphi*). When the quotient of the application rate
3074 multiplied by a MAF factor and the LR50 is greater than 2 the compound could be considered
3075 as having insecticidal activity. In addition efficacy studies with other insects or studies carried
3076 out with insects in the screening process could be a source for assessing potential insecticidal
3077 activity.

3078
3079 Note 3 Note when to assess product or not. According to the data requirements for 1107/2009,
3080 formulation data on honey bees are stated as required. It may be possible to extrapolate data
3081 (toxicity endpoints) between similar formulations and also sometimes to estimate formulation
3082 toxicity from effects obtained in studies conducted with the technical active substance.

3083
3084 Testing of the formulation is required if:

3085
3086 1. the toxicity of a formulation containing one active substance cannot be reliably predicted
3087 to be either the same or lower than the active substance(s)
3088 2. the product contains more than one active substance

3089
3090 As regards point (1), the toxicity to bees of an active substance may be increased by formulations
3091 containing significant quantities of organic solvents and/or surfactants. Therefore, the toxicity of
3092 formulations should be assessed using the standard laboratory toxicity studies conducted with the
3093 proposed or similar formulation. A case should be made if data on the formulation are not considered
3094 necessary including a justification as to why the co-formulants are unlikely to increase the toxicity of
3095 the formulation compared to the active substance on its own.

3096 As regards point (2), in principle the requirements for studies for formulations that contain more than
3097 one active substance are the same as for single active substance formulations. For a new formulation
3098 it would be expected that formulation studies should be submitted unless data from a similar product
3099 are available or can be accessed, or a well reasoned case for non-submission can be provided.

3100 If formulation data are submitted on the toxicity of the two separate actives and a case made that the
3101 new formulation containing both active substances will not be any more toxic than the single active
3102 formulations, then there should be supporting evidence that there will not be synergistic or additive
3103 toxicity.

3104 Currently available evidence indicates that synergistic effects between two or more active substances
3105 are quite rare; however additive effects are more common and may be expected where two (or more)
3106 active substances have the same effect on honey bees. Therefore, where the toxicological action in
3107 honey bees of component active substances are similar, it would be appropriate for applicants to
3108 provide formulation toxicity studies. Alternatively, it may be possible to calculate the formulation
3109 toxicity on the assumption of additive toxicity and hence reduce the need for additional testing, please
3110 see Chapter 8 for further details.

3111
3112
3113 Note 4 In the definitive version on regulatory requirements for active substances (SANCO, 2011)
3114 solitary bees as such are not mentioned.

3115 There is a need to improve the testing protocols concerning solitary bees, in particular to
3116 better address the chronic risk to solitary bees and the identification and measurement of sub-
3117 lethal effects (e.g. effects on memory, learning capacity, orientation) to be used in the risk
3118 assessment. Pending the validation and adoption of new test protocols and of a new risk
3119 assessment scheme, all efforts shall be put in place to comprehensively address, with the
3120 existing protocols, the acute and chronic risk to solitary bees, including those on colony
3121 survival and development.

3122 The tests shall provide the EC₁₀, EC₂₀, EC₅₀ (or an explanation if they cannot be estimated)
3123 together with the NOEC. Sub-lethal effects, if observed, shall be reported
3124

3125 Note 5 *Osmia cornuta* or *Osmia bicornis* (= *O. rufa*) are proposed as test species. Test protocols for
3126 these species are available in Appendix Q.
3127

3128 Note 6 Appendix S gives practical advice how to calculate the amount of residues that may be
3129 ingested by an adult bee or the concentration to that bee larvae may be exposed. For the
3130 screening steps shortcut values and simplified equations may be used as reported in Note 4 of
3131 the Risk assessment scheme for honey bees for spray applications, but the figures need to be
3132 multiplied with the adjustment factor of 5. For PECnectar and PECpollen for seed treatment
3133 for the target crop, the default of 1 mg/kg needs to be used.
3134

3135 Note 7 Either assume that honeybees are an adequate surrogate for bioaccumulative toxicity or
3136 replicate design of test but using solitary bees.
3137

3138 Note 8 At the moment no standardized guidelines are available for Higher Tier testing but protocols
3139 for semi-field and field studies are proposed in Appendix Q. Endpoints measured in these
3140 tests are: bee mortality rate, cell production rate, foraging and in-nest times, progeny survival.
3141
3142
3143
3144

3145 **8. Mixture toxicity and toxicity of formulated products with 2 or more active substances**

3146
3147 The following parts of this paragraph are from either the Guidance Document on Risk Assessment for
3148 Birds & Mammals (EFSA 2009) or from the Scientific Opinion on the science behind the development
3149 of a risk assessment of Plant Protection Products on bees (EFSA, 2012a). In those two documents, in
3150 particular in the bee Opinion, more background information is provided.

3151
3152 In a recent review for the European Commission (Kortenkamp et al. 2009), the use of the
3153 concentration addition model was proposed as the concept of mixture toxicity that is most relevant for
3154 hazard characterisation and ultimately can be integrated into the legislative process for risk
3155 management purposes. The use of the concentration addition has also been discussed by Verbruggen
3156 and van den Brink (2010). There are two reasons that make the use of this model concept attractive for
3157 policy makers. First, the model concept is generally more conservative than the concept of response
3158 addition. Nevertheless, the magnitude of the differences at low levels of exposure between the two
3159 models is usually small and hence, the outcome will not be overly conservative. A second reason for
3160 the use of concentration addition is that the model concept can make use of existing data such as a
3161 NOEC, EC10 or EC50's by applying the concept of toxic units (TUs).

3162
3163 The concept of TUs has been recently reviewed by the three non food committees of the European
3164 Commission (the Scientific Committee on Health and Environmental Risks (SCHER), the Scientific
3165 Committee on Emerging and Newly Identified Health Risks (SCENIHR), the Scientific Committee on
3166 Consumer Safety (SCCS)) which defined TUs as "the ratio between the concentration of a mixture
3167 component and its toxicological acute (e.g. LC50) or chronic (e.g. long-term NOEC) endpoint". In
3168 addition, the toxic unit of a mixture (TUm) has been defined as the sum of TUs of each individual
3169 chemical of that mixture. The committees also noted that the TUs concept only refers to a specific
3170 organism representative of a group of organisms ecologically or taxonomically relevant for the
3171 ecosystem (e.g. algae, daphnids and fish for the freshwater ecosystem) but not to the ecosystem as a
3172 whole (SCHER/SCENIHR/SCCS, 2011).

3173
3174 *Concentration addition (CA)*

3175
3176 The following equation can be used for deriving a surrogate EDx, ECx, NOEC or NOEL value for a
3177 mixture of active substances with known toxicity assuming dose additivity:

3178
3179
$$EC_x(\text{mix}) \text{ or } NOEC(\text{mix}) = \left(\sum_i \frac{X(a.s._i)}{EC_x \text{ or } NOEC(a.s._i)} \right)$$

3180
3181 Where:

3182
3183 $X(a.s._i)$ = fraction of active substance [i] in the mixture (please note that the sum $\Sigma X(a.s._i)$ must be 1)
3184 EC_x or $NOEC(a.s._i)$ = toxicity value for active substance [i].

3185
3186
3187 Where the toxicity value of a formulated product with more than one active substance is available, this
3188 value should be compared with the predicted mixture toxicity assuming dose additivity. A different
3189 form of the equation is used.

3190
3191
$$\sum_i \frac{X(a.s._i)}{EC_x \text{ or } NOEC(a.s._i)} = \frac{1}{EC_x \text{ or } NOEC(\text{mix})}$$

3192
3193 $X(a.s._i)$ = fraction of active substance [i] in the mixture (here: formulation)
3194 EC_x or $NOEC(a.s._i)$ = acute toxicity value for active substance [i]

3195 EC_x or NOEC(mix) = measured acute toxicity value for the mixture (here: formulation)

3196

3197 A greater value on the right side of the equation indicates that the formulation is more toxic than
 3198 predicted from the toxicity of the individual components (active substances and co-formulants of
 3199 known toxicity). This may be due to, e.g. further toxic co-formulants, toxicokinetic interaction or
 3200 synergism/potentiation of effect. It may also reflect the inherent variability of toxicity testing. In all
 3201 these cases, the use of the EC50 for the formulation (together with appropriate exposure estimates, see
 3202 Step 4) is recommended for the first-tier assessment, because it cannot be excluded that such effects
 3203 would also occur after exposure of animals to residues in the environment.

3204 Dismissing the EC50 of the formulation from the risk assessment would only be acceptable at a
 3205 Higher Tier if any observed greater toxicity in the test could be clearly and unambiguously ascribed to
 3206 a factor that would not be relevant under environmental exposure conditions.

3207 If, in contrast, the measured toxicity of a formulation is lower than predicted, the predicted mixture
 3208 toxicity should be used in the first-tier risk assessment, together with appropriate exposure estimates.

3209

3210 For the First Tier it is assumed that all peaks will occur at the same moment and are not separated in
 3211 time. In case the trigger value is not met in Higher Tiers the predicted exposure patterns can be taken
 3212 into account (see for example calculations table xx).

3213

3214 **Table 1:** Example for a mixture of two compounds (all concentrations in µg/l). Values printed in
 3215 red are above the trigger value of 0.1 and additional risk assessment should be considered.

Days	1	2	3	4	5	6	7	8
Concentration compound A	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2
Concentration compound B	0	0	0	2.3	1.2	0.6	0.3	0.1
Toxicity compound A	10	10	10	10	10	10	10	10
Toxicity compound B	8	8	8	8	8	8	8	8
Toxicity mixture	10	10	10	8.41	8.59	8.8	9	9.33
TER mixture	0.09	0.08	0.07	0.34	0.19	0.11	0.07	0.03

3216

3217

3218

3219

3220

3221

3222

3223

3224

3225

3226

3227

3228

3229

3230

3231

3232

3233

3234

3235

3236

3237 9. Risk mitigation options

3238

3239 9.1. Risk mitigation for honeybees

3240

3241 The risk assessment scheme for honeybees is in the first tier based on worst-case exposure situations.
3242 If a risk is found, refinement may be done with substance-specific data like residue trials and/or bee
3243 toxicity studies. However, for many exposure routes, mitigation measures are also a refinement option.
3244 This chapter first discusses the legal background of risk mitigation, the practice and uncertainties, and
3245 some definitions. Then an overview of all options available for the different exposure routes is given.

3246

3247

3248 **Risk mitigation – legal background**

3249 The only harmonized risk mitigation sentence aimed at bee risk mitigation is SPe8 from Annex V of
3250 1999/45/EC, which is still relevant under 1107/2009/EC (see Article 65.1).

3251 This sentence is more appropriate to mitigate risks from spray applications than from systemic
3252 soil/seed treatments and it does not cover all exposure routes. Therefore, other phrases are proposed
3253 below. Note that these phrases should be notified to the European Commission if they are used for
3254 authorisations (1107/2009 article 65.3)

3255

3256

3257

3258 **Risk mitigation – practice and uncertainties**

3259

3260 Ensure that all risk mitigation phrases are workable in practice and enforceable.

3261

3262 Always ensure that the risk mitigation phrase is seen by the relevant person. This is usually
3263 straightforward for spray formulations, where the risk mitigation can be stated on the product label.
3264 However it is more complicated for e.g. treated seeds. For measures relevant to the sowing process of
3265 treated seed, the risk mitigation phrases should be on the bag with treated seed or accompanying
3266 document and not (only) on the seed treatment product label; see 1107/2009 Article 49.4).

3267 Also consider flowering plants grown from treated seed and sold to end users: if there are risk
3268 mitigation measures which are relevant for the field, e.g. waiting period for bee-attractive succeeding
3269 crops, these risk mitigation phrases should accompany the plants.

3270

3271 The risk mitigation phrases given below and the information on honey bee attractivity of crops
3272 (appendix G) are based on the agricultural situation and enforceability in the Netherlands. MS are
3273 asked to comment on the relevance for their own agricultural situation.

3274

3275

3276

3277

3278 **Definitions for terminology flower and flowering crop with respect to bee risks:**

3279

3280 *Definition flowering (bloom):*

3281 Flowers in which the stamen or pistils are visible.

3282

3283 *Definition flowering crop - orchard:*

3284 An orchard is considered a flowering crop when more than 1% of the flowers in an orchard are
3285 flowering.

3286

3287 *Definition flowering crop - field crops:*

3288 The crop is considered a flowering crop when more than two plants (crop and/or weed plants) per
3289 square meter are flowering .

3290
3291 *Definition flowering crop – flower bulbs/bulb flowers:*
3292 A crop is in flower when more than 1% of the plants in a field is flowering. In Dutch agricultural
3293 practice this means that a crop is considered to be flowering when more than two plants per linear
3294 metre of a field are flowering.
3295

3296
3297

3298 **9.2. Risk mitigation options for honeybees**

3299

3300 **9.2.1. Spray treatment**

3301

3302 Determine the relevance of direct overspray of the crop with Appendix G, where for all crops it is
3303 indicated whether they are attractive to honeybees or not. This appendix takes both agricultural
3304 practice (does the crop flower in the field) and attractiveness of the flowers into account.

3305

3306 Direct:

3307

3308 If there is a direct risk via spray application on a flowering crop or flowering weeds, consider using
3309 parts of the harmonized risk mitigation phrase (SPE8, see ‘background and uncertainties’ below) for
3310 bees for professional use:

3311

3312 *Dangerous to bees./To protect bees and other pollinating insects do not apply on flowering crops./Do
3313 not use where bees are actively foraging./Remove or cover beehives during application and for (state
3314 time) after treatment./ Do not apply when flowering weeds are present./ Remove weeds before
3315 flowering./Do not apply before (state time).*

3316

3317 Note that the sentence *Do not use where bees are actively foraging* covers direct overspray of bees
3318 foraging on honeydew.

3319

3320

3321 For non-professional users, a simplified sentence is more appropriate:

3322

3323 *Dangerous to bees and bumblebees. Do not apply on or near flowering plants and flowering weeds.*

3324

3325

3326 Determine the relevance of honeydew formation for the crop with Appendix E and determine the
3327 relevant sensitivity of aphids vs. honeybees. The concentration of a systemic compound that could
3328 circulate in the phloem and reach honeydew without harming aphids should, in principle, not be
3329 capable of harming bees foraging on the honeydew, unless the compound is highly selective towards
3330 non-aphid insects. If there is a risk via honeydew, consider adding a risk mitigation sentence to avoid
3331 formation of honeydew:

3332

3333 *Aphids must be controlled in such a way that honeydew formation is excluded or do not spray
3334 when bees are foraging.*

3335

3336

3337

3338 Off-field:

3339

3340 If there is a direct risk via spray application on a flowering margin or bordering crop, consider
3341 prescribing drift reducing measures:

3342

3343 *Dangerous to bees./To protect bees and other pollinating insects, [specify risk mitigation measure,
3344 e.g. 90% drift reducing spray nozzles, a bufferzone of x m, ...] must be used.*

3345

3346

3347

3348

3349 Indirect: systemics only.

3350

3351 Determine the relevance of exposure via nectar and pollen of the crop with appendix G, where for all
3352 crops it is mentioned whether they are attractive to honeybees or not.

3353 If exposure is relevant, risk mitigation may prohibit flowering in the field.

3354 Application may be restriction to post-flowering only. If pre-flowering is also requested, the last
3355 allowed application pre-flowering growth stage should be specified on the label (e.g. BBCH x, mouse-
3356 ear stage).

3357

3358

3359

3360 Determine the relevance of significant occurrence of weeds in the crop. If relevant, risk mitigation
3361 may prohibit flowering weeds in the field.

3362

3363

3364

3365 Determine the relevance of exposure via bee-attractive succeeding crops, considering e.g. the crop
3366 rotation scheme, Appendix G and the persistence of the substance/metabolites in soil. If exposure is
3367 relevant and a risk cannot be excluded in the normal rotation scheme, consider prescribing a waiting
3368 period for bee-attractive succeeding crops:

3369

3370 *Because of the risk to bees, bee-attractive crops should not be sown or planted within a period of [x]
3371 after [application / sowing / planting in the field].*

3372

3373

3374

3375 Determine the relevance of honeydew formation for the crop with Appendix E and determine the
3376 relevant sensitivity of aphids vs. honeybees. The concentration of a systemic compound that could
3377 circulate in the phloem and reach honeydew without harming aphids should, in principle, not be
3378 capable of harming bees foraging on the honeydew, unless the compound is highly selective towards
3379 non-aphid insects. If there is a risk via honeydew, consider adding a risk mitigation sentence to avoid
3380 formation of honeydew:

3381

3382 *Aphids must be controlled in such a way that honeydew formation is excluded or do not spray
3383 when bees are foraging.*

3384

3385

3386

3387

3388

3389

3390 Please note that risk mitigation based on removing flowering weeds may lead to lack of food
 3391 resources for bees in agricultural landscapes in particular during times when no flowering crops
 3392 are available. This might have an impact on pollinators and consequently on pollination service
 3393 and on biodiversity.

3394
 3395 **The view of stakeholders on this particular risk mitigation measure would be welcome.**
 3396

3397
 3398
 3399 **9.2.2. Seed/soil treatment**

3400
 3401 Direct:
 3402
 3403 - In-field - bare soil so not relevant.
 3404
 3405 - Off-field. Dust drift on (bees flying on) weeds/bordering crops.
 3406
 3407

3408 Determine the relevance of dust drift exposure on a flowering margin or bordering crop with
 3409 Appendix K. This appendix takes into account whether the seed is sown outdoors or indoors, what
 3410 type of machinery is used, and what type of seed coating is used, for a range of seed-treated crops. The
 3411 appendix was written for the Netherlands and MS are asked to comment on the relevance for their own
 3412 agricultural situation.

3413
 3414 If a risk cannot be excluded, consider adding risk mitigation sentences:
 3415

3416 ... to reduce dust formation on the seed include sentence on seed treatment product label:
 3417 *Treated seed should have a maximum dust level of [e.g. 0.75] g dust per [e.g. 100.000 seeds]*
 3418 *(Heubach-method).*

3419
 3420 ... to reduce dust drift during sowing include sentence on bag with treated seed:
 3421

3422 *Before sowing:*
 3423 *Do not transfer dust from bag into sowing machine*

3424
 3425 *During sowing:*
 3426 *Do not sow during strong wind and sow the recommended amount of seed.*
 3427 *When using a pneumatic sowing machine, deflectors must lead the air stream towards or into the*
 3428 *ground [or other recommendations relevant for the specific crop / sowing machine].*

3429
 3430
 3431 Indirect: systemics only

3432
 3433 - Nectar/pollen of the crop –

3434
 3435 Determine the relevance of exposure via nectar and pollen of the crop with Appendix G, where for all
 3436 crops it is mentioned whether they are attractive to honeybees or not.
 3437 If exposure is relevant, risk mitigation may prohibit flowering in the field.

3438
 3439
 3440 Determine the relevance of significant occurrence of weeds in the crop. If relevant, risk mitigation
 3441 may prohibit flowering weeds in the field.

3442

3443

3444 Determine the relevance of exposure via bee-attractive succeeding crops, considering e.g. the crop
3445 rotation scheme, appendix X and the persistence of the substance/metabolites in soil. If exposure is
3446 relevant and a risk cannot be excluded in the normal rotation scheme, consider prescribing a waiting
3447 period for bee-attractive succeeding crops:

3448

3449 *Because of the risk to bees, bee-attractive crops should not be sown or planted within a period of [x]*
3450 *after [application / sowing / planting in the field].*

3451

3452

3453

3454 Determine the relevance of honeydew formation for the crop with appendix E and determine the
3455 relevant sensitivity of aphids vs. honeybees. The concentration of a systemic compound that could
3456 circulate in the phloem and reach honeydew without harming aphids should, in principle, not be
3457 capable of harming bees foraging on the honeydew, unless the compound is highly selective towards
3458 non-aphid insects. If there is a risk via honeydew, consider adding a risk mitigation sentence to avoid
3459 formation of honeydew:

3460

3461 *Aphids must be controlled in such a way that honeydew formation is excluded or do not spray*
3462 *when bees are foraging.*

3463

3464

3465

3466 **It is unclear if it is realistic to prescribe risk mitigation to avoid flowering weeds off-field, and/or**
3467 **formation of honeydew in succeeding crops.**

3468 **The views of stakeholders on this particular risk mitigation would be welcome.**

3469

3470

3471

3472

3473

3474

3475

3476

3477

3478

3479

3480

3481

3482

3483

3484

3485 **10. Uncertainty analysis**

This chapter needs to be developed and will be included in the final Guidance Document. Proposals and views of stakeholders on the uncertainty analysis are welcome.

3486

3487 REFERENCES

3488
3489 Aupinel P, Fortini D, Dufour H, Tasei JN, Michaud B, Odoux JF, Pham-Delègue MH, 2005.
3490 Improvement of artificial feeding in a standard *in vitro* method for rearing *Apis mellifera* larvae.
3491 Bulletin of insectology 58(2):107-11

3492 Aupinel P, Fortini D, Dufour H, Michaud B, Marolleau F, Tasei JN and Odoux JF, 2007. Toxicity of
3493 dimethoate and fenoxy carb to honey bee brood (*Apis mellifera*), using a new in vitro standardized
3494 feeding method. Pest Manag Science 63, 1090-1094

3495 Aupinel P, Fortini D, Michaud B, Medrzycki P, Padovani E, Przygoda D, Maus C, Charriere JD,
3496 Kilchenmann V, Riessberger-Galle U, Vollmann JJ, Jeker L, Janke M, Odoux JF, Tasei JF, 2009.
3497 Honey bee brood ring-test: method for testing pesticide toxicity on honeybee brood in
3498 laboratory conditions. In: Hazards of Pesticides to Bees – 10th International Symposium of the ICP–
3499 Bee Protection Group Proceedings, Julius-Kühn- Archiv, 423: 96–102

3500 BBA, 2000. Bekanntmachung über die Abtrifteckwerte, die bei der Prüfung und Zulassung von
3501 Pflanzenschutzmitteln herangezogen werden. (8. Mai 2000) in : Bundesanzeiger No.100, amtlicher
3502 Teil, vom 25. Mai 2000, S. 9879

3503 Biesmeijer JC, Roberts SPM, Reemer M, Ohlemüller R, Edwards M, Peeters T, Schaffers AP, Potts SG,
3504 Kleukers R, Thomas CD, Settele J, Kunin WE, 2006. Parallel Declines in Pollinators and Insect-
3505 Pollinated Plants in Britain and the Netherlands. Science 313: 351-354

3506 Boesten JJTI, Köpp H, Adriaanse PI, Brock TCM, Forbes VE, 2007. Conceptual model for improving
3507 the link between exposure and effects in the aquatic risk assessment of pesticides. Ecotoxicology and
3508 Environmental Safety 66: 291–308

3509 Bosch J, Kemp WP, 2002. Developing and establishing bee species as crop pollinators: The example of
3510 Osmia spp. (Hymenoptera: Megachilidae) and fruit trees. Bulletin of Entomological Research 92: 3-
3511 16Bosch J, 2008. Production of under-sized offspring in a solitary bee. Animal Behaviour 75: 809–
3512 816

3513 Bosch J, Sgolastra F, Kemp WP, 2008. Life cycle ecophysiology of *Osmia* mason bees. In: R. R. James
3514 and T. L. Pitts-Singers (eds). Bee Pollination in Agricultural Ecosystems. Oxford University Press.
3515 Oxford, UK.

3516 Candolfi MP, Barrett KL, Campbell PJ, Forster R, Grandy N, Huet MC, Lewis G, Oomen PA, Schmuck
3517 R and Vogt H, 2001. Guidance document on regulatory testing and risk assessment procedures for
3518 plant protection products with non-target arthropods. Proceedings from the ESCORT 2 workshop.
3519 SETAC, Pensacola, 46 pp

3520 Contessi A, 2005. Le Api. Edagricole. Bologna. Pp.497

3521 CEB (Commission des Essais Biologiques), 2003. Méthode d'évaluation des effets de toxicité aiguë et à
3522 court terme des préparations phytopharmaceutiques sur l'abeille domestique (*Apis mellifera* L.).
3523 ANPP méthode no. 230: 8 – 21

3524 Costa C, Büchler R, Berg S, Bienkowska M, Bouga M, Bubalo D, Charistos L, Le Conte Y, Drazic
3525 M, Dyrba W, Fillipi J, Hatjina F, Ivanova E, Kezic N, Kiprianovska H, Kokinis M, Korpela S,
3526 Kryger P, Lodesani M, Meixner M, Panasiuk B, Pechhacker H, Petrov P, Oliveri E, Ruottinen L,
3527 Uzunov A, Vaccari G, Wilde J, 2012. A Europe-Wide Experiment for Assessing the Impact of
3528 Genotype-Environment Interactions on the Vitality and Performance of the Honey Bee Colonies.
3529 Journal of Apiculture Science 56(1): 147-158

3530 Cresswell J, Thomson H, 2012. Comment on “A Common Pesticide Decreases Foraging Success and
 3531 Survival in Honey Bees”. *Science*, In press

3532 da Silva-Matos EV, Garófalo CA, (2000). Worker life tables, survivorship, and longevity in colonies of
 3533 *Bombus (Fervidobombus) atratus* (Hymenoptera: Apidae). *Revista de biología tropical* 48 (2-3)

3534 Decourtye A, Devillers J, Genecque E, Le Menach K, Budzinski H, Cluzeau S, Pham-Delègue MH,
 3535 2005. Comparative sublethal toxicity of nine pesticides on olfactory learning performances of the
 3536 honeybee *Apis mellifera*. *Archives of Environmental Contamination and Toxicology* 48(2), 242-
 3537 250

3538 DG Agriculture, 1997. General recommendations for the design, preparation and realization of residue
 3539 trials. Report 7029/VI/95-rev.5, European Commission, 72 pp

3540 DG SANCO, 2009. Guidelines relating to setting Maximum Residue Levels in honey. Report SANCO
 3541 11105/2009-rev.0, European Commission, 36 pp.

3542 DG SANCO, 2011. Guidelines on comparability, extrapolation, group tolerances and data requirements
 3543 for setting MRLs. Report SANCO 7525/VI/95-rev.9, European Commission, 46 pp

3544 EFSA (European Food Safety Authority), 2009. Risk Assessment for birds and mammals. *EFSA Journal*
 3545 7(12):1438, 358 pp

3546 EFSA (European Food Safety Authority), 2010. Scientific Opinion on the development of specific
 3547 protection goal options for environmental risk assessment of pesticides, in particular in relation to the
 3548 revision of the Guidance Documents on Aquatic and Terrestrial Ecotoxicology (SANCO/3268/2001
 3549 and SANCO/10329/2002). *The EFSA Journal* 8(10):1821, 55 pp

3550 EFSA (European Food Safety Authority), 2004. Opinion of the Scientific Panel on Plant health, Plant
 3551 protection products and their Residues on a request from EFSA on the appropriateness of using the
 3552 current FOCUS surface water scenarios for estimating exposure for risk assessment in aquatic
 3553 ecotoxicology in the context of Council Directive 91/414/EEC. *The EFSA Journal* 145:1-31

3554 EFSA (European Food Safety Authority), 2012a. Scientific opinion on the science behind the
 3555 development of a risk assessment of Plant Protection Products on bees (*Apis mellifera*, *Bombus* spp.,
 3556 and solitary bees). *The EFSA Journal* 10(5): 2668, 275 pp

3557 EFSA (European Food Safety Authority), 2012b. Scientific Opinion on the science behind the guidance
 3558 for scenario selection and scenario parameterisation for predicting environmental concentrations in
 3559 soil. *The EFSA Journal* 10(2):2562, 77 pp

3560 EFSA, (European Food Safety Authority), 2012c . Interaction between pesticides and other factors in
 3561 effects on bees. In prep.

3562 EFSA (European Food Safety Authority), 2012d. Statement on the findings in recent studies
 3563 investigating sub-lethal effects in bees of some neonicotinoids in consideration of the uses currently
 3564 authorised in Europe. *The EFSA Journal* 10(6): 2752, 27 pp

3565 EPPO (European and Mediterranean Plant Protection Organization), 2010a. Environmental risk
 3566 assessment for plant protection products. Chapter 10:Honeybees. *Bulletin OEPP/EPPO* 40(3):323-
 3567 331.

3568 Eppo (European and Mediterranean Plant Protection Organization), 2010b. PP 1/170 (4): Side-effects on
 3569 honeybees. *EPPO Bulletin* 40(3): 313-319

3570 FOCUS, 2001. FOCUS Surface Water Scenarios in the EU Evaluation Process under 91/414/EEC. Report
 3571 of the FOCUS Working Group on Surface Water Scenarios, EC Document Reference
 3572 SANCO/4802/2001-rev.2, 245 pp

3573 FOCUS, 2009. Assessing Potential for Movement of Active Substances and their Metabolites to Ground
 3574 Water in the EU. Report of the FOCUS Ground Water Work Group, EC Document Reference
 3575 Sanco/13144/2010 version 1, 604 pp

3576 Gallai N, Salles JM, Settele J, Vaissière BE, 2009. Economic valuation of the vulnerability of world
 3577 agriculture confronted with pollinator decline. *Ecological Economics* 68:810-8

3578 Gretenkord K, Drescher W, 1996. Laboratory and cage test methods for the evaluation of the effects of
 3579 insect growth regulators (Insegar, Dimilin) on the brood of *Bombus terrestris*. Proceedings of 6th
 3580 International Sympymposium Hazards of Pesticides to Bees, Braunschweig, Germany, September
 3581 1996

3582 Henry ML, Beguin M, Requier F, Rollin O, Odoux JFO, Aupinel P, Aptel J, Tchamitchian S, Decourtey
 3583 A, 2012. A Common Pesticide Decreases Foraging Success and Survival in Honey Bees. *Science* 336
 3584 (6079): 348-350

3585 Huijsmans JFM, van de Zande JV, 2011. Workshop harmonisation of drift and drift reducing
 3586 technologies for evaluation and authorization of plant protection products. Proceedings of workshop
 3587 in Wageningen on 1-2 December 2010. Report 390 Plant Research International, Wageningen, 160 pp

3588 Imdorf A, Buehlmann G, Gerig L, Kilchenmann V, Wille H, 1987. Überprüfung derschätzmethode zur
 3589 ermittlung der brutfläche und der anzahl arbeiterinnen in freifliegenden bienenvölkern. *Apidologie* 18
 3590 (2), 137-146.

3591 Kortenkamp A, Backhaus T, Faust M, 2009. State of the Art on Mixture Toxicity. Report. Available at:
 3592 http://ec.europa.eu/environment/chemicals/pdf/report_Mixture%20toxicity.pdf. Last accessed 15
 3593 April 2011

3594 Karise R, Viik E, Mänd M, 2007. Impact of alpha-cypermethrin on honey bees foraging on spring oilseed
 3595 rape (*Brassica napus*) flowers in field conditions. *Pest Management Science* 63(11): 1085-9

3596 Khoury DS, Myerscough MR, Barron AB, 2011. A Quantitative Model of Honey Bee Colony Population
 3597 Dynamics. *PLoS ONE* 6 (4): 1-6

3598 Konrad R, Ferry N, Gatehouse AMR, Babendreier D, 2008. Potential effects of oilseed rape expressing
 3599 oryzacystatin-1 (OC-1) and of purified insecticidal proteins on larvae of the solitary bee *Osmia*
 3600 *bicornis*. *PlosOne* 3(7): e2664

3601 Konrad R, Connor M, Ferry N, Gatehouse A M, Babendreier D, 2009. Impact of transgenic oilseed rape
 3602 expressing oryzacystatin-1 (OC-1) and of insecticidal proteins on longevity and digestive enzymes of
 3603 the solitary bee *Osmia bicornis*. *Journal of Insect Physiology* 55 : 305-313.

3604 Krunic MD, Stanisavljevic LZ, 2006. The biology of European Orchard Bee *Osmia cornuta*. Faculty of
 3605 Biology University of Belgrade. Beograd

3606 Ladurner E, Bosch J, Kemp WP, Maini S, 2003. A method to feed individual bees (Hymenoptera:
 3607 Apiformes) known amounts of pesticides. *Apidologie* 34: 597-602

3608 Ladurner E, Bosch J, Kemp WP, Maini S, 2008. Foraging and nesting behavior of *Osmia lignaria*
 3609 (Hymenoptera: Megachilidae) in the presence of fungicides: cage studies. *Journal of Economic*
 3610 *Entomology* 101: 647-653

3611 Maccagnani B, Ladurner E, Santi F, Burgio G, 2003. *Osmia cornuta* (Hymenoptera Megachilidae) as a
 3612 pollinator of pear (*Pyrus communis*): fruit- and seed-set. *Apidologie* 34: 207-216

3613 Michener CD, 2007. The Bees of the World. Second Edition. The Johns Hopkins University Press

3614 Mineau P, Harding KM, Whiteside M, Fletcher MR, Garthwaite D, Knopper LD, 2008. Using reports of
 3615 bee mortality in the field to calibrate laboratory-derived pesticide risk indices. *Environmental*
 3616 *Entomology* 37(2): 546-554

3617 Mommaerts V, Jans K, Smagghe G, 2010a. Side effects of commercial *Bacillus thuringiensis* insecticides
 3618 on micro-colonies of *Bombus terrestris*. *Pest Management Science* 66:520-525

3619 Mommaerts V, Reynders S, Boulet J, Besard L, Sterk G, Smagghe G, 2010b. Risk assessment for side-
 3620 effects of neonicotinoids against bumblebees with and without impairing foraging behaviour.
 3621 *Ecotoxicology* 19: 207-215

3622 Monzon VH, Bosch J, Retana J, 2004. Foraging behavior and pollinating effectiveness of *Osmia cornuta* (Hymenoptera: Megachilidae) and *Apis mellifera* (Hymenoptera: Apidae) on “Comice” pear. *Apidologie* 35: 575-585

3625 National Research Council (U.S.). Committee on the Status of Pollinators in North America, 2007. *Status of Pollinators in North America*. National Academies Press, 307 pp

3627 Nicolson, 2008. Water homeostasis in bees, with the emphasis on sociality (review) . *The Journal of Experimental Biology* 212: 429-434

3629 OECD(Organization for Economic Cooperation and Development), 1998. Guidance for the testing of chemicals. Honeybees Acute Oral Toxicity test. Test Guidelines 213.

3631 OECD(Organization for Economic Cooperation and Development), 1998. Guidance for the testing of chemicals. Honeybees Acute Contact Toxicity Test. Test Guidelines 214

3633 OECD(Organization for Economic Cooperation and Development), 2007. OECD guideline for the testing of chemicals 504: residues in rotational crops (limited field studies). OECD, 9 pp

3635 OECD (Organization for Economic Cooperation and Development), 2007. Guidance document on the honey bee (*Apis mellifera* L.) brood test under semi-field conditions. Series on Testing and Assessment, No. 75, 3-27.

3638 OECD (Organization for Economic Cooperation and Development), 2009. OECD guideline for the testing of chemicals 509: crop field trial. OECD, 44 pp

3640 Oomen PA, De Reuijter A, Van Der Steen EEN, 1992. Method for honeybee brood feeding tests with insect growth-regulating insecticides. OEPP/EPPO Bulletin 22: 613 – 616

3642 Persano Oddo L, Piana L, Sabatini AG, 1995. *Conoscere il miele. Guida all’analisi sensoriale*. Edizioni Avenue Media. Bologna. Pp. 398

3644 Peters DS, 1977. Systematik und Zoogeographie der west-paläarktischen Arten von *Osmia*’s str., Monosmia, und Orientosmia. *Senckenbergiana biologica* (Frankfurt a. M.) 58: 287-346

3646 Prídal A, Hofbauer J, 1996. Laboratory rearing and nutrition of young queens of Bumblebee (*Bombus terrestris* L.) from emergence to diapause. *Scientific Studies Research Institute Fodder Plants Troubsko* 14:125-131

3649 Rueppell O, Bachelier C, Fondrk MK, Page RE Jr, 2007. Regulation of life history determines lifespan of worker honey bees (*Apis mellifera* L.). *Experimental Gerontology* 42(10): 1020–1032

3651 Rueppell O, Kaftanoglu O, Page R Jr, 2009. Honey bee (*Apis mellifera*) workers live longer in small than in large colonies. *Experimental Gerontology* 44: 447–452

3653 Sakagami SF, Fukuda H, 1968. Life tables for worker Honeybees. *Research on Population Ecology X*: 127-139

3655 Santi F, Maini S, 2000. *Neodryinus typhlocybae*. In: *Gli ausiliari nell’agricoltura sostenibile*. Calderini Edagricole. Bologna. Pp. 225-260

3657 Schaefer H, Mülhen W, 1996. Erste Erfahrungen zur Prüfung der Auswirkungen des Pflanzenschutzmittels Alsystin an der erdhummel *Bombus terrestris* L. im freiland. *Apidologie* 27: 273-275

3659 Schippers MP, Dukas R, Smith RW, Wang J, Smolen K, McClelland GB, 2006. Lifetime performance in foraging honeybees: behaviour and physiology. *The Journal of Experimental Biology* 209: 3828-3836

3661 Schmid-Hempel P, Wolf T, 1988. Foraging effort and life span of workers in a social insect. *Journal of Animal Ecology* 57: 500-521

3663 Schmid-Hempel P, Heeb D, 1991. Worker mortality and colony development in bumblebees, *Bombus lucorum* (L.) (Hymenoptera, Apidae). *Bulletin de la société entomologique Suisse* 64: 93-108

3665 Sgolastra F, Kemp WP, Maini S, Bosch J, 2012. Duration of prepupal summer dormancy regulates
3666 synchronization of adult diapause with winter temperatures in bees of the genus *Osmia*. *Journal of*
3667 *Insect Physiology* 58: 924-933

3668 Suchail S, Guez D and Belzunces LP, 2001. Discrepancy between acute and chronic toxicity induced
3669 by imidacloprid and its metabolites in *Apis mellifera*. *Environmental Toxicology and Chemistry*
3670 20, 2482-2486

3671 Sur R, Gourlay V, Fent G, Schmitt W, Goerlitz G, 2012. Determination of plant uptake factors for
3672 pesticide fate modelling. Poster presented at SETAC conference in Berlin 21 May 2012.

3673 Thompson HM, Thorbahn D, 2009. Review of honeybee pesticide poisoning incidents in Europe –
3674 evaluation of the hazard quotient approach for risk assessment. *Hazards of pesticides to bees – 10th*
3675 *International Symposium of the ICP-Bee Protection Group*.

3676 Torchio PF, 1983. The effects of field applications of Naled and Trichlorfon on the Alfalfa Leafcutting
3677 Bee, *Megachile rotundata* (Fabricius). *Journal of the Kansas Entomological Society* 56(1): 62-68

3678 van der Steen, JM. (2001) Review of the methods to determine hazards and toxicity of pesticides to
3679 bumblebees. *Apidologie* 32: 399-406

3680 Verbruggen EMJ, van den Brink PJ, 2010. Review of recent literature concerning mixture toxicity of
3681 pesticides to aquatic organisms. RIVM report 601400001. The National Institute for Public Health
3682 and the Environment (RIVM), BA Bilthoven, The Netherlands, 34 pp.

3683 Visscher PK, Dukas R, 1997. Survivorship of foraging honey bees. *Insectes sociaux* 44:1-5

3684 Whitehorn PR, O'Connor S, Wackers FL, Goulson D, 2012. Neonicotinoid Pesticide Reduces Bumble
3685 Bee Colony Growth and Queen Production. *Science* 336: 351

3686 Zande JC van de, Holterman HJ, Huijsmans JFM, 2012. Spray drift for assessment of exposure of
3687 aquatic organisms to plant protection products in the Netherlands. Report 419, Plant Research
3688 International, Wageningen, 88 pp

3689

3690

3691

3692

3693

3694

3695

3696

3697

3698

3699

3700

3701

3702

3703

3704

3705 **APPENDICES**

Name	Appendix Title
A	NOMENCLATURE FOR EFFECT SIZES
B	PROTECTION GOALS
C	MORTALITY OCCURRING IN A FIELD STUDY CONDUCTED ACCORDING TO EPPO 170 AND EXAMPLE FOR COMPARISON TO PROTECTION GOALS
D	RELEVANCE OF DUST FOR TREATED SEEDS
E	HONEYDEW
F	GUTTATION AND PROPOSED RISK ASSESSMENT FOR GUTTATION WATER
G	ATTRACTIVITY OF AGRICULTURAL CROPS TO HONEYBEES FOR THE COLLECTION OF NECTAR AND/OR POLLEN
H	LANDSCAPE-LEVEL EXPOSURE ASSESSMENT OF THE AVERAGE CONCENTRATION ENTERING THE HIVE
I	PESTICIDE RESIDUE LEVELS IN NECTAR AND POLLEN AND THE RESIDUE UNITE DOSES (RUDs)
J	PROTOCOL FOR PERFORMING FIELD STUDIES TO ASSESS A CERTAIN PERCENTILE OF THE CONCENTRATION IN POLLEN AND NECTAR IN A CERTAIN TYPE OF PLANTS IN THE AREA OF USE OF THE SUBSTANCE
K	ASSESSMENT OF SPRAY DRIFT AND DUST DRIFT DEPOSITION ONTO FIELD MARGINS AND ADJACENT FIELDS
L	ASSESSMENT OF THE PERCENTILE OF A SUBPOPULATION THAT CORRESPONDS TO A PRESCRIBED PERCENTILE OF THE TOTAL POPULATION
M	CHECKLISTS FOR EVALUATING LABORATORY STUDIES
N	CHECKLISTS FOR EVALUATING SEMI-FIELD STUDIES
O	HIGHER TIER EFFECTS STUDIES
P	TEST PROTOCOLS FOR BUMBLEBEES (<i>BOMBUS TERRESTRIS</i>)
Q	TEST PROTOCOLS SOLITARY BEES (<i>OSMIA CORNUTA</i> AND <i>OSMIA BICORNIS</i> = <i>O. RUFA</i>)
R	TEST CROPS TO BE USED
S	CALCULATION OF THE ORAL EXPOSURE WITH WORKING EXAMPLES
T	LITERATURE REVIEW ON DAILY MORTALITY RATE
U	TRIGGER VALUES

3706

3707

3708

3709

3710

3711

3712

3713 **A. NOMENCLATURE FOR EFFECT SIZES**

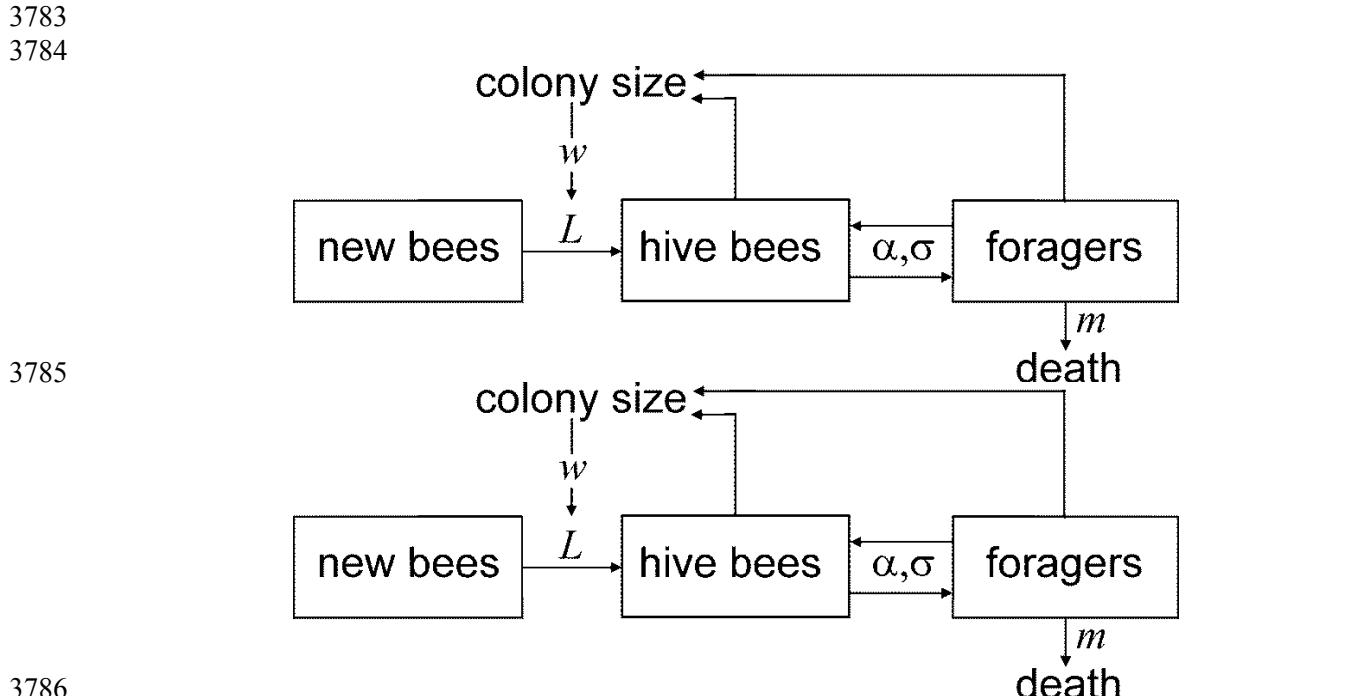
 3714
 3715 Specific Protection Goals have been formulated based on ecosystem services according to the
 3716 methodology outlined in the Scientific Opinion of EFSA (2010). With respect to honey bees, it is
 3717 suggested to define the attributes to protect as survival and development of colonies and effects on larvae
 3718 and honey bee behaviour as listed in regulation (EC) No 1107/2009. In addition, abundance/biomass and
 3719 reproduction were also suggested because of their importance for the development and long-term
 3720 survival of colonies. Pollination, hive products (for honey-bees only) and biodiversity (specifically
 3721 addressed under genetic resources and cultural services) were identified as relevant ecosystem services.
 3722

 3723 The viability of each colony, the pollination services it provides, and its yield of hive products all depend
 3724 on the colony's strength and, in particular, on the number of individuals it contains. It is therefore
 3725 proposed to relate protection goals specifically to colony strength, which is defined operationally as the
 3726 number of bees it contains, or colony size.
 3727

 3728 Based on expert judgement, the following nomenclature was defined for the magnitudes of detrimental
 3729 impacts on colony, or 'effect sizes'.
 3730

Effect	Magnitude (reduction in colony size)
Large	>35%
Medium	15% to 35%
Small	7% to 15%
Negligible	3.5% to 7%

 3731 The variability in sizes among colonies prohibited defining effect sizes in terms of absolute reductions in
 3732 the numbers of bees in a colony. Experts in the working group unanimously agreed that a proportional
 3733 reduction in colony size of greater than one third would be likely to compromise the viability, pollinating
 3734 capability and yield of any colony; this consideration was used to define an effect as 'large'. The
 3735 magnitude of a negligible effect was defined with similar regard to biological considerations and also by
 3736 reference to the potential for experimental detection, because a negligible effect must be statistically
 3737 distinguishable from "small effects". The intermediate effect sizes were then defined arbitrarily at even
 3738 intervals in the range between 'large' and 'negligible'.
 3739


 3740 These effect sizes will be used to refer exclusively to impacts on colony size, because (as will be shown
 3741 below) other endpoints, such as mortality rates, may have quite different degrees of biological sensitivity.
 3742 For example, a 35% change in mortality rates relative to background levels will have a relatively small
 3743 impact on colony size (see analysis of model of Khoury et al. 2011 below) and would not be similarly
 3744 considered a large effect. Correspondences will sometimes arise (e.g. the overall rate of background
 3745 mortality among adult bees is c. 3.5% - Khoury et al. assume 15.4% mortality among foragers and 25%
 3746 of adults are foragers, which implies overall rate is $15.4 \times 0.25 \approx 3.5\%$), but these are coincidental and
 3747 will not arise across the broad range of effect sizes. The same reasoning means that similar non-
 3748 correspondences are likely to apply to sublethal endpoints, such as behavioural aspects of performance or
 3749 fecundity, except insofar as impacts on them cause proportional effects on colony size. However, it will
 3750 be appropriate in many cases to use the terms (i.e. 'large', 'medium', etc.) to refer to effects on
 3751 components of colony size, which are delineated by life stages. For example, a 35% reduction in the
 3752 number of brood in a colony is appropriately referred to as a large impact because it is likely to translate
 3753 eventually into a similar effect on overall colony size.
 3754

 3755 The effect sizes defined above have been defined principally by reference to honey bee colonies, but in
 3756 the case of non-*Apis* bees, they will refer similar to colony-level impacts (other social bees, such as
 3757 bumble bees) or to population sizes (solitary bees).
 3758

In reality, the detrimental effects of pesticides on colony size will be mediated through either mortality or fecundity or both. The effects of pesticides on fecundity are not yet well understood and cannot be properly explored here. However, it is possible to theoretically interrelate effect sizes and mortality by reference to the model of colony dynamics proposed by Khoury et al. (2011). The model Khoury et al. (2011) is focused on the effects of lifespan and mortality rates of forager bees on colony growth. Values for its parameters can be estimated from published observations predictions and the behaviour of the model is validated with experimental data of Ruepell et al. (2009), although the key predictions about the relationship between colony growth and forager mortality are not yet experimentally tested. As calibrated by Henry et al. (2012) the model is applicable for colonies in autumn and winter, but it can also be calibrated for colonies in spring and summer (Cresswell & Thompson, in press). According to these solutions to the model, autumn colonies are susceptible to decline caused by increased mortality of foragers (e.g. due to pesticide-induce navigation failure) but colonies in spring/summer are not.¹

A theoretical basis for the magnitudes of large, small and negligible effects based on the model of Khoury et al. (2011).

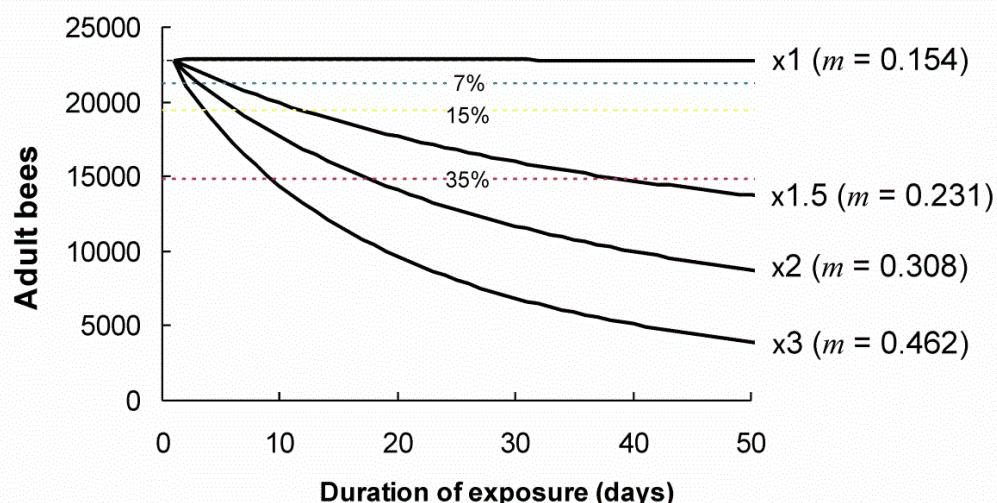

In the honey bee colony, the development of newly hatched adult workers follows a consistent and well-understood pathway. The newly emerged adults are first hive bees, which undertake various duties such as feeding larvae, comb building and cleaning. After a period, hive bees progress to join the workforce of foragers and they normally continue in this role until death. In cases where there is an excess of foragers, bees can reverse their development and return to duties in the hive. The fundamental biology associated with this division of labour can be described mathematically by a simple model (Khoury et al. 2011; Figure A1).

Figure A1: A simple description of the distribution of adult workers in a honey bee colony among stages of behavioural development (boxes: new bees, hive bees, foragers). Linking arrows indicate the possible pathways for progression and the nearby italicised parameters govern the daily rates of each transition.

Thus, the maximum daily rate at which hive bees are produced is L bees per day. However, this rate responds to colony size (smaller colonies have a lower capacity to produce hive bees) and the sensitivity of this size-dependence is governed by tuning w . Similarly, α and σ govern the rates of developmental transitions between hive bees and foragers, and m governs the daily *per capita* mortality rate.

3796
 3797 In their analysis, Khoury et al. assumed that the rate of background mortality among foragers (i.e. deaths
 3798 not due to pesticide exposure) was 15.4%, while hive bees did not suffer any mortality. The analysis
 3799 below examines the impact on colony size of pesticide exposures that elevate the mortality rate by
 3800 various multiples.

3801
 3802 **Figure A2:** Behaviour of the model of a honey bee colony proposed by Khoury et al. (2011) with
 3803 parameter values set as follows: $N_0 = 22784$, $L = 2000$, $\alpha = 0.25$, $\sigma = 0.75$, $w = 27000$ and m set at
 3804 various multiples of the background rate (Khoury et al. 2011). The y-axis shows the number of adult
 3805 bees in the colony. In these calculations, the initial number of adult bees is set to equilibrate given
 3806 background mortality among foragers (see trajectory labelled 'x1 $m = 0.154$ '). Other curves show
 3807 trajectories when elevated rates of mortality due to pesticide exposure are applied continuously (e.g.
 3808 when an additional 15.4% of foragers are killed daily by pesticide mortality, then the mortality rate is
 3809 30.8% (see trajectory labelled 'x2 $m = 0.308$ ').
 3810

Multiple of background mortality	Negligible Reduction of colony size by $\leq 7\%$	Small Reduction of colony size by $\leq 15\%$	Medium Reduction of colony size by $\leq 35\%$	Viable after 50 days?
$\times 1.5 (m = 0.231)$	6	13	40	Y
$\times 2 (m = 0.308)$	3	7	18	Y
$\times 3 (m = 0.462)$	2	4	10	N

3813
 3814 **Table A1:** Extracts from Figure A2: number of days until effect (negligible, small, medium) under
 3815 various levels of elevated forager mortality due to pesticide exposure ($\times 1.5$ background, $\times 2$, $\times 3$) as
 3816 determined by solutions to the model of Khoury et al. (2011). Colony viability is determined here by
 3817 whether the colony contains at least 5000 adult bees after 50 days (5000 in often considered to be the
 3818 minimum size suitable for successful overwintering).
 3819

3820

3821

3822

3823

 3824 **B. PROTECTION GOALS**

3825 Specific protection goals based on ecosystem services were suggested according to the methodology
 3826 outlined in the Scientific Opinion of EFSA (2010). In consultation with risk managers in the SCoFCAH
 3827 (Standing Committee on the Food Chain and Animal Health) the Specific Protection Goals for honey-
 3828 bees were set as outlined below.

3829 The attributes to protect were defined as survival and development of colonies and effects on larvae and
 3830 bee behaviour as listed in regulation (EC) No 1107/2009. In addition, abundance/biomass and
 3831 reproduction were also suggested because of their importance for the development and long-term
 3832 survival of colonies.

3833 The viability of each colony, the pollination services it provides, and its yield of hive products all depend
 3834 on the colony's strength and, in particular, on the number of individuals it contains. It is therefore
 3835 proposed to relate protection goals specifically to colony strength, which is defined operationally as the
 3836 number of bees it contains (= colony size).

3837 Based on expert judgement, the following nomenclature was defined for the magnitudes of detrimental
 3838 impacts on colony, or 'effect sizes'.

3839

Effect	Magnitude (reduction in colony size)
Large	>35%
Medium	15% to 35%
Small	7% to 15%
Negligible	3.5% to 7%

3840

3841 The variability in sizes among colonies prohibited defining effect sizes in terms of absolute reductions in
 3842 the numbers of bees in a colony. Experts in the working group unanimously agreed that a proportional
 3843 reduction in colony size of greater than one third would be likely to compromise the viability, pollinating
 3844 capability and yield of any colony; this consideration was used to define an effect as 'large'. The
 3845 magnitude of a negligible effect was defined with similar regard to biological considerations and also by
 3846 reference to the potential for experimental detection, because a negligible effect must be statistically
 3847 distinguishable from "small effects". The intermediate effect sizes were then defined arbitrarily at even
 3848 intervals in the range between 'large' and 'negligible'.

3849 The effect sizes defined above have been defined principally by reference to honey bee colonies, but in
 3850 the case of non-*Apis* bees, they will refer similar to colony-level impacts (other social bees, such as
 3851 bumble bees) or to population sizes (solitary bees).

3852

3853 **Table B1:** Overview on combinations of magnitude of effects on forager mortality and time to reach
 3854 point of where the colony may collapse (< 5000 bees in the hive) (for details see Appendix A):

Multiple of background mortality of forager bees	Negligible effect Reduction of colony size by	Small effect Reduction of colony size by	Medium effect Reduction of colony size by	Viable after 50 days?
--	--	---	--	-----------------------

	$\leq 7\%$	$\leq 15\%$	$\leq 35\%$	
$\times 1.5 (m = 0.231)$	6 days	13 days	40 days	Y
$\times 2 (m = 0.308)$	3 days	7 days	18 days	Y
$\times 3 (m = 0.462)$	2 days	4 days	10 days	N

3855

3856 It was agreed in the SCoFCAH to base the specific protection goal on a negligible effect on colonies. For
 3857 example an increase in forager mortality by a factor of 1.5 compared to controls could be tolerated for 6
 3858 days (average factor over 6 days). From day 7 on the mortality rate would need to be back to control. An
 3859 increase of a factor of 2 could be tolerated for 3 days and an increase of mortality of a factor of 3 for 2
 3860 days. After that period of time the mortality of foragers should not exceed background mortality. The
 3861 effect on the colony should not exceed 7% compared to controls after 2 brood cycles. In the risk
 3862 assessment (e.g. field studies) it needs to be ensured that the effects that are proposed for the Specific
 3863 Protection Goals can be assessed. E.g. it needs to be ensured by the test design to detect an increase in
 3864 mortality of more than a factor of 1.5 compared to controls with sufficient statistical power.

3865 It is important to note that effects on colony should not exceed negligible effects also for products that
 3866 are applied several times (according to the Good Agricultural Practice). Risk management options should
 3867 be considered if the magnitude of effects exceeds “negligible” effects.

3868 The overall level of protection also includes the exposure assessment goals. Decisions need to be taken
 3869 on how conservative the exposure estimate should be and what percentage of exposure situations should
 3870 be covered in the risk assessment. The first aspect of the spatial statistical population is the total area to
 3871 be considered (e.g. the whole EU, one of the regulatory zones North-Centre-South or a Member State). In
 3872 view of the terms of reference, we propose to consider each of the regulatory zones North-Centre-South
 3873 as the total area for all Specific Protection Goals (SPGs). A second aspect of the spatial statistical
 3874 population is the location of the spatial units (individual bees, colonies or populations) in the landscape
 3875 in relation to the application of the substance. It is proposed that the risk assessment focuses at field scale
 3876 to avoid ‘dilution’ of the spatial population with a large fraction of unexposed hives, for example.

3877 It was decided that the exposure assessment should be done for each of the regulatory zones and it was
 3878 suggested that representative scenarios should be developed in future

3879 By defining a certain percentile exposure assessment goal (e.g. 90%) it is meant that 90% of all colonies
 3880 at the edge of a treated field in one regulatory zone should be exposed to less than what is assessed in the
 3881 risk assessment. For 10% of the colonies at the edge of a field in the regulatory zone the exposure could
 3882 exceed what was assessed in the risk assessment. For these colonies the protection may not be achieved
 3883 for substances which are highly toxic to bees (e.g. effects could exceed negligible effects). It was
 3884 proposed to base the exposure estimates at the 90th percentile as is done for other groups of non-target
 3885 organisms. However, there was also the suggestion to have a more conservative exposure assessment
 3886 goal like for example the 95th percentile. The main concern was to be sufficiently conservative to avoid
 3887 bee kill incidents. No final decision was taken by the SCoFCAH. The current version of the Guidance
 3888 Document is based on the 90th percentile. If risk managers decide to choose a higher percentile after the
 3889 public consultation period then the corresponding exposure values need to be changed in the final version
 3890 of the GD.

3891 The risk assessment scheme and associated trigger values enable an assessment that, if met, would ensure
 3892 that exposure does not exceed a value that could lead to effects which are more than negligible in 90 %
 3893 of sites (i.e. treated fields) where honey bee colonies are situated on the edge of treated fields. The trigger

3894 values are set that an individual colony can tolerate an impact on foragers of y % effect over Z time or
3895 less. This will ensure that the protection goal related to in-field pollination services of crop plants is met.

3896 It is unclear if honey production would be a more sensitive endpoint than effects on mortality or
3897 reduction of colony size. It may be more difficult to assess effects on honey production because there is a
3898 high variability depending on the site where the colony is located. Since only negligible effects on the
3899 colonies are acceptable the colony should stay as productive as a non-exposed one. However, considering
3900 the importance of honey production for beekeepers it is proposed to include honey production as a
3901 measurement endpoint in field studies.

3902

3903

3904
 3905 **C. MORTALITY OCCURRING IN A FIELD STUDY CONDUCTED ACCORDING TO EPPO 170 AND
 EXAMPLE FOR COMPARISON TO PROTECTION GOALS.**

3906
 3907 Presented below is a summary of the daily forager mortality that occurred in a regulatory field study and
 3908 a comparison of the forager mortality rates to the protection goals. Please note that the study does not
 3909 necessarily reflect the outcome of a good or of a representative field study. The data were used simply to
 3910 illustrate the protection goals applied to mortality data from a field study.

3911
 3912 The study was conducted on oilseed rape. Two active substances were tested as spray applications. One
 3913 active substance was very toxic to bees and used as a toxic reference. The second substance (a new active
 3914 substance - NAS) was of low toxicity to bees.

3915 Dead bees were collected daily in dead bee traps starting from the day before treatment until 21 days
 3916 after treatment. The factor of increase in mortality of foragers compared to the control was calculated for
 3917 each day and the average factor of increase in daily mortality was calculated over 2 days, 3 days, 4 days,
 3918 6 days, 7 days, 10 days and 18 days.

3919 The protection goal was defined as negligible effects (see Chapter 2 and Appendix B for further details).
 3920 The average forager mortality compared to controls should not exceed the factors: 3 for 2 days, 2 for 3
 3921 days and 1.5 for 6 days.

3922 As expected, the toxic standard clearly caused effects that exceed negligible effects (increase of average
 3923 forager mortality by more than a factor of 3 for 2 days, a factor of 2 for 3 days and a factor 1.5 for 6
 3924 days). The active substance (NAS) did not affect forager mortality. The protection goal for the new
 3925 active substance (NAS) with regard to forager mortality was met in the field study.

3926
 3927 **Table C1:** Average number of dead bees per plot on each sampling date. Data collected via dead bee
 3928 traps.

Days after application	Average number of dead bees			Factors of increase in forager mortality compared to controls			
	Control plot	NAS	Toxic std - reference	NAS	Toxic std.	NAS average	Toxic std. average
-1	24.75	13.25	19.00	0.54	0.77		
0	6.75	1.00	3.50	0.15	0.52		
1	712.75	4.25	5827.13	0.01	8.18		
2	8.50	0.00	970.00	0.00	114.12	0.00	61.15
3	339.50	3.50	427.75	0.01	1.26	0.01	41.18
4	95.00	2.25	174.75	0.02	1.84	0.01	31.35
5	80.75	0.75	89.25	0.01	1.11		
6	8.50	2.25	81.25	0.26	9.56	0.05	22.68
7	10.00	1.25	33.25	0.13	3.33	0.06	19.91
8	6.50	1.75	25.75	0.27	3.96		
9	11.00	1.25	35.50	0.11	3.23		
10	10.50	11.00	12.00	1.05	1.14	0.19	14.77
11	27.50	37.00	45.75	1.35	1.66		
12	7.25	6.25	19.25	0.86	2.66		
13	7.75	4.50	24.50	0.58	3.16		
14	4.75	3.50	22.25	0.74	4.68		
15	12.50	12.75	14.00	1.02	1.12		
16	4.00	0.50	8.75	0.13	2.19		
17	7.75	4.50	4.75	0.58	0.61		
18	5.50	9.25	2.50	1.68	0.45	0.49	9.13
19	26.75	4.25	14.00	0.16	0.52		
20	14.00	0.75	18.25	0.05	1.30		
21	11.25	1.75	11.75	0.16	1.04		

3929

3930 **D. RELEVANCE OF DUST FOR TREATED SEEDS.**

 3931
 3932 Most of this table is taken from SANCO/10553/2012 rev. 0, 8 March 2012, Guidance Document on the
 3933 authorisation of Plant Protection Products for seed treatment (Annex I to Appendix VI). The last column
 3934 is added to show relevance for off-field exposure of honeybees. The table is mainly based on seed
 3935 treatment and sowing practice in the Netherlands.
 3936

 3937 **Comments on relevance for other countries are welcomed. MS are also invited to add**
 3938 **information on crops not yet included below.**

 3939 **Table D1:** Representative coating practice and conditions of use of coated seeds

Crop	Direct sowing or transplanting	If direct sowing outdoors, type of driller ^(a)	Seed treatment technology ^(b)	Conclusion on dust formation (and potential risk for non-target organisms)
<i>arable crops</i>				
cereals - spring	Direct sowing	mostly mechanical and pneumatic seed drill equipment, pneumatic with vacuum principle upcoming	seed treatment facilities (fixed or mobile) and on farm treatment basic seed treatment / basic coating	Relevant
cereals winter	Direct sowing	mostly mechanical and pneumatic seed drill equipment, pneumatic with vacuum principle upcoming	seed treatment facilities (fixed or mobile) and on farm treatment basic seed treatment / basic coating stickers more recently introduced more widely	Relevant
maize, sweet corn, sorghum	Direct sowing	90% vacuum principle	Professional treatment basic seed treatment direct on the seed (active ingredient can be present on the outside surface of the seed)	Relevant
oilseed rape	Direct sowing	mechanical and pneumatic seed drill equipment, pneumatic with vacuum principle upcoming	Professional treatment basic seed treatment / basic coating finishing powder to ensure flowability of seeds	Relevant
sunflower	Direct sowing	both mechanical and pneumatic with and without vacuum technique are possible	Professional treatment basic seed treatment / basic coating finishing powder to ensure flowability of seeds	
beet (sugar and fodder)	Direct sowing	Pneumatic or mechanical precision drilling equipment	Professional treatment pelleting, with active ingredient not on the outside of the seed but closed in by an inert layer; new development: filmcoating on top of the pellet	not relevant, due to pelleting and filmcoating (and mechanical drilling)

Crop	Direct sowing or transplanting	If direct sowing outdoors, type of driller ^(a)	Seed treatment technology ^(b)	Conclusion on dust formation (and potential risk for non-target organisms)
beans, peas	Direct sowing	Pneumatic (mainly vacuum technique) or mechanical precision drilling equipment	Professional treatment basic seed treatment / basic coating	Relevant
cotton	Direct sowing	Vacuum pneumatic drilling equipment	Professional treatment basic seed treatment / basic coating delinting process	Relevant
flax, poppy seed	Direct sowing	mostly mechanical seed drill equipment, pneumatic with vacuum principle upcoming	basic seed treatment / basic coating	Relevant
grasses, grassseed	Direct sowing	both mechanical and pneumatic (vacuum) are possible	basic seed treatment / basic coating	Relevant
alfalfa, caraway, green manure crops	Direct sowing	both mechanical and pneumatic (vacuum) are possible	no seed treatments	Not relevant (no seed treatments)
<i>outdoor vegetables</i>				
onion, carrot, radish	Direct sowing	Pneumatic precision drilling equipment	filmcoating/rotostat for insecticides	Not relevant for insecticides due to high quality coating; maybe relevant for other pesticides
leek	Most sowing in seed beds and transplanting later, approximately 10% direct sowing. Mostly sowing outdoors, some sowing indoors in trays.	Pneumatic precision drilling equipment	filmcoating/rotostat for insecticides	Not relevant for insecticides due to high quality coating; maybe relevant for other pesticides
asparagus	Sowing in seed beds, later transplanted.	yes	filmcoating/rotostat for insecticides	Not relevant for insecticides due to high quality coating; maybe relevant for other pesticides
chicory, endive, lamb's lettuce	Direct sowing	mainly coated seed, pneumatic ; also pelleted seeds, sown mechanically	filmcoating/rotostat for insecticides	Not relevant for insecticides due to high quality coating; maybe relevant for other pesticides
spinach	Direct sowing	mainly mechanically drilled, pneumatic equipment upcoming (both vacuum and gauge pressure principle)	basic coating, partly filmcoating, and sometimes toplayer	Relevant

Crop	Direct sowing or transplanting	If direct sowing outdoors, type of driller ^(a)	Seed technology ^(b) treatment	Conclusion on dust formation (and potential risk for non-target organisms)
beetroot	Direct sowing	Pneumatic precision drilling equipment	basic coating	Relevant
<i>greenhouse vegetables</i>				
lettuce, including lettuce-like (radicchio rosso, endive, etcetera)	All these crops are only sown and raised to young plants indoors; later transplanted indoors or outdoors.	not applicable	pelleting, with active ingredient not on the outside of the seed but closed in by an inert layer	Not relevant due to indoor sowing
brassica, including head cabbages, Brussels sprouts, cauliflower, broccoli, Chinese cabbage, kale	All these crops are only sown and raised to young plants indoors; later transplanted indoors or outdoors.	not applicable	filmcoating/rotostat, and sometimes top layer	Not relevant due to indoor sowing
fruiting vegetables (tomatoes, cucumber, weet pepper, eggplant, etcetera)	Plant raising only indoors, later transplanted indoors or outdoors. In case of outdoor sowing (e.g. cucumber in Germany) vacuum systems are used.	Pneumatic precision drilling equipment	sometimes fungicide treatments	Not relevant due to indoor sowing
celeriac	Sown indoors, later transplanted outdoors.	not applicable		Not relevant due to indoor sowing
<i>ornamentals</i>				
several ornamental crops from seed	Cultivation both indoors and outdoors; many crops through plant raising indoors; limited crops directly sown outdoors.		filmcoating (high value seeds)	Not relevant for most crops due to indoor sowing; Relevant for some

3941 (a) Mechanical seed drill equipment does not work with air and therefore can not release air flows. With pneumatic seed drill
3942 equipment there are two principles: using the vacuum principle and using the gauge pressure principle. When using the
3943 gauge pressure principle there is no more air replacement (with potential dust) than with mechanical seed drill equipment.
3944 When using the vacuum principle seeds are put in the sowing row by vacuum and the excess air will come free. At
3945 conventional corn sowing machines, this exhaust air was directed upwards. Meanwhile, these machines (mostly) are
3946 modified: they have deflectors directing the exhaust air downwards to the soil. For vegetable vacuum seed drilling
3947 machines, the airflows already almost always were directed towards the soil.
3948

3949 (b) There is no complete one-on-one relationship crop - seed treatment: which method is used also depends on e.g. the type of
3950 pesticide used, the composition of that pesticide and whether multiple pesticides are used, seed type (smooth, rough, etc.),
3951 to a certain extent for which market the seed is treated, etc. Also, various terms are used. This table presents an indication.
3952 In general, the more valuable the seed is, the higher quality (and more expensive) seed treatment technology can be used.
3953 Furthermore: coating means stickers are used; in basic coating the pesticide can irregularly be distributed over the seed, in
3954 film coating a regular layer is spread over the seed (used for somewhat higher valuable seeds); a part of the market has on
3955 top of that a top layer (without active ingredient).
3956

3957 In general, doses are lower for fungicide treatments than for insecticide treatments, which means that less coating is
3958 needed for fungicide treatments, so there is less coating available for abrasion. On the other hand, a top layer is then
3959 not necessary.
3960
3961
3962
3963
3964
3965
3966
3967

3968 **E. HONEYDEW**

3969
 3970 Honeydew is a sugar sticky liquid, excreted by various insects including aphids, leafhoppers and some
 3971 scale insects when they feed on plant sap. As nectar, honeydew derive by plant sap but it is not actively
 3972 secreted by plant. For this reason honeydew production not only depends on crops, climatic and
 3973 geographic conditions, as in nectar, but also by the dynamic population of the honeydew-producing
 3974 insect. The plants producing honeydew are mainly conifers (genu *Abies*, *Picea*, *Pinus*, *Larix*) and several
 3975 deciduous plants with no nectar in flowers (oak, beech, poplar) and with nectar (linden, willow tree,
 3976 maple, chestnut, black locust, fruit trees). Several herbaceous crops and weeds can host honeydew-
 3977 producing insects (alfalfa and sunflower). The honeydew-producing insects are all in the Hemiptera order
 3978 including several species of the families: Flatidae, Psyllidae, Thelaxidae, Eriosomatidae, Lachnidae,
 3979 Chaitophoridae, Callaphididae, Aphididae, Kermesidae, Coccidae (Persano Oddo et al. 1995). The flatid
 3980 planthopper *Metacalfa pruinosa* is an invasive specie from America. In Europe, it was introduced
 3981 accidentally in 1979 (Treviso province in Italy) and it is now present in Italy, Spain, Austria, Croatia,
 3982 France, Slovenia, Switzerland, Serbia Montenegro, Czech Republic, Hungary, Greece, Turkey, Bulgaria,
 3983 Bosnia Herzegovina, Slovakia, Albania and Romania. They produce large quantity of honeydew in
 3984 several plants (more than 200 species): fruit trees, olive trees, grapevine, ornamental plants and
 3985 herbaceous crops as maize, sunflower and soy (Santi and Maini, 2000). Host plant of this species varies
 3986 from area to area.

3987 Potentially all plants with a presence of honeydew-producing insects can be visited by bees to collect
 3988 honeydew. However, the more important plants visited for honeydew by bees are listed in table 1.
 3989 Honeybees collect honeydew mainly during late summer when there are few plants in bloom (few
 3990 alternative sources) and in wild plants because the honeydew-producing insect populations are usually
 3991 controlled in crops.

3992

3993 **Table E1:** List of plants visited by bees for honeydew (from Contessi, 2005)

Genus	Genus
<i>Abies</i>	<i>Mahonia</i>
<i>Acer</i>	<i>Nepeta</i>
<i>Beta</i>	<i>Picea</i>
<i>Betula</i>	<i>Pinus</i>
<i>Castanea</i>	<i>Populus</i>
<i>Cercis</i>	<i>Pyrus</i>
<i>Cotinus</i>	<i>Quercus</i>
<i>Crepis</i>	<i>Robinia</i>
<i>Fagopyrum</i>	<i>Salix</i>
<i>Frangula</i>	<i>Tamarix</i>
<i>Juglans</i>	<i>Tilia</i>
<i>Juniperus</i>	<i>Triticum</i>
<i>Larix</i>	<i>Tussilago</i>

3994

The list is based on data from Italy. It is unclear if it is possible to extrapolate from the data representative for Italy to other regions in Europe. It would be welcome to receive data from other MSs on the plants from which honey dew is collected.

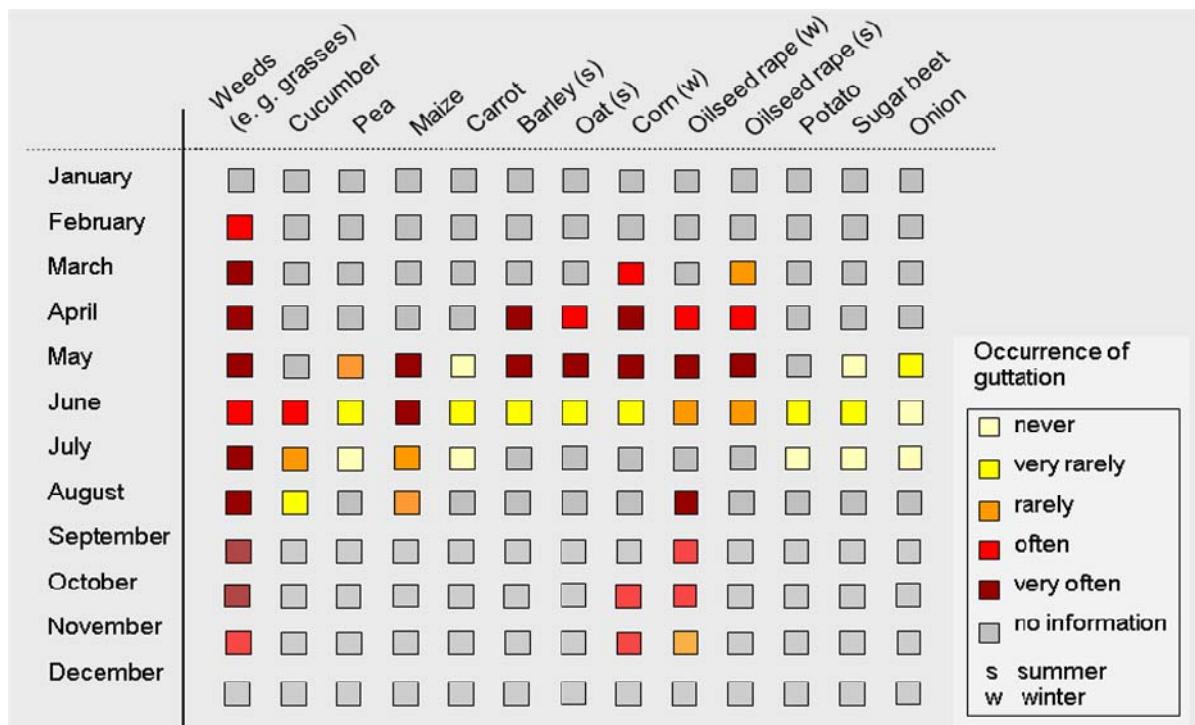
3995

3996

3997

3998

3999


4000

4001

4002

F. GUTTATION AND PROPOSED RISK ASSESSMENT FOR GUTTATION WATER

4004
 4005 Most crops show guttation, some crops exsudate guttation droplets frequently, others rarely. For most
 4006 crops, first guttation may be observed from first emergence up to flowering. In field trials in Germany in
 4007 2010-2011 sugar beets, onion and carrots showed guttation never or only on very rare occasions (0-25%
 4008 of days), whereas most other crops showed guttation more often. Guttation cannot be fully excluded for
 4009 any crop.

4010
 4011 The effects of residues in guttation droplets may be investigated using worst case crops (e.g. maize) with
 4012 high residues in the droplets and high potential exposure of bees due to high water demand of the
 4013 colonies. Such studies may be representative also for other crops that have lower guttation frequency and
 4014 lower residues. If an effect study is undertaken, the exposure period with high residues must be covered
 4015 (e.g. maize in spring, winter oilseed rape in autumn)

4016
 4017
 4018 The potential risk of guttation is depending on the distance of the colonies to treated crops. The residues
 4019 in guttation droplets vary for different actives, crops and growth stages but can in general be some
 4020 magnitudes higher than systemic trace residues in nectar and pollen of seed treated crops. The attractivity
 4021 of water is not comparable to the attractivity of nectar and pollen and forage distances will be shorter for
 4022 water foraging due to energetic reasons. Nevertheless, bee colonies may be located next to or in the
 4023 proximity of treated crops. As guttation issues have been investigated with special focus for a few years
 4024 only, available conclusions on the current state of knowledge were considered for the proposal of a
 4025 screening step for risk assessment.

4026
 4027 Residues of systemic fungicides, herbicides and insecticides may be found in guttation droplets. As many
 4028 different systemic actives of low to moderate toxicity to bees have been used for seed treatments and soil
 4029 applications in the past and no effects on bees have been reported, it might be concluded that guttation
 4030 has no unacceptable effects, e.g. increased mortality does not occur, for example for most of the
 4031 fungicidal seed treatments. However for actives with high bee toxicity, the potential risk needs to be
 4032 considered.

4033
 4034

4035 As the HQ approach is not applicable, in a first step to assess the potential risk, oral toxicity data e.g.
 4036 LD₅₀ values can be used for a calculation of the amount of liquid that would lead to an uptake of a lethal
 4037 dose (e.g. approaching the oral LD₅₀). Other values e.g. NOEC values could also be used for a refined
 4038 calculation. In this case, the LD₅₀ is only used to demonstrate the potential magnitude of risk. In Table F1
 4039 such an example of a calculation is given. It illustrates that, for a substance with an LD₅₀ of 100 ng/bee,
 4040 100 µl water would need to be consumed at a concentration of 1 ng as/µl in guttation droplets. At such
 4041 concentrations, a risk would be unlikely. The data e.g. for clothianidin show that at a residue in guttation
 4042 droplets of 1 ng/µl, a value found in seed treated maize or granular applications for approximately 4
 4043 weeks after emergence, only 3.7 µl of water would need to be consumed to achieve the LD₅₀ of 3.7
 4044 ng/bee.

4045
 4046 **Table F1:** Example for a calculation of the amount of solution that, if consumed would lead to an uptake
 4047 of a lethal dose

Thiamethoxam		Clothianidin		Substance A		Substance B	
LD ₅₀ in ng/bee	5		3,7		50		100
Guttation droplets	consumption	Guttation droplets	consumption	Guttation droplets	consumption	Guttation droplets	consumption
residues ng/µl	µl/bee	ng/µl	µl/bee	ng/µl	µl/bee	ng/µl	µl/bee
0,01	500	0,01	370	0,01	5000	0,01	10000
0,05	100	0,05	74	0,05	1000	0,05	2000
0,1	50	0,1	37	0,1	500	0,1	1000
0,5	10	0,5	7,4	0,5	100	0,5	200
1	5	1	3,7	1	50	1	100
1,5	3,33	1,5	2,47	1,5	33,33	1,5	66,67
2	2,5	2	1,85	2	25	2	50
3	1,67	3	1,23	3	16,67	3	33,33

4048
 4049 **The approach presented in this Appendix is a first starter to address this exposure route and
 4050 further work is required. The view of MSs and proposals would be welcome.**

4051
 4052

4053 **G. ATTRACTIVENESS OF AGRICULTURAL CROPS TO HONEYBEES FOR THE COLLECTION OF NECTAR**
4054 **AND/OR POLLEN**

4055
4056 This list contains an overview of most agricultural crops in the Netherlands. The list indicates for each
4057 crop whether it is attractive to honeybees for the collection of nectar and/or pollen. This is based on crop
4058 properties and agricultural practice in the Netherlands and may not be (completely) relevant for other
4059 countries.
4060

**Therefore, in the commenting round MS are invited to comment on the relevance of this list for
their countries.**

4061
4062 Good Agricultural Practice is assumed. If a crop does not flower during normal production, it is indicated
4063 as not attractive to honeybees (example: cabbage crops (e.g. cauliflower)).
4064 It may also occur that a crop does flower in the field, but is not foraged on by honeybees for nectar
4065 and/or pollen. These crops are also indicated as not attractive to honeybees (example: potatoes).
4066

4067 Within a crop category or subcategory there may be differences, e.g. when a crop does in principle
4068 flower and is attractive to honeybees, but in some cases flowering is avoided for agricultural reasons. An
4069 example is the reproduction culture of strawberries where flowering does not occur. Nevertheless the
4070 crop subcategory strawberries is indicated as attractive to honeybees in the list since in the production
4071 culture of strawberries, flowering does occur.
4072

4073 The cultivation category of the ornamentals contains a large variety of crops. For this category it is
4074 assumed that non-flowering species are not attractive to honeybees while flowering species are attractive
4075 to honeybees (both for protected and unprotected crops; see the risk mitigation chapter for mitigation
4076 options to avoid entering of honeybees in greenhouses).
4077

4078 A number of crops, among which prunus, elder, willow, pumpkin, hollyhock, peony, sunflower, and a
4079 number of beans, among which broad bean (*Vicia*), produce nectar from extrafloral nectaries (nectar
4080 glands outside the flower). A number of flowering plants (e.g. cornflower, sunflower), produce
4081 extrafloral nectar on the flower bud, already before the plants flowers. Exposure to products harmful to
4082 honeybees should be avoided in these cases. Most of these crops are already indicated as attractive to
4083 honeybees in the list.
4084

4085 Please note that a crop field may be attractive to honeybees even if the crop is indicated as not attractive
4086 to honeybees in this list. This may be due to flowering weeds or honeydew. See the exposure chapter.
4087

4088 In some crops (e.g. carrots, chicory (root growing)) which usually do not flower and are therefore
4089 indicated as not attractive to honeybees, some individual plants may flower. These flowering plants need
4090 to be removed in case there are more than two flowering plants per square meter (see definition of
4091 flowering in risk mitigation chapter).
4092

4093 Honeybees fly in the period of February till October. Outside this period, crops that are indicated as
4094 attractive to honeybees can be treated without restrictions with regard to honeybees.
4095

4096 The crop hierarchy is based on the 'Definitielijst toepassingsgebieden gewasbeschermingsmiddelen'
4097 (DTG lijst, versie 2.0, Ctgb juni 2011). Stakeholders from beekeeping organisations, agricultural sector
4098 and research were involved in drafting the list.
4099
4100
4101
4102

Table G1: Attractivity of agricultural crops to honeybees for the collection of nectar and/or pollen

Cultivation categories, application sectors,	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
1. Arable crops	1.1 Potatoes	-	Seed potatoes Ware potatoes Starch potatoes	No No No	
	1.2 Beetroot	-	Sugar beets Fodder beets	No No	
	1.3 Cereals	1.3.1 Winter cereals	Winter wheat Winter barley Winter rye Triticale Spelt Canary grass	No No No No No No	
		1.3.2 Spring cereals	Spring wheat Spring barley Spring rye Oats Teff	No No No No No	
		1.3.3 Other cereals		No	
1.4	Maize		Silage maize Grain maize Corn cob mix Corn cob silage	Yes Yes Yes Yes	for pollen for pollen for pollen for pollen

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
1.5	Pulses	1.5.1 Dry-harvested peas	Marrowfat peas Yellow peas Grey pea Green peas Lentils Maple pea Brown Marrowfat Sugar snaps Chickpeas	Yes Yes Yes Yes Yes Yes Yes Yes Yes	
		1.5.2 Dry-harvested beans	Brown bean Yellow bean Pinto bean White bean (haricot) Soya bean	Yes Yes Yes Yes Yes	
1.6	Grass seed crops	1.6.1 Ryegrass	English ryegrass Italian ryegrass French ryegrass Westerwold ryegrass Hybrid ryegrass Other ryegrasses	No No No No No No	
		1.6.2 Fescue	Red Fescue Sheep's Fescue Tall Fescue Other fescues	No No No No	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
	1.6.3 Bluegrass		Kentucky bluegrass Fowl bluegrass Wood bluegrass Meadow fescue Other bluegrasses	No No No No No	
	1.6.4 Other grasses		Timothy-grass Cock's-foot Colonial bent Crested dog's-tail Tufted hair-grass Junegrass Other grass seed crops	No No No No No No No	
1.7	Oil-bearing seeds	-	Poppy seed Caraway Linseed Mustard seed Rapeseed Evening primrose Sunflower Camelina Crambe Other oil-bearing seeds	Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes	
1.8	Fibre crops	-	Hemp	No	Yes, when flowering occurs in the field

Cultivation categories, application sectors.	Crop categories, areas of application		Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
				Flaxseed (flax = flaxseed and linseed) Nettle Other fibre crops	Yes No Yes, when flowering occurs in the field	
1.9	Green fertiliser crops	1.9.1	Leguminous fertilisers	greenClover Lupin Serradella Common vetch Sanfoin Field beans Other leguminous green fertilisers	Yes Yes Yes Yes Yes Yes	
		1.9.2	Grass family green fertilisers	Rye Ryegrass	No No	
		1.9.3	Brassicaceae green fertilisers	Oil radish Rapeseed Yellow mustard seed Rape kale Marrow-stem kale	Yes Yes Yes No	for seed production
		1.9.4	Other green fertilisers	Phacelia	Yes	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
			Corn spurrey Marigold (<i>Tagetes</i>) Sticky nightshade Sudan grass	Yes Yes Yes No	
1.10	Fodder crops	1.10.1 Leguminous fodder crops	Clover Alfalfa Common vetch Sanfoin Field beans (for ensilaging) Field mustard	Yes Yes Yes Yes Yes No	
		1.10.2 Other fodder crops			Yes, when flowering occurs in the field
1.11	Other arable crops	1.11.1 -	Chicory (roots) Wild chicory Buckwheat Hops Common madder Elephant grass	No No Yes No Yes No	
2. Cultivated grassland	2.1 Fodder grassland	-	Pastureland	No, unless this is the case when flowering weeds are more than two present	when weeds per square meter are present

Cultivation categories, application sectors.	Crop categories, areas of application		Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
				Mowing grassland	No, unless flowering weeds are present	This is the case when more than two flowering weeds per square meter are present
2.2		Grass sod			No	
3. Fruit crops	3.1	Large fruits Only refers to production of unharvested fruits	3.1.1 Pomes	Apples	Yes	
				Pears	Yes	
				Quince	Yes	
				Medlar	Yes	
				Other pomes	Yes	
			3.1.2 Drupes	Cherries (both sweet and sour)	Yes	
				Plum	Yes	
				Apricot	Yes	
				Peach (incl. Nectarine)	Yes	
				Other drupes	Yes	
3.2		Small fruits	3.2.1 Strawberries		Yes	except production culture
			3.2.2 Berries	Currant (red, white and black)	Yes	
				Gooseberry	Yes	
				Blueberry (incl. Cowberry)	Yes	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
			Cranberry (incl. Fenberry and American Cranberry)	Yes	
			Mulberry	Yes	
			Rose hips	Yes	
			Kiwiberry	Yes	
			Elderberry	Yes	
			Other berries	Yes	
		3.2.3 Grapes	Table grape	Yes	
			Wine grape	Yes	
		3.2.4 Blackberry and raspberry family (<i>Rubus</i> spp.)	Blackberry	Yes	
			Raspberry (incl. Tayberry and Wineberry)	Yes	
			Dewberries	Yes	
3.3	Nuts	-	Hazelnut	Yes	
			Chestnut	Yes	
			Walnut	No	
3.4	Other fruits	-	Fig	No	
			Kiwi	Yes	
4. Vegetable crops	4.1 Leafy vegetables	4.1.1 Lettuce (<i>Lactuca</i> spp.)		No	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
	4.1.2	Endive	Endive	No	
	4.1.3	Spinach family	Spinach Chard Orache Purslane	No No No No	
	4.1.4	Other leafy vegetables	Chicory (forced cultivation) Garden cress Watercress Lamb's lettuce Rocket Sea lavender	No No No No No No	
4.2	Pulses	4.2.1	Bean with pod	Bush green beans Bush common bean Waxpod bean Climbing green beans Climbing common bean Snap bean Runner bean Yardlong bean	Yes Yes Yes Yes Yes Yes Yes Yes
		4.2.2	Podless beans	Broad bean Lima bean Flageolet bean	Yes Yes Yes
		4.2.3	Pea with pod	Legume/pod Asparagus pea	Yes Yes

Cultivation categories, application sectors.	Crop categories, areas of application		Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
				Sugar snap	Yes	
		4.2.4	Pea without pod	Green pea/garden pea Marrowfat pea	Yes Yes	
		4.2.5	Vegetable sprouts	Bean sprouts (Mung bean sprouts) Alfalfa Other vegetable sprouts	No No No	
4.3	Fruiting vegetables	4.3.1	Fruiting vegetables of <i>Cucurbitaceae</i> with edible skin	Gherkin Courgette Cucumbers	Yes Yes Yes	
		4.3.2	Fruiting vegetables of <i>Cucurbitaceae</i> with non-edible skin	Pumpkin family Melon Watermelon	Yes Yes Yes	
		4.3.3	Fruiting vegetables of <i>Solanaceae</i>	Aubergines Tomato Sweet pepper	Yes Yes Yes	
		4.3.4	Fruiting vegetables of <i>Malvaceae</i>	Okra	Yes	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
4.4	Cabbages	4.4.1 Heading cabbages	Heading cabbage Sprouts	No No	
		4.4.2 Cauliflower family	Cauliflower Broccoli	No No	
		4.4.3 Loose leaf cabbage family	Chinese cabbage	No	
			Kale	No	
		4.4.4 Stalk cabbage	Kohlrabi	No	
4.5	Root vegetables and tubers	4.5.1 Radish family	Cultivated radish Black/white radish	No No	
		4.5.2 Root vegetables (<i>Umbelliferae</i>)	Carrots Skirret Hamburg root parsley Parsnips	No No No	
		4.5.3 Other root vegetables and tubers	Turnip Swede	No No	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
			Jerusalem artichoke	Yes	
			Chinese artichoke	No	
			Sweet potato	Yes	
			Beetroot	No	
			Celeriac	No	
			Salsify	No	
			Horseradish	No	
			Yam	No	
4.6	Onion family	4.6.1. Onions	Seed onions	No	
			First year bulb onion	No	
			Second year bulb onion	No	
			Silverskin	No	
			Picklers	No	
		4.6.2 Shallots	Seed shallot	No	
			Bulb shallot	No	
		4.6.3 Scallions	Scallion (incl. Welsh onion, No spring onion, escallion)		
		4.6.4. Garlic	Garlic	No	
4.7	Stalk vegetables	-	Asparagus (white and green asparagus)	Yes	
			Stalk celery	No	
			Cardoon	No	
			Rhubarb	No	
			Florence fennel	No	

Cultivation categories, application sectors.	Crop categories, areas of application		Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
				Leek	No	
				Artichoke	No	
				Sea kale	Yes	
4.8		Other vegetable crops		Sweet corn	Yes	
5. Fresh or dried herbs	5.1	Aromatic herbs	-	Basil	No	
				Chives (incl. garlic chives)	No	
				Savoury	Yes	
				Lemon balm	Yes	
				Dill	Yes	
				Tarragon (Russian and French Tarragon)	Yes	
				Hyssop	Yes	
				Chervil	No	
				Coriander	Yes	
				Parsley	No	
				Lovage (Lovage leaves)	No	
				Marjoram	Yes	
				Oregano (Wild marjoram)	Yes	
				Mint	Yes	
				Burnet	Yes	
				Rosemary	Yes	
				Sage	Yes	
				Thyme	Yes	
				Fennel	Yes	
				Leaf Celery (stalk celery)	No	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
			Sorrel	No	
			Other aromatic garden herbs	Yes, when flowering occurs in the field	
5.2	Aromatic root crops	-	Lovage root Angelica Burnet Saxifrage root (<i>Pimpinella saxifraga</i>) Hamburg root parsley Other aromatic root crops	No Yes No No Yes, when flowering occurs in the field	
5.3	Medicinal herbs	-	Indian tobacco (<i>Lobelia inflata</i>) Wooly foxglove (<i>Digitalis lanata</i>) Heartsease (<i>Viola tricolor</i>) German chamomile Purple coneflower (<i>Echinacea</i>) Pot marigold (<i>Calendula officinalis</i>) Other medicinal herbs	No No No Yes Yes No Yes, when flowering occurs in the field	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
5.4	Medicinal root crops	-	Valerian Ginseng Purple coneflower root (<i>Echinacea</i>) Other medicinal root crops	Yes No Yes Yes, when flowering occurs in the field	
5.5	Seed herbs	-	Caraway Poppy seed Other seed herbs	Yes Yes Yes, when flowering occurs in the field	
6. Mushroom crops	6.1 Edible mushrooms		Champignon mushroom Oyster mushroom Other mushrooms	not applicable not applicable not applicable	
7. Ornamental crops	7.1 Flower bulb and Flower corm crops	7.1.1	Flower bulbs and Flower corms (cultivation for reproduction of amaryllis, dahlia, gladiolus, hyacinth, lily, narcissus, tulip, iris, crocus, other flower bulbs and corms)	Yes, when flowering occurs in the field	
		7.1.2	Bulb flower and Corm	Yes, when	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
			flower	Flower cultivation of flowering occurs in amaryllis, dahlia, gladiolus, the field hyacinth, lily, narcissus, tulip, iris, crocus, other flower bulbs and corms	
7.2	Floriculture crops		Pot plants (including annual bedding plants)	Yes, when flowering occurs in the field	
			Cut flowers (including summer flowers, dried flowers, bulb flowers and corm flowers)	Yes, when flowering occurs in the field	
			Forced shrubs	Yes, when flowering occurs in the field	
			Cut green	No	
7.3	Tree nursery crops		Avenue trees	Yes, when flowering occurs in the field	
			Climbing plants	Yes, when flowering occurs in the field	
			Roses (including rose stocks and outdoor roses)	Yes	
			Conifers	No	
			Ornamental shrubs	Yes, when flowering occurs in the field	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
			Christmas trees Heather Forest trees and hedging plants Fruit trees and shrubs (including Fruit tree stocks)	No Yes Yes, when flowering occurs in the field Yes	
7.4	Perennial crops			Yes, when flowering occurs in the field	
7.5	Flower seed crops			Yes	
7.6	Marsh and Water plants			Not applicable	
7.7	Plant breeding crops and basic seed production for arable, vegetable and fruit crops, herbs and ornamental crops.			Yes	Most of these crops are attractive to honeybees
8. Public green spaces	8.1 Grass vegetation		Lawn (including grass sods) Playing field (including grass sods)	No, unless This is the case when flowering weeds are more than two present No, unless This is the case when flowering weeds are more than two present	unless This is the case when flowering weeds are more than two present unless This is the case when flowering weeds are more than two present

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
		Sports field (including golf courses and grass sods)	No, unless flowering weeds are more than two present	This is the case when flowering weeds are more than two per square meter are present	
		Grassy verges	No, unless flowering weeds are more than two present	This is the case when flowering weeds are more than two per square meter are present	
8.2	Woody plantings	Avenue and border trees	Yes, when flowering occurs in the field		
		Shelter belts, windbreaks and protective hedgerows	Yes, when flowering occurs in the field	Depending on the species and the pruning practice	
		Other woody plantings (forest trees and verge plantings)	Yes, when flowering occurs in the field	Depending on the species and the pruning practice	
8.3	Herbaceous plantings		Yes, when flowering occurs in the field		
9. Forestry	9.1	Deciduous trees	Yes, when flowering occurs in the field		
	9.2	Coniferous trees	No		
10. Plant	10.1	Temporarily uncultivated	Deforestation area	Not applicable	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
free area	terrain		Temporarily uncultivated land.	Yes, when flowering occurs in the field	
10.2	Permanently uncultivated land		Buffer areas of fields	Yes, when This is the case when flowering occurs in more than two weeds per square meter are present	
			Closed surfaces (hardened surface without joins, e.g. asphalt, concrete)	Not applicable	
			Half open surfaces (Surfaces made of paving, blocks or slabs, with joins (e.g. paving stones on pavements and roads, dual-layer porous asphalt [ZOAB]))	Not applicable	
			Open surfaces (Poured or water-permeable material (e.g. gravel, shells or grass concrete tiles))	Not applicable	
			Unmetalled	Not applicable	
11. Water courses	11.1	Bank (dry or otherwise)		Not applicable	
	11.2	Dry ditches		Not applicable	

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
	11.3	Water courses carrying water		Not applicable	
	11.4	Maintenance paths for water courses		Not applicable	
	11.5	Ponds		Not applicable	Littoral plants are frequently foraged on
12. Reed and osier crops			Osier (dry and wet crops) Reed	Not applicable	
13. Refuse heaps				Not applicable	
14. In and around the house, private home environment	14.1	Ornamental garden		Yes, when flowering occurs in the field	
	14.2	Vegetable gardens		Yes, when flowering occurs in the field	
	14.3	House plants		Not applicable	
	14.4	Container plants		Yes	
	14.5	Lawns		No, unless This is the case when flowering weeds are more than two present	weeds per square meter are present

Cultivation categories, application sectors.	Crop categories, areas of application	Crop subcategory	Crops/Objects	Attractive to honeybees	Remarks
14.6	Pastures			No, unless flowering weeds are present	This is the case when flowering weeds are more than two weeds per square meter are present
14.7	Open surfaces (e.g. gravel, shells)			Not applicable	
14.8	Half-open surfaces (e.g. paving stones on pavements and roads)			Not applicable	
14.9	Closed surfaces (e.g. concrete)			Not applicable	
14.10	Unmettaled terrain			Not applicable	
15. Disinfectants			Agricultural and horticultural equipment, tools and materials (On condition that combatting plant pathogens is claimed, otherwise biocide.)	Not applicable	

3836

 3837 **H. LANDSCAPE-LEVEL EXPOSURE ASSESSMENT OF THE AVERAGE CONCENTRATION ENTERING**
 3838 **THE HIVE**

3839

 3840 **Landscape-level exposure assessment model**

3841

 3842 Let us consider a foraging area of a hive that consists of N different fields. The average concentration
 3843 in the hive (PEC_{hive}) can then as a first approximation be estimated with

3844

3845

3846

$$PEC_{hive} = \frac{\sum_{n=1}^N f_n a_n PEC_n}{\sum_{n=1}^N f_n a_n} \quad (\text{Eqn H1})$$

3847

3848

3849

 3850 where f_n is the attractiveness factor of the crop in field n , a_n is the surface area of field n and PEC_n is
 3851 the concentration in nectar and pollen in field n . The definition of f_n can be illustrated with the
 3852 example of a foraging area consisting of two fields of equal size, one grown with *Phacelia* and one
 3853 grown with pumpkin. Let us further assume that $f_{Phacelia} = 10$ and $f_{pumpkin} = 1$. Eqn H1 reduces in this
 3854 case into

3855

$$PEC_{hive} = \frac{10PEC_{Phacelia} + PEC_{pumpkin}}{11} \quad (\text{Eqn H2})$$

3856

3857

 3858 So the attractiveness factor is a quantitative measure of the attractiveness of different crops and can
 3859 best be defined in relation to a reference crop (e.g. pumpkin as was done in the example of Eqn H2).
 3860 This factor can be measured by counting the number of foraging bees within a surface area of e.g. 1 m^2
 3861 at the same time in different fields within the foraging area. Typical values are 25 m^{-2} for *Phacelia* and
 3862 3 m^{-2} for a flowering pumpkin crop (these numbers would then correspond to $f_{Phacelia} = 8.333$ and
 3863 $f_{pumpkin} = 1$, taking pumpkin as the reference crop; we use in the example 10 instead of 8.33 to keep the
 3864 numbers simple).

3865

 3866 Let us consider the most normal situation for the exposure assessment: use of a certain substance in a
 3867 single crop in a foraging area. Let us further define φ as the fraction of the crop treated with this
 3868 substance (e.g. because there are different products used for the same pest) and A_g as the total surface
 3869 area grown with crop g (so the sum of all a_n values of the fields grown with the same crop g). In such a
 3870 case, Eqn F1 reduces to

3871

$$PEC_{hive} = \frac{f_x A_x \varphi PEC_x}{\sum_{g=1}^G f_g A_g} \quad (\text{Eqn H3})$$

3872

3873

 3874 where f_x is the attractiveness factor of the treated crop, A_x is the total surface area of crop x in the
 3875 foraging area, PEC_x is the concentration in nectar or pollen in the treated crop, G is the total number of
 3876 attractive plants in the foraging area, f_g is the attractiveness factor of plant g . If there are attractive
 3877 plants that are no crops (e.g. weeds in field margins), these can of course also be included in the sum
 3878 in the denominator of Eqn H3.

3879

 3880 Based on Eqn H3 we can define Φ as the 'foraging dilution factor' for crop x and this hive as:

3881

$$\Phi = \frac{PEC_x}{PEC_{hive}} = \frac{f_x A_x \varphi}{\sum_{g=1}^G f_g F_g} \quad (\text{Eqn H4})$$

 3882
 3883

3884 If Φ is for example 0.3, this means that the average concentration in pollen or nectar entering the hive
 3885 is 0.3 times the concentration in pollen or nectar from fields treated with this substance.

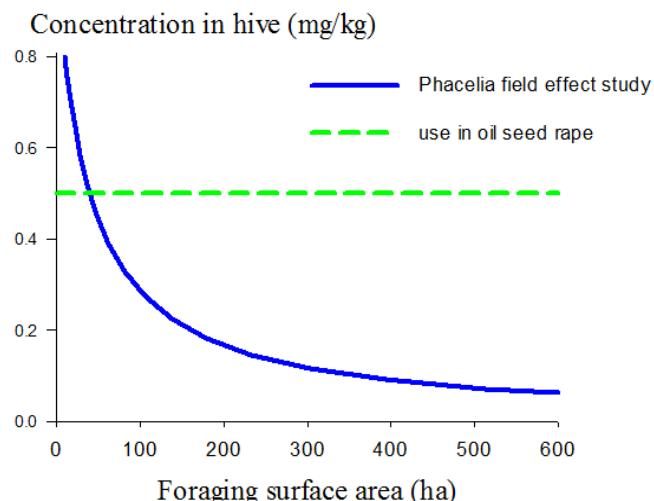
 3886
 3887

3888 Effect of the foraging surface area on the risk assessment

3889

3890 The foraging surface area of a hive is not exactly known so it is useful to know which role this surface
 3891 area may play in the risk assessment. Any risk assessment for organisms is based on two types of
 3892 exposure assessment: one for the exposure in the effect study and one for the exposure that will occur
 3893 in the field resulting from the use of the Plant Protection Product (Boesten et al., 2007). Let us first
 3894 consider the exposure in the field. Let us consider the use of a substance in oil seed rape applied at a
 3895 rate of 1 kg/ha and the resulting concentration in the nectar entering the hives at the edges of treated
 3896 field. Let us assume the following scenario: (1) 25% of the surface area in the landscape is grown with
 3897 oil seed rape, (2) this substance is applied to half of the oil seed rape fields, (3) there are no other
 3898 attractive plants in the landscape, (4) the concentration in the nectar of treated fields is 1 mg/kg. Eqn
 3899 H3 gives then a PEC_{hive} of 0.5 mg/kg because only 50% of the oil seed rape surface area is treated ($\varphi =$
 3900 0.5). The size of the foraging surface area has no effect on the PEC_{hive} in this scenario because we
 3901 assume that the land use does not change.

3902


3903 Let us now consider exposure in the higher-tier field study. Let us consider therefore the following
 3904 simplified example: the highest-tier Regulatory Acceptable Concentration for the hive (RAC_{hive}) was
 3905 based on a field study with a hive at the edge of a 1-ha *Phacelia* field that was treated with the
 3906 substance and in which no unacceptable effects were observed. If the concentration in nectar entering
 3907 the hive was measured in the field study, we do not need any assumptions on the foraging surface area.
 3908 So in this case such assumptions play no role in the risk assessment.

3909

3910 However, if this concentration was not measured (as is the case in many current dossiers), the RAC_{hive}
 3911 has to be calculated from Eqn F1. Let us assume the same landscape scenario: 25% of surface area is
 3912 grown with attractive oil seed rape plants (now untreated) with 1 ha of a *Phacelia* field treated at a rate
 3913 of 1 kg/ha close to the hive. We assume that the concentration in the nectar of the *Phacelia* is again 1
 3914 mg/kg. Let us assume $f_{Phacelia} = 10$ and $f_{OSR} = 1$. For a total foraging area of 10 ha, Eqn H1 gives then
 3915 $RAC_{hive} = 10/(10+2.5) = 0.80$ mg/kg. However, for a total foraging area of 100 ha, Eqn H1 gives
 3916 $RAC_{hive} = 10/(10+25) = 0.29$ mg/kg. Figure H1 illustrates this strong dependence of the RAC_{hive} of the
 3917 foraging surface area. We consider a foraging radius of 1 km to be a defensible minimum value for a
 3918 hive. This corresponds to about 3 km², so 300 ha. Figure H1 indicates that it is well possible that the
 3919 exposure in such a *Phacelia* effect study is considerably lower than in a realistic field exposure
 3920 scenario.

3921

3922

3923
 3924
 3925
 3926 **Figure H1:** Concentration in the nectar entering the hive as a function of the foraging surface area as
 3927 calculated with Eqn H1 for an application in oil seed rape and for an application in a *Phacelia* field
 3928 effect study. It was assumed that the PEC in the treated *Phacelia* and oil seed rape fields was 1 mg/kg.
 3929
 3930
 3931 Figure H1 shows that the RAC_{hive} decreases with increasing foraging surface area for field studies in
 3932 which the concentrations in pollen and nectar have not been measured. The lower the RAC_{hive} , the
 3933 more conservative the risk assessment will be. So to be able to use such studies, consensus needs to be
 3934 achieved on a realistic upper limit of a foraging surface area of a hive. Moreover, the surface area of
 3935 attractive crops within this foraging surface area during the field effect study needs to be assessed.
 3936 This will in general not be an easy task. It seems therefore advisable to measure the concentrations in
 3937 nectar and pollen entering the hive in future field effect studies.
 3938
 3939

3940
 3941

I. PESTICIDE RESIDUE LEVELS IN NECTAR AND POLLEN AND THE RESIDUE UNITE DOSES (RUDs)

 3942
 3943
 3944
 3945
 3946
 3947
 3948

Three sources of data were considered to compile a data set for RUD (residue unit dose) values.

- Appendix G of the EFSA Opinion (EFSA, 2012a)
- Table 1.5, Table 1.6 and Table 1.8 of the external scientific report (EFSA, 2012c)
- The data in the excel sheet compiled for the EFSA statement (EFSA, 2012d). Detailed data were not published in the statement, therefore references are provided for these data in Table 2 of this appendix.

 3949
 3950
 3951
 3952
 3953
 3954
 3955
 3956
 3957
 3958
 3959
 3960
 3961
 3962
 3963
 3964

Moreover a very few data that were erroneously left out from one or the other data base, were used here. In order to avoid double counting, the references of the studies in the data bases were checked and overlapping data were considered only once here. Where necessary, further details of the relevant studies, where available to EFSA, or the original study reports were consulted for further information or correction (e.g. several RUD values for thiamethoxam and CGA322704 were reported in Table G11 of the Opinion (EFSA, 2012a), but ignored here since they were based on results of < LOD). In some cases different RUD values from the same origin were reported in two different data sets (e.g. one based on average of subsamples while the other on the highest value). Where reliable information was available, the worst case (e.g. the highest measured) residue value was used for the RUD calculations. From a study, sometimes more than one value was derived when more than one trial was conducted within a study. A stand-alone trial was defined when one or more of the following factors were different from other trials: plant, test site, time of the trial, application rate, pre-treatment of the soil. When several measurements of residues for the same matrix were available within a trial, only the highest value was used for the RUD calculation. In some cases the only differences were in the time of application with a few days difference. In these cases the data from the trial with the worst case value was only considered further.

 3965
 3966
 3967
 3968

Two reported values were derived from greenhouse studies. It was considered that the residues determined in this studies cannot be combined with the residues investigated in field or semi-field trials, therefore, these greenhouse data were not used in the data analysis and are not reported here (all other values originate from open field trials).

 3969
 3970
 3971
 3972

Where the residue detected in a trial was reported to be between the limit of quantification (LOQ) and the limit of detection (LOD), as a worst case assumption, the residue was considered to be equal to the LOQ for the calculations. When the exact value measured between the LOD and the LOQ was reported than this reported value was used in the calculations.

 3973
 3974
 3975
 3976
 3977
 3978
 3979
 3980
 3981
 3982
 3983
 3984
 3985
 3986
 3987

In cases when toxic metabolites were also identified in nectar or pollen, the residue levels were summed with the residue level of the parent and the RUD values were derived from this combined value. It should be noted that in these cases, the highest reported values were always used. Results from subsamples were not considered separately, which may mean that the combined residue originates from different subsamples (but from the same trial). Since metabolites were investigated only for a few parent molecules, this was only done in a limited number of cases; only for thiamethoxam where metabolite CGA322704 (=clothianidin) was summed with parent thiamethoxam. This approach is considered as a worst case approach, especially in cases where residue levels equal with the LOQ were considered in the calculations, while the actually measured levels were below the LOQ (as explained above). Olefine- and the monohydroxy metabolites of imidacloprid were not detected in the available studies, therefore not considered here. Metabolites of clothianidin TZMU and TZNG were also not considered in the RUD calculations, since these molecules are more than three order of magnitude less toxic to bees⁸ than the parent clothianidin. A single value is available for the metabolite CGA322704. In this trial the parent compound was not detected.

 3988
 3989

The compiled RUD values derived from foliar spray applications are reported in Table I1 of this Appendix, while the RUD values derived from seed dressing applications are reported in Table I2.

⁸ Based on the acute oral LD₅₀ values as reported in the DAR of clothianidin (Belgium, 2003)

3990 Regarding seed dressing (Table I2), two sets of data were calculated. One is based on the seed loading
 3991 and the values refer to the theoretical seed dressing rate of 1 mg a.s./seed, and the other set of data is
 3992 based on application rate expressed in applied mass per area. These later values refer to the theoretical
 3993 application rate of 1 kg a.s./hectare. All values in Table I1 refer to the theoretical application rate of 1
 3994 kg a.s./hectare.

3995 The cumulative distributions of the RUD values are visualised in Figures I1 to I6 of this Appendix.

3996
 3997
 3998

Table I1: RUD values referring to an application rate of 1 kg a.s./hectare derived from foliar spray applications

Compound	Crop	RUD (mg/kg) pollen	RUD (mg/kg) nectar	Reference	Data source
acephate + methamidophos	raspberry	-	20.7	Fiedler, 1987	esr
acephate + methamidophos	cherry	-	4.1	Fiedler, 1987	esr
acephate + methamidophos	apple	-	11.3	Fiedler, 1987	esr
acetamiprid	rape	14.8		Rexer, 2010, S10-01355	
acetamiprid	rape	3.4		Rexer, 2010, S10-01355	
azoxystrobin	rape		5.8	Schatz, Wallner, 2009	op
boscalid	rape		1.0	Schatz, Wallner, 2009	op
boscalid	rape		6.4	Schatz, Wallner, 2009	op
boscalid	rape	52.4	2.9	Wallner, 2009	op/esr
captan	apple	9.5		Kubik et al. 2000	esr
carbaryl	alfalfa	0.2	-	Stanger and Winterlin, 1975	esr
carbendazim met.	rape	-	1.3	Schatz, Wallner 2009	op
carbofuran	maize	0.0 ⁽¹⁾	-	Data from DAR	op
carbofuran	alfalfa	10.5	-	Moffett et al., 1986	esr
carbofuran	alfalfa	4.1	-	Moffett et al., 1986	esr
chlorantraniprole	phacelia	43.0	0.6	Dinter et al., 2009	esr
cypermethrin	rape	43.1	-	Fries and Wibran, 1987	esr
difeconazole	apple	0.8	-	Kubik et al., 2000	esr
difeconazole	apple	0.2	-	Skerl et al., 2009	esr
dimethoate	lemons	-	1.4	Waller et al., 1984	esr
dimoxystrobin	rape	-	1.7	Schatz, Wallner 2009	op
endosulfan	mustard	4.2	3.5	Choudhary and Sharma, 2008	esr/op
endosulfan	mustard	4.1	3.1	Choudhary and Sharma, 2009	esr/op
ethylparathion	sunflower	3.4	-	Cox et al., 1986	esr
flufenoxuron	phacelia	18.3	-	Data from DAR	op
flufenoxuron	phacelia	90.5 ⁽²⁾	2.0	Data from DAR	op
flufenoxuron	phacelia	8.0	-	Data from DAR	op
flufenoxuron	grape	1.5	-	Data from DAR	op
fluvalinate	rape	-	12.5	Schatz, Wallner 2009	op
fluvalinate	apple	1.8	-	Haouar et al., 1990	esr
gamma-cyhalothrin	rape	21.3	2.3	Barth et al., 111048020 B	op
iprodione	rape	-	5.7	Schatz, Wallner 2009	op
iprodione	cherry	0.3 ⁽³⁾	-	Kubik et al., 1999	esr
lambda-cyhalothrin	mustard	22.3	11.4	Choudhary and Sharma, 2008	esr/op
lambda-cyhalothrin	mustard	21.5	11.1	Choudhary and Sharma,	esr/op

Compound	Crop	RUD (mg/kg) pollen	RUD (mg/kg) nectar	Reference	Data source
				2009	
metconazol	rape	-	3.7	Schatz, Wallner 2009	op
methyl-parathion	alfalfa	2.0	-	Moffett et al., 1986	esr
methyl-parathion	alfalfa	2.1	-	Moffett et al., 1986	esr
methyl-parathion	alfalfa	11.8	-	Johansen and Kious, 1978	esr
methyl-thiophanate	cherry	1.2	-	Kubik et al., 1999	esr
monocrotofos	alfalfa	0.5	-	Stanger and Winterlin, 1975	esr
PP321 (pyrethroid)	rape	40.0	-	Fries and Wibran, 1988	esr
procymidone	strawberry	0.04	-	Kubik et al., 1992	esr
prothioconazole	rape	-	0.1	Schatz, Wallner	op
prothioconazole	rape	-	2.8	Wallner, 2009	op/esr
spiromesifen	mustard	9.3	6.5	Choudhary and Sharma, 2008	esr/op
spiromesifen	mustard	8.1	6.3	Choudhary and Sharma, 2009	esr/op
Sum TP+C	rape		2.3	Schatz, Wallner 2009	op
teflubenzuron	rape	21.7	0.9	Data from DAR	op
teflubenzuron	rape	149.8	-	Data from DAR	op
thiacloprid	rape	-	0.5	Schatz, Wallner 2009	op
thiacloprid	apple	0.9	-	Skerl et al., 2009	esr
thiophanat-methyl	rape	-	1.0	Schatz, Wallner 2009	op
vinclozolin	cherry	4.1	-	Kubik et al., 1992	esr
Number of data		37	28		
Lowest value		0.0002	0.1429		
Median value		4.2	3.0		
90 th % value		43.0	11.3		
95 th % value		60.0	12.1		
Highest value		149.8	20.7		

Legend: -: no value or no reliable value for RUD calculation

op: EFSA Opinion (EFSA, 2012a)

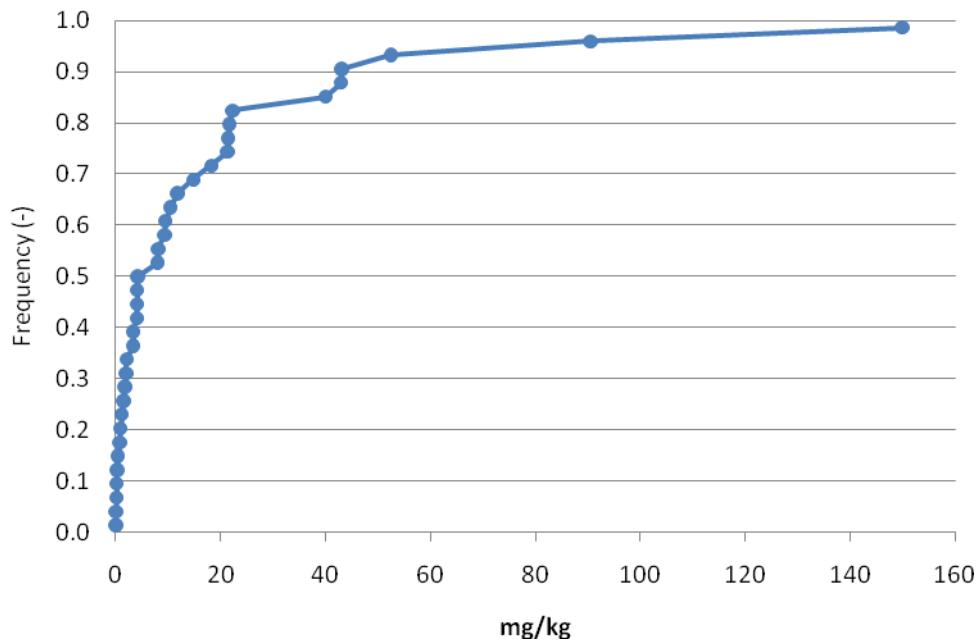
esr: External Scientific Report (EFSA, 2012c)

Notes: ⁽¹⁾: The exact value is 0.0002417 mg/kg

⁽²⁾: The value was considered unrealistic by the study authors based on the fact that the results of the other subsamples of the same trial gave considerable lower residue concentrations. No other reasoning was given, therefore, as a worst case assumption, this value was considered here.

⁽³⁾: 2 applications were performed

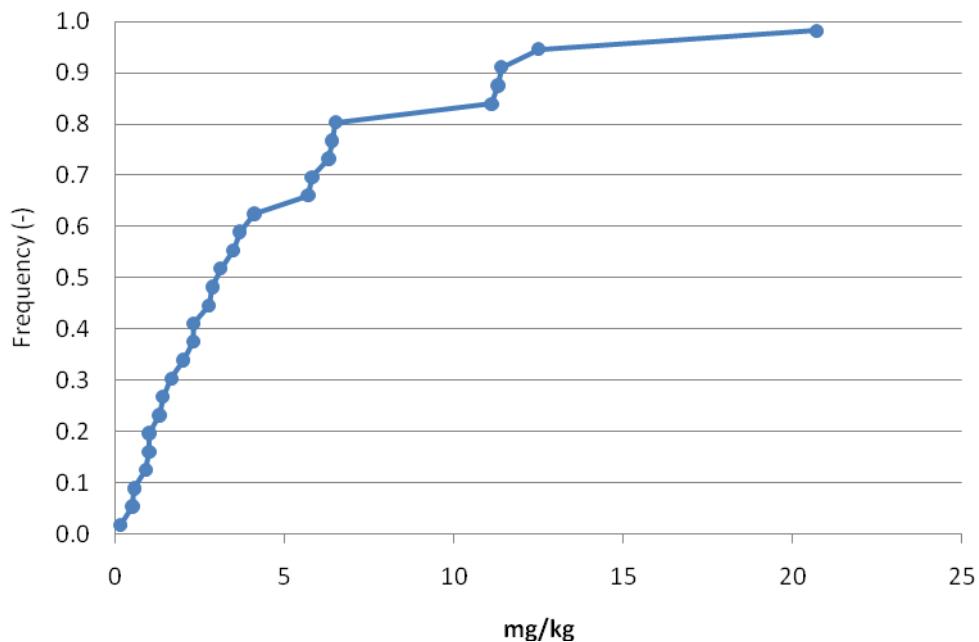
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009


4010 **Table I2:** RUD values referring to an application rate of 1 mg/seed or 1 kg a.s./hectare derived from
4011 seed dressing applications

Compound	Crop	RUD (mg/kg) based on seed dressing rate		RUD (mg/kg) based on application rate		Reference ¹	Data source
		pollen	nectar	pollen	nectar		
CGA322704	rape	-	0.056	-	0.056	L	op
clothianidin	rape	-	-	-	0.111	1	op

Compound	Crop	RUD (mg/kg) based on seed dressing rate		RUD (mg/kg) based on application rate		Reference ¹	Data source
		pollen	nectar	pollen	nectar		
clothianidin	rape	-	-	0.093	0.200	2	op
clothianidin	rape	0.002	0.002	0.020	0.020	7	op
clothianidin	rape	-	-	0.082	0.173	9	op
clothianidin	rape	-	-	0.066	-	10	op
clothianidin	rape	-	-	0.034	0.020	11	op
clothianidin	rape	-	-	0.071	0.088	12a	op
clothianidin	rape	-	-	0.093	0.037	12b	op
clothianidin	sunflower	0.011	-	0.122	-	3	op
clothianidin	sunflower	0.010	-	0.114	-	4	op
clothianidin	maize	-	-	0.083	-	Nikolakis et al., 2009	op
clothianidin	maize	-	-	0.115	-	8	op
clothianidin	maize	-	-	0.054	-	8b	op
clothianidin	maize	0.008	-	-	-	Staedtler T., 2009	st
clothianidin	maize	0.004	-	-	-	Ch. Maus et al, 2005 (E 319 2902-6)	st
clothianidin	maize	0.004	-	-	-	Ch. Maus et al, 2006 (E 319 2902-6)	st
clothianidin	maize	0.003	-	-	-	Ch. Maus et al, 2007 (E 319 2903-7)	st
clothianidin	maize	0.003	-	-	-	Ch. Maus et al, 2007 (E 319 2903-7)	st
clothianidin	rape	0.086	0.074	-	-	Cutler and Scott-Dupree, 2007	esr
clothianidin	rape	-	0.05	-	-	Wallner, 2009	esr
clothianidin	maize	0.007	-	-	-	Kruyape, Hunt et al., 2012	esr
imidacloprid	rape	-	-	0.156	0.017	11	op
imidacloprid	maize	0.006	-	0.056	-	5	op
imidacloprid	maize	0.006	-	0.056	-	6	op
imidacloprid	rape	-	-	0.149	0.149	7	op
imidacloprid	rape	-	-	0.069	0.069	8	op
imidacloprid	rape	-	-	-	0.159	9	op
imidacloprid	sunflower	0.036	-	-	-	Laurent and Rathahao, 2003	esr
imidacloprid	maize	0.002	-	-	-	Bonmatin et al., 2005	esr
imidacloprid	sunflower	0.004	-	-	-	Bonmatin et al., 2005	esr
imidacloprid	sunflower	0.015	-	-	-	Bonmatin et al., 2003	esr

Compound	Crop	RUD (mg/kg) based on seed dressing rate		RUD (mg/kg) based on application rate		Reference ¹	Data source
		pollen	nectar	pollen	nectar		
imidacloprid	maize	0.003	-	-	-	Bonmatin et al., 2003, 2007	esr
thiamethoxam	rape	0.263	0.131	0.162	0.081	F	op
thiamethoxam	sunflower	0.006	-	0.039	-	H	op
thiamethoxam	sunflower	0.013	--	0.145	-	I	op
thiamethoxam	rape	-	-	0.242	-	Hargreaves N., 2007 (T003253-05-REG)	st
thiamethoxam	maize	0.002	-	-	-	Kruype et al., 2012	esr
thiamethoxam	maize	0.013	-	-	-	AFSSA 2007	esr
thiamethoxam + CGA322704	rape	0.2875	-	0.148	-	M	op
thiamethoxam + CGA322705	rape	0.05	0.005	0.033	0.032	O	op
thiamethoxam + CGA322706	maize	0.022	-	0.213	-	Hecht-Rost S., 2007 (20051149/F1-BZEU)	st
thiamethoxam + CGA322707	maize	0.005	-	0.047	-	Hecht-Rost S., 2007 (20051149/F1-BZEU)	
thiamethoxam + CGA322708	maize	0.015	-	0.155	-	Hecht-Rost S., 2007 (20051149/F2-BZEU)	st
thiamethoxam + CGA322709	maize	0.012	-	0.130	-	Hecht-Rost S., 2007 (20051149/F2-BZEU)	
thiamethoxam + CGA322710	maize	-	-	0.079	-	Hargreaves N., 2007 (T003256-05-REG)	st
thiamethoxam + CGA322711	maize	-	-	0.045	-	Hargreaves N., 2007 (T003256-05-REG)	st
thiamethoxam + CGA322712	rape	-	-	0.574	-	Hecht-Rost S., 2007 (20051040/F2-BZEU)	st
Number of data		28	6	30	14		
Lowest value		0.0020	0.0024	0.0201	0.0166		
Median value		0.0077	0.0528	0.0879	0.0751		
90 th % value		0.0608	0.1026	0.1667	0.1687		
95 th % value		0.2007	0.1169	0.2288	0.1822		
Highest value		0.2875	0.1313	0.5739	0.2000		


4012 Legend: -: no value or no reliable value for RUD calculation
 4013 op: EFSA Opinion (EFSA, 2012a)
 4014 esr: External Scientific Report (EFSA, 2012c)
 4015 st: EFSA statement (EFSA, 2012d)
 4016
 4017 Note: ⁽¹⁾: Where a letter or figure appears in the column, see for reference in the data source
 4018
 4019
 4020
 4021
 4022

4023

4024 **Figure I1:** Cumulative frequency distribution of peak RUD values derived from the application rate
 4025 (mass/area) for pollen after spray applications. RUD values refer to application rate of 1 kg/hectare.

4026

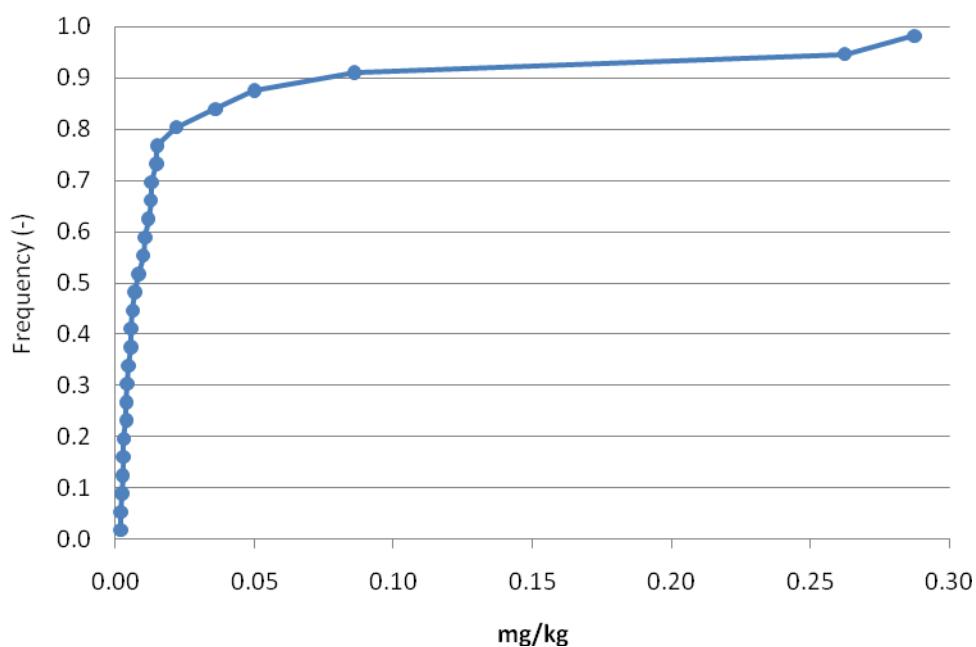
4027

4028 **Figure I2:** Cumulative frequency distribution of peak RUD values derived from the application rate
 4029 (mass/area) for nectar after spray applications. RUD values refer to application rate of 1 kg/hectare.

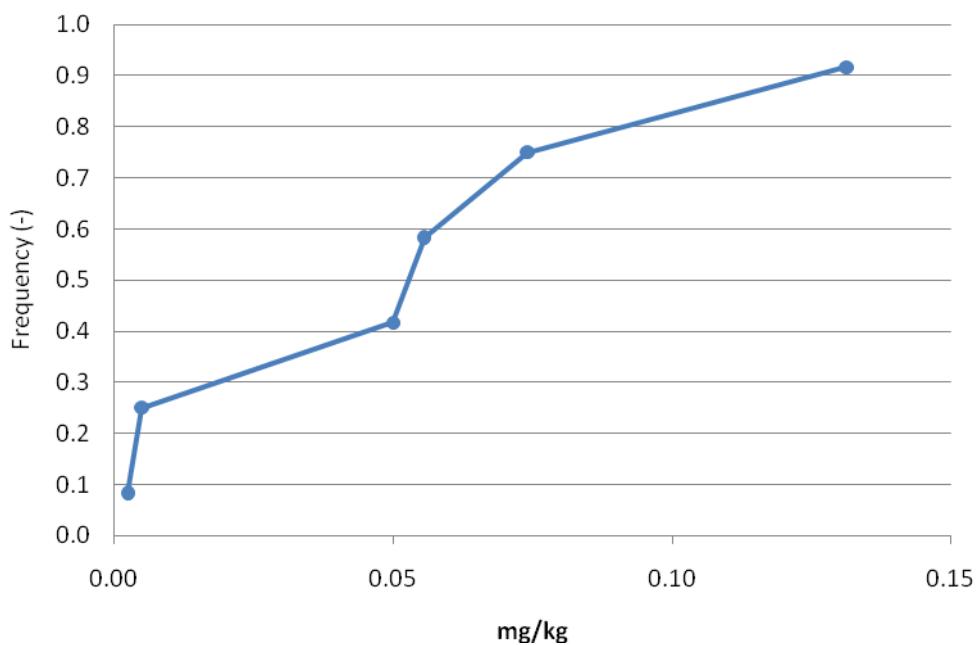
4030

4031

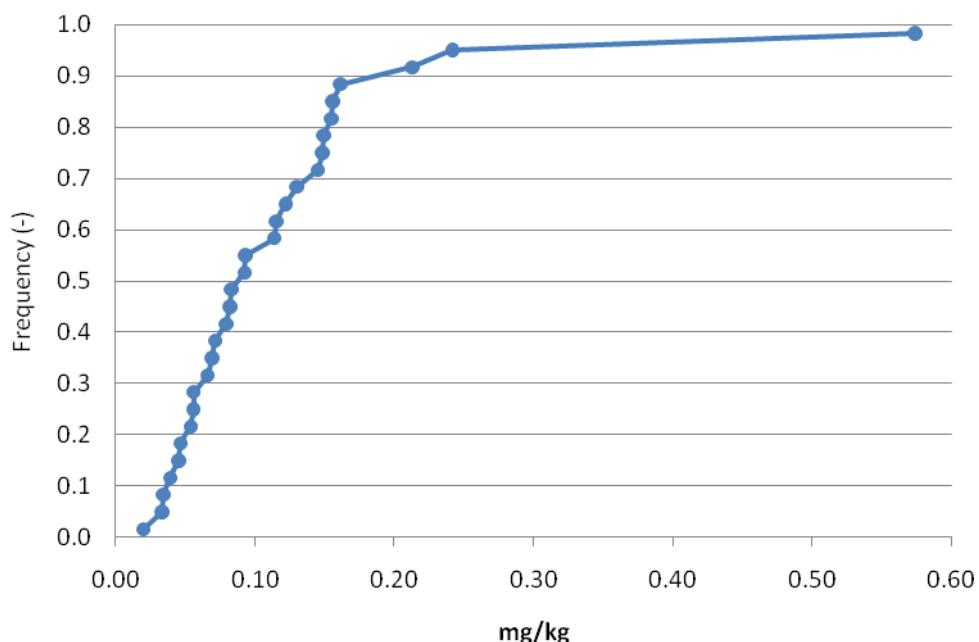
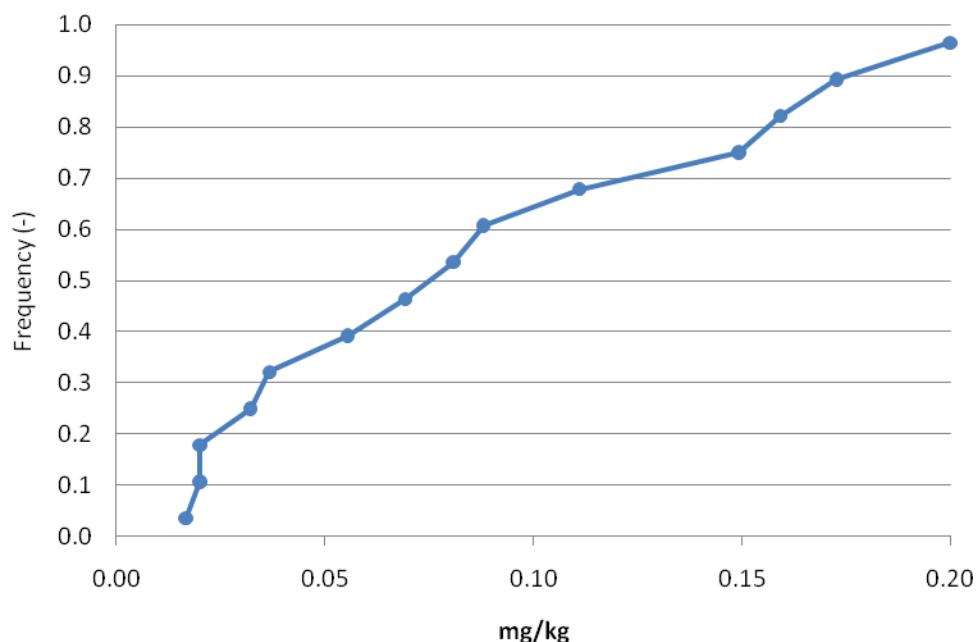
4032


4033

4034


4035

4036



4037

 4038
 4039
 4040
 4041

Figure I3: Cumulative frequency distribution of peak RUD values derived from the seed loading rate for pollen after seed applications. RUD values refer to application rate of 1 mg/seed.

 4042
 4043
 4044
 4045
 4046
 4047
 4048
 4049
 4050
 4051
 4052

Figure I4: Cumulative frequency distribution of peak RUD values derived from the seed loading rate for nectar after seed applications. RUD values refer to application rate of 1 mg/seed.

4053
 4054

 4055
 4056 **Figure I5:** Cumulative frequency distribution of peak RUD values derived from the application rate
 4057 (mass/area) for pollen after seed applications. RUD values refer to application rate of 1 kg/hectare.
 4058
 4059
 4060

 4061
 4062 **Figure I6:** Cumulative frequency distribution of peak RUD values derived from the application rate
 4063 (mass/area) for nectar after seed applications. RUD values refer to application rate of 1 kg/hectare.
 4064
 4065
 4066
 4067

4068
4069
4070

**J. PROTOCOL FOR PERFORMING FIELD STUDIES TO ASSESS A CERTAIN PERCENTILE OF THE
CONCENTRATION IN POLLEN AND NECTAR IN A CERTAIN TYPE OF PLANTS IN THE AREA OF USE OF
THE SUBSTANCE.**

4071
4072 In a number of the exposure flow charts there is a higher-tier option to assess the concentration in
4073 nectar and pollen under realistic field conditions. This is the case for the flow charts:
4074 --- the treated crop after spray applications, seed treatments or granule applications (Figures 2 and 9)
4075 --- permanent crops in the year after spray applications or granule applications (Figure 6)
4076 --- succeeding annual crops after spray application, seed treatments or granule applications in the
4077 treated crop (Figure 7).

4078
4079 The aim of such experiments is to assess a certain spatial percentile of the peak concentration in nectar
4080 and pollen for the area of use of a substance for a certain use of application (e.g. spraying of a dosage
4081 of 0.5 kg/ha in cherries two weeks before flowering). The procedure is to measure these
4082 concentrations at a number of locations which is the most direct assessment of these concentration that
4083 is possible.

4084 In view of time limitations we are unable to provide guidance at a very detailed level. Therefore we
4085 recommend to use the principles provided in earlier guidance documents on related subjects (DG
4086 Agriculture, 1997; OECD, 2007, 2009; DG SANCO, 2009, 2011) keeping of course the aim of the
4087 study in mind.

4088
4089 DG SANCO (2009) proposes the following residue definition for monitoring and risk assessment for
4090 honey: the sum of parent and all metabolites included in the residue definition for monitoring in plants
4091 and animal products. Since not much experience has been gained until now, it is proposed to adopt this
4092 proposal. The sensitivity (i.e. limit of quantification and detection) of the analytical methods that are
4093 used in the residue studies should be checked in order to ensure that they are low enough to detect
4094 residue levels that exert toxic effects to honeybees.

4095
4096 Sampling times depend on the purpose of the study. In case of spray or granule applications before
4097 flowering of the plant, sampling can start of course only after flowering has started. In case of spray or
4098 granule applications during flowering, sampling has to start one day before application of the
4099 substance and has to be performed immediately after application and 1, 3, 6 and 10 days after
4100 application. In case of measurements in permanent crops one year after application or in succeeding
4101 annual crops or in case of measurements in the treated crop after seed treatments, sampling has to be
4102 equally distributed over the flowering period because it is a priori unknown when the highest
4103 concentrations will occur.

4104
4105 The selection of the locations and the number of locations has to be tailored to the purpose of the
4106 study, i.e. to assess a certain spatial percentile in the area of use of the substance. In general the
4107 locations should be distributed over the area of use. The number of locations should ensure that the
4108 required percentile is assessed with enough certainty and this should be demonstrated with a statistical
4109 analysis. E.g. in case of a 90th percentile we propose to perform studies at least five randomly selected
4110 locations in the area of use of the substance and to derive the 90th percentile from the frequency
4111 distribution of this sample population (the highest of five ranked values is the 90th percentile). The
4112 statistical analysis should assess the confidence interval of the required spatial percentile. The
4113 required certainty is of course also related to the margin of safety that is available in this tier in the
4114 flow chart. E.g. if the Regulatory Acceptable Concentration (RAC) in nectar is 1.0 mg/kg and
4115 measurements at five locations distributed over the area of use (perform to assess a 90th percentile)
4116 show nectar concentrations of 0.01, 0.03, 0.05, 0.07 and 0.09 mg/kg, then the details of the statistical
4117 analysis will hardly matter. However if the measurements give 0.1, 0.3, 0.5, 0.7 and 0.9 mg/kg, then
4118 these details will of course matter. So for wide safety margins, a large uncertainty in the spatial
4119 percentile may be no problem whereas this uncertainty needs to be analysed in detail for small safety
4120 margins.

4121

4122 This guidance refers to concentrations in nectar and pollen for the different types of plants. As
4123 described in Section 3.1.6, this is based on a conservative approach not considering the dilution of
4124 these concentrations in the hives. In view of our recommendation to include this dilution in the
4125 exposure assessment in the foreseeable future, notifiers may consider to limit measurements not only
4126 to the concentrations in the plants but to include also measurements in hives located at the edge of
4127 treated fields.
4128

4129

4130 **K. ASSESSMENT OF SPRAY DRIFT AND DUST DRIFT DEPOSITION ONTO FIELD MARGINS AND**
 4131 **ADJACENT FIELDS**

4132 **Introduction**

4133 In this Guidance Document deposition of sprays and dust outside the treated field (field margins or
 4135 adjacent crops) has to be assessed at several places. This appendix describes how this should be done.

4136

4137 Based on EFSA (2004) we use the following terminology:

- 4138 - drift is the process by which liquid or solid particles are carried out of the treated area
- 4139 by wind or the air stream of the application equipment,
- 4140 - spray drift is drift of liquid particles applied via a spray boom,
- 4141 - dust drift is drift of solid particles released during non-spray applications (seed treatments or
 4142 granules).

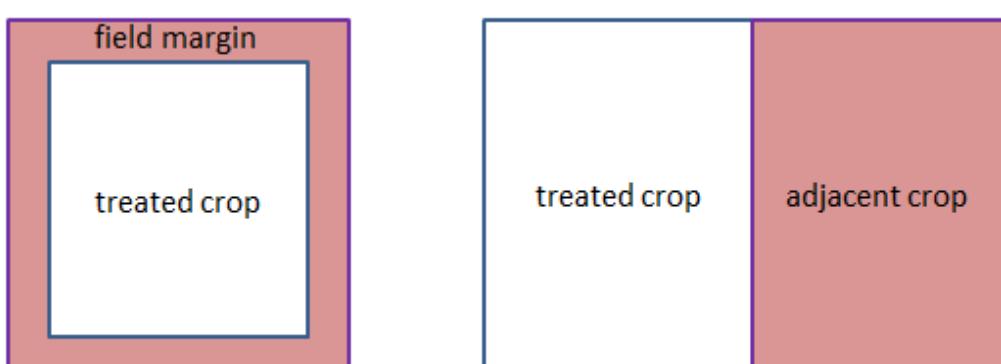
4143

4144 The target of the exposure assessment for the field margin is the average deposition onto attractive
 4145 plants in the whole field margin of a treated field because there are a priori no reasons to assume that
 4146 foragers from a hive at the edge of the treated field would preferably forage more on contaminated
 4147 parts of the field margin than on non-contaminated parts (e.g. because they were upwind during
 4148 application). Similarly the target for the adjacent crop is the average deposition onto the whole
 4149 adjacent crop field because there are a priori no reasons to assume that foragers from a hive at the edge
 4150 of the treated field would preferably forage more on the contaminated strip of the adjacent crop that is
 4151 closest to the treated field.

4152

4153 Both spray and dust drift deposition decreases with the distance from the treated field. So the
 4154 downwind width of the margin or the adjacent field will influence the average deposition. We propose
 4155 tentatively a width of 2 m for the field margin and of 50 m for the adjacent field and consider these to
 4156 be conservative values. We recommend to underpin or refine these 2 and 50 m by geostatistical
 4157 analyses.

4158


4159 We use the geometry as shown in Figure K1 as a conceptual model for the effect of the wind angle on
 4160 the average deposition: field margins will usually surround the whole field and an adjacent crop will
 4161 usually be only on one side of the treated field. We recommend to perform geostatistical analyses to
 4162 underpin or refine this simplified geometry.

4163

4164

4165

4166

4167

4168

4169

4170
4171 **Figure K1:** Simplified geometries of (left) a combination of treated crop and a field margin and (right)
4172 a combination of a treated crop and an adjacent crop.
4173

4174 In the EU assessment of the spray drift deposition onto field margins for non-target terrestrial
4175 organisms, the first 1 and 3 m of the off-field area is ignored for field and fruit crops, respectively.
4176 This is based on risk management considerations. However in our assessment of the spray and dust
4177 drift deposition in the field margin it is not defensible to ignore these first 1 and 3 m because the bees
4178 do not know that they should avoid sampling of these plants.
4179

4180
4181 **Spray drift deposition**
4182

4183 **Field margins**
4184

4185 Assessment of the spray drift deposition onto field margins is needed for the flow chart in Figure 4.
4186 This section describes how this should be done.
4187

4188 Spray drift deposition is strongly influenced by the spray drift equipment, the wind angle and the wind
4189 speed at the time of application (van de Zande et al., 2012). Spray drift deposition measurements are
4190 usually carried out downwind of treated fields along lines whose angle with the wind direction is less
4191 than 30°, so considering only 60° of the in total 360°. Deposition upwind can be considered negligibly
4192 small (180 of the 360°) and deposition onto the remaining 120° downwind will be smaller than for the
4193 directions whose angle with the wind direction is less than 30° (Van de Zande et al., 2012). So the
4194 average deposition on field margins surrounding a rectangular field will be between 1/6 and 1/2 of
4195 deposition measured in directions whose angle with the wind direction is less than 30°. As a best guess
4196 we propose to assume 1/3 (average of 1/6 and 1/2). This best guess needs of course further
4197 underpinning or refinement. Therefore we recommend to perform a modelling study in which the
4198 spray drift deposition onto field margins is simulated as a function of a stochastic wind angle and a
4199 stochastic wind speed from which the 90th percentile spray deposition case can be derived (see van der
4200 Zande et al., 2012, for an example of such a study for spray deposition on surface water). This
4201 modelling study should also consider the effect of repeated applications because these probably
4202 influence the assessment of the 90th percentile case (van der Zande et al., 2012).
4203

4204 Candolfi et al. (2001) recommended to use spray drift tables by BBA (2000) for spray deposition on
4205 field margins. These tables give deposition percentages as a function of distance from the treated field
4206 for field crops, fruit crops, grapevine, hops and vegetables. There are tables for a single application
4207 and 2-3-4-5-6-7 applications. The deposition percentages decrease with the number of applications.
4208 Van de Zande et al. (2012) made stochastic calculations on spray drift deposition onto surface water
4209 considering a stochastic wind angle and a stochastic wind speed. They showed that a decrease of the
4210 90th percentile deposition with the number of applications will only occur if the concentrations of the
4211 different applications sum up. They showed furthermore that if these concentrations do not sum up
4212 (because of rapid dissipation of the substance), the deposition percentage should increase with the
4213 number of applications because more applications give more possibilities of obtaining unfavourable
4214 meteorological conditions with respect to spray drift. Concentrations in nectar and pollen in plants
4215 show usually rapid dissipation after spray applications (EFSA, 2012a). So the decreasing drift
4216 deposition with increasing number of applications as recommended by Candolfi et al. (2001) seems
4217 not defensible; instead the drift deposition should increase with the number of applications.
4218

4219 Furthermore the drift deposition tables from BBA (2000) were based only on measurements in
4220 Germany and there have been significant developments in the field of harmonisation of drift
4221 deposition in the EU (Huijsmans & van de Zande, 2011). Therefore we recommend to improve the
4222 estimates of deposition of spray drift by analysing all spray drift data available within the EU. In this
4223 analysis also the effect should be considered that the plants in field margins and of the adjacent crop

4224 may catch more drift than bare soil (most drift deposition measurements are carried out on bare soil or
4225 in a short crop).

4226
4227 In the absence of better alternatives, we propose for the time being the following procedure for default
4228 conservative spray drift depositions onto the field margins in boxes 1 and 3 of Figure 4: both for single
4229 and repeated applications take the spray drift deposition figures by Candolfi et al. (2001) for a single
4230 application at distance of 1 m for downward spray applications (in field crops) and at a distance of 3 m
4231 for sideward and upward applications (in fruit crops and grapevine) and multiply these figures with
4232 1/3 to account for the effect of the wind angle on the deposition. This gives 0.9% for field crops, 10%
4233 for early fruit, 5% for late fruit, 0.9% for early grapevine, 3% for late grapevine, and 6% for hops.
4234 Given all the complications described above, we are at this moment unable to assess whether this
4235 interim solution is on the conservative or optimistic side for single or repeated applications but it is our
4236 best guess at this moment.

4237
4238
4239 **Adjacent crops**

4240
4241 Assessment of the spray drift deposition onto adjacent crops is needed for the flow chart in Figure 5.
4242 This section describes how this should be done.

4243
4244 For the adjacent crops the geometry in Figure K1 shows that the effect of the wind angle leads to
4245 another type of statistics. For the field margin, the wind angle has no effect on the average deposition
4246 because the field margin surrounds the whole field so the angle does not matter. However, if the
4247 adjacent crop is upwind during application, there is no deposition at all. If this crop is downwind, then
4248 the wind angle may vary 180° whereas the measurements are usually carried out for the 60° with the
4249 highest deposition (angle with wind direction less than 30°; see previous section). So for the adjacent
4250 crop the wind angle leads to a probability density function of deposition values (of which 50% are
4251 zero values considering only a single application). So if we use such measurements as a basis for the
4252 average drift deposition on the whole adjacent field, we have to be aware that these figures represent
4253 only the highest 60° of the 360° that are possible, so the highest 16%, ie above the 84th percentile when
4254 considering the wind angle as the only stochastic variable.

4255
4256 To assess the exposure of the 90th percentile hive, a stochastic modelling study is needed considering a
4257 stochastic wind angle and a stochastic wind speed similar to the approach described for the field
4258 margins. As indicated in Section 3.2.6, the 90th percentile hive may be linked to a 50th percentile spray
4259 drift case (e.g. if a relevant attractive crop is present only at the border of 20% of treated fields). So the
4260 modelling study has to calculate the full frequency distribution and a table should be generated from
4261 this from which the desired percentile spray drift deposition can be derived. The modelling study has
4262 to include repeated applications because these influence such frequency distributions (Van de Zande et
4263 al., 2012).

4264
4265 Box 1, 2 and 7 of the flow chart for adjacent crops (Figure 5) need default conservative spray drift
4266 deposition figures. In the absence of better information, we propose to use for the time being both for
4267 single and repeated applications the spray drift deposition figures by Candolfi et al. (2001) for a single
4268 application. For adjacent fields thus the average deposition over the first 50 m was to be derived from
4269 these figures. This resulted in 0.3% for field crops, 7% for early fruit, 3% for late fruit, 0.5% for early
4270 grapevine, 1.4% for late grapevine and 4% for hops.

4271
4272 As for the field margins, we are at this moment unable to assess whether this proposed interim solution
4273 is on the conservative side or on the optimistic side. However, the deposition is likely to be much less
4274 than that for the field margins because (i) the average over 50 m is less than the deposition onto a 2-m
4275 wide field margin and because (ii) only a fraction of the treated fields has downwind adjacent
4276 attractive crops at the time of application. So the spray drift assessment for the treated crop is much
4277 less critical than that for the field margins (in the short term; in the long term it may be the opposite as
4278 described in See Section 3.2.8).

4279

4280 **Dust drift deposition**

4281

4282 **Field margins**

4283

4284 **Seed treatments**

4285

4286 Assessment of the dust drift deposition onto field margins is needed for the flow charts in Figures 10
4287 and 11 for the seed treatments. This section describes how this should be done.

4288

4289 The deposition of dust drift is the result of (i) emission and (ii) transport through the air and deposition
4290 onto the plants. So there are two questions to be addressed: (i) which factors influence dust emission
4291 from the application equipment, and (ii) which factors influence dust deposition onto the plants in the
4292 field margins ?

4293

4294 The dust emission is strongly influenced by (i) the sowing equipment, (ii) use of deflectors in case of
4295 pneumatic sowing, (iii) the abrasiveness of the seed coating and the granules as determined in the
4296 Heubach test, (iv) the concentration of active ingredient in the dust released in the Heubach test
4297 (EFSA, 2012a). Mechanical sowing gives much less emission than pneumatic sowing. In case of
4298 pneumatic sowing, use of deflectors decreases the emission strongly. The higher the amount of dust
4299 released in the Heubach test, the higher the emission of dust. The higher the concentration of the
4300 active ingredient in this dust, the higher the emission of the active ingredient.

4301

4302 Dust deposition is strongly influenced by (i) wind angle, (ii) the 'filtering capacity' of the crop. The
4303 effect of the wind angle is obvious: there will be little deposition upwind and much deposition
4304 downwind. The larger the filtering capacity the higher the deposition in the crop will be. The effect of
4305 the wind speed on the deposition is as yet unclear.

4306

4307 The draft SANCO Guidance Document for seed treatments provided the following conservative
4308 default dust deposition (mass of substance per surface area of the field margin expressed as percentage
4309 of the mass of substance applied per surface area of treated field): 7% for maize, 3% for oil seed rape,
4310 4% for cereals and 0.01% for sugar beets.

4311

4312 The above procedure is likely to generate concentrations in nectar and pollen that are higher than the
4313 90th percentile of the specified spatial population (i.e. the hives at the edge of field grown with
4314 attractive crops that are next to and downwind of treated fields) because the wind angle is restricted to
4315 $\pm 30^\circ$ so only 30° of the 180° corresponding to all the downwind possibilities. Therefore we
4316 recommend to perform studies using calibrated physical models in which the dust deposition onto
4317 attractive adjacent crops is simulated as a function of wind speed and wind angle (see EFSA, 2004, for
4318 examples of such model calculations for deposition of dust on surface water). Stochastic simulations
4319 with such models can then be used to obtain a more realistic assessment of the 90th percentile
4320 deposition (e.g. by multiplying the results of the proposed well-defined experiments with an
4321 appropriate factor). See van der Zande et al. (2012) for an example of a similar stochastic simulations
4322 for spray drift deposition on surface water.

4323

4324 In the simulation studies recommended above, also the variation between different Heubach-AI should
4325 be included (if possible) and the overall desired Xth percentile should be assessed considering the
4326 combined effects of variability in the Heubach-AI and wind angle and windspeed because only this
4327 combination will describe exposure of the total spatial population of hives adequately. So the
4328 simplified approach to use only the Heubach-AI value to assess the percentile ([i] in boxes 4 and 5 of
4329 Figure 10, [ii] in box 4 of Figure 11 and [iii] in boxes 6 and 7 of Figure 12) should be seen as a
4330 conservative approach which can be made more realistic when science in this field progresses.

4331

4332

4333

4334 **Granule applications**

4335

4336 Assessment of the dust drift deposition from granule applications onto plants in field margins is
 4337 needed in box 2 of the flow chart in Figure 13. This section describes how this should be done.

4338

4339 Also for the granule applications, the dust emission is strongly influenced by the application
 4340 equipment: a spinning disc gives considerably less emission than a boom spreader (EFSA, 2004).

4341

4342 We propose to base the default conservative dust depositions from granules on simulations by EFSA
 4343 (2004) for worst-case depositions onto surface water. The highest value reported by EFSA (2004) was
 4344 3.2% of the dose (deposition defined as the mass of substance deposited divided by the surface area of
 4345 water and dose defined as mass of substance applied per surface area of treated field). We propose to
 4346 multiply with 10 to account for the filtering capacity of the plants in the field margin. These factors 10
 4347 and 3 are preliminary figures that should be underpinned by further research. So in combination this
 4348 gives that the resulting deposition should be multiplied with 10/3. So we get $3.2 \times 10/3 = 11\%$ for the
 4349 default dust deposition for granules.

4350

4351

 4352 **ADJACENT CROPS**

4353

 4354 **Seed treatments**

4355

4356 Assessment of the dust drift deposition from seed treatments onto adjacent crops is needed in the flow
 4357 chart in Figure 12. This section describes how this should be done.

4358

4359 Based on the measurements of dust deposition as a function of distance to the treated field as shown in
 4360 Figures J3 and J5 of EFSA (2012a), we propose as a conservative assumption that the dust deposition
 4361 declines exponentially with distance to the treated field and that the deposition at 20 m distance is 50%
 4362 lower than at the edge of the treated field. It then can be calculated that the average deposition on a 50
 4363 m wide adjacent field is 48% of the deposition at the edge of the treated field. So we propose to use for
 4364 the conservative dust depositions in box 3 of Figure 12 the figures provided in the draft SANCO
 4365 Guidance Document for seed treatments (7% for maize, 3% for oil seed rape, 4% for cereals and
 4366 0.01% for sugar beets) multiplied with 0.48; this gives 3.4% for maize, 1.4% for oil seed rape, 1.9%
 4367 for cereals, 0.005% for sugar beets and 3.4% for other crops.

4368

4369 These conservative estimates for adjacent fields are higher than those for field margins which is in
 4370 contrast to the spray applications where the deposition in the field margin is expected to be much
 4371 higher than in the adjacent field (over its full width). This difference is caused by the difference in
 4372 decline of deposition with increasing distance to the treated field: this decrease is much sharper for
 4373 spray drift than for dust drift.

4374

4375 Also field measurements on dust deposition are commonly carried out for directions that differ no
 4376 more than 30° from the wind direction. As described in Section 3.2.5, we have eliminated the upwind
 4377 wind directions already in the selection of the Xth percentile in box 6 of Figure 12. So the problem left
 4378 here is to assess how these field measurements should be used. As described before, the target is the
 4379 average concentration over the full width of the adjacent field, so from the field measurements the
 4380 average deposition over 50 m have to be derived. Then there is the problem left that the target is the
 4381 Xth percentile of all downwind adjacent attractive crops and the selected sowing equipment while we
 4382 have already taken the Xth percentile of the Heubach-AI values. So here we have the problem of
 4383 finding a percentile X of a quantity that is a function of two variables ((i) Heubach AI and (ii) the
 4384 combination of wind angle and wind speed) which have each their probability density functions. To
 4385 solve this problem, we need information on the probability density functions of the two variables and
 4386 their interaction which is not readily available. Therefore we propose as a conservative interim
 4387 solution to use simply the measured average deposition over 50 m width of the adjacent field directly.

4388 As indicated in box 7 of Figure 12, this still has to be multiplied with a factor 10 for the catchment
 4389 effect of the crop (this is not considered here).

4390

4391

4392 Granule applications

4393

4394 A conservative default dust drift deposition value for granule applications and adjacent crops is needed
 4395 in the flow chart in Figure 14. This section describes how this is derived.

4396 We propose to base the default conservative dust depositions on the 3.2% derived from EFSA (2004)
 4397 in section C-3.1.2. We propose to multiply with 10 to account for the filtering capacity of the plants in
 4398 the field margin and to multiply with 0.48 get the average deposition onto the first 50 m. So we get $3.2 \times 10 \times 0.48 = 15\%$ for the default dust deposition of granules onto adjacent crops in Figure 14.

4399

4400 Admittedly, an average 15% deposition over a width of 50 m of the adjacent crop seems a very
 4401 conservative value. Therefore we recommend to collect and analyse all available data on dust
 4402 deposition of granules onto plants in adjacent crops in order to reduce this conservative default value.
 4403 A too high conservative default value is of course not a fundamental problem for the risk assessment:
 4404 it will only lead to more higher-tier field experiments and thus to more efforts for notifiers and
 4405 authorities than necessary.

4406

4407

4408

4409 SUMMARY OF CONSERVATIVE DEFAULT DEPOSITION PERCENTAGES

4410

4411

4412 The summary of the conservative default deposition percentages to be used for the different
 4413 combinations of application technique and types of plants in Table K1 shows that the granule
 4414 applications have the highest default values. This reflects the very limited information that was
 4415 available to us for this application technique.

4416

4417

4418 **Table K1:** Conservative default deposition percentages for spray drift and dust drift to be used for the
 4419 different combinations of application technique and types of plants.

	Plants in field margin	Adjacent crop
Spray applications (spray drift)	0.9% for field crops 10% for early fruit 5% for late fruit 0.9% for early grapevine 3% for late grapevine 6% for hops	0.3% for field crops 7% for early fruit 3% for late fruit 0.5% for early grapevine 1.4% for late grapevine 4% for hops
Seed treatments (dust drift)	2.3% for maize 1.0% for oil seed rape 1.3% for cereals 0.003% for sugar beets	3.4% for maize 1.4% for oil seed rape 1.9% for cereals 0.005% for sugar beets
Granule applications (dust drift)	11% for all crops	15% for all crops

4420

4421

4422
 4423
 4424
 4425

L. ASSESSMENT OF THE PERCENTILE OF A SUBPOPULATION THAT CORRESPONDS TO A PRESCRIBED PERCENTILE OF THE TOTAL POPULATION.

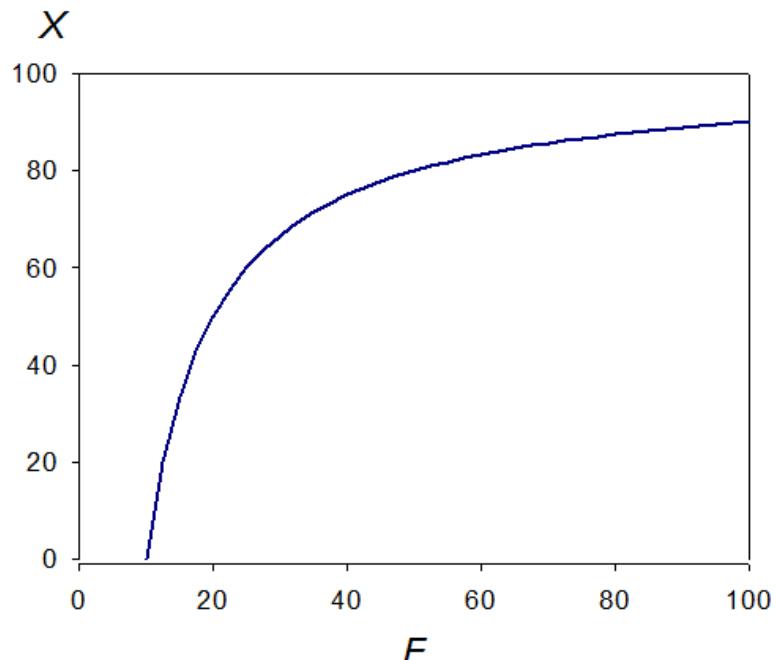
 4426
 4427
 4428
 4429
 4430
 4431
 4432
 4433
 4434
 4435
 4436
 4437
 4438

Let us consider a statistical population of a certain quantity Z . Let us assume that we can divide this population in n subpopulations which are ranked based on their Z values in such a way that all Z values of subpopulation 1 are smaller than those of subpopulation 2, all Z values of subpopulation 2 are smaller than those of subpopulation 3, etc.

Let us assume that we want to know the 90th percentile of Z by sampling only one of these subpopulations (for efficiency reasons). The question is then what percentile of the subpopulation should be assessed to obtain this overall 90th percentile. For example, if the subpopulation covers all values between the 85th and the 95th percentile, then it will be clear that we need the 50th percentile of the subpopulation to obtain the overall 90th percentile. This scaling procedure can be generalised to the following equation:

$$X = 100 \frac{90 - x_{low}}{x_{high} - x_{low}} \quad (\text{Eqn L1})$$

 4439
 4440
 4441
 4442
 4443
 4444
 4445
 4446
 4447
 4448
 4449
 4450


where X is the percentile of the subpopulation corresponding to the overall 90th percentile, x_{low} is the percentile of the total population corresponding with the lowest value of the subpopulation and x_{high} is the percentile of the total population corresponding with the highest value of the subpopulation. So for the above example, $x_{low} = 85$ and $x_{high} = 95$, so $X = 50$ indeed.

Often the 90th percentile will be located in the subpopulation with the highest Z values. For such cases it is interesting to write X as a function of the percentage of Z values that is present in this subpopulation which is further called F . So F is defined as $F = 100 - x_{low}$ and $x_{high} = 100$. This gives the following expression for X :

$$X = 100 \frac{F - 10}{F} \quad (\text{Eqn L2})$$

 4451
 4452
 4453
 4454
 4455
 4456
 4457
 4458
 4459
 4460

Figure L1 shows that X increases with F and that it becomes of course 90 if F approaches 100 (so the subpopulation becomes the full population). If F is smaller than 10%, then X has no meaningful value anymore because the subpopulation consists of less than 10% of the values of Z , so the 90th percentile is then determined by another subpopulation. Figure L1 can be illustrated by considering the easy case of $F = 20$, so the subpopulation of the highest values is 20% of the total population. In such case the Eqn L2 and Figure L1 give $X = 50$ which is the expected value: if only the highest 20% of all values are considered, then the 50th percentile of these highest 20% should give the overall 90th percentile.

4461
4462
4463 **Figure L1:** The relationship between X and F as described by Eqn L2.
4464
4465

4466

4467 **M. CHECKLISTS FOR EVALUATING LABORATORY STUDIES**

4468 **Laboratory tests for honey bees (Adult)**

4469 **Acute oral and contact toxicity test**

4470 Acute oral and contact toxicity of the test compounds to adult honey worker bees are assessed in
4471 laboratory following the OECD guidelines 213 and 214 or the EPPO 1/170 (4). In these tests, bees are
4472 exposed to a single dose of the compound by feeding a contaminated sugar solution or by topical
4473 application. A suitable range and number of concentration should be used to provide a regression line
4474 and calculate the LD₅₀. It is important that the OECD guidelines are complied with in detail and the
4475 following improvements from EFSA Opinion (2012a) are considered:

4476 • the observation period have to be always 96 hours and extended if the mortality continues to
4477 rise until the test is valid (control mortality $\leq 10\%$);

4478 • all sub-lethal effects have to be reported in quantitative way. Any symptoms of intoxication
4479 observed in bees during laboratory toxicological tests are recording together with their
4480 duration, time of onset, severity and number of affected bees at each dosage level. Examples
4481 of neurotoxicity symptoms are: uncoordinated movement, trembling, tumbling, hypo/hyper-
4482 responsiveness and hypo/hyperactivity, abnormal movements of legs or wings. Specific tests
4483 (PER test – Proboscis extension reflex) in laboratory or in field (homing ability - see section
4484 of Gerard for field study) have to be conducted in the Higher Tier in case of neurotoxic
4485 effects.

4486 • the following variables need to be controlled and always noted: the age of the individuals
4487 tested, the nutritional and health status of colonies from which the bees were collected for
4488 testing, the subspecies of the bees, the temperature and the humidity during the test.

4489 • the endpoint from this studies should be: LD50 contact ($\mu\text{g}/\text{bees}$) and LD50 oral ($\mu\text{g}/\text{bees}$) at
4490 48h.

4491

4492 **Chronic oral toxicity test**

4493 In EFSA Opinion (2012a) it was highlighted that the single acute exposure scenarios are not
4494 representative of the exposure of foragers or in-hive honey bees for compounds which may persist for
4495 more than a single day in the environment, or in nectar and/or pollen returned to the hive. Because
4496 there is insufficient evidence that toxicity following extended exposures can be reliably predicted from
4497 acute oral LD50 data, a chronic oral toxicity test is recommended. This is performed by conducting a
4498 toxicity test in which newly eclosed worker honey bees are fed *at libitum* with treated sucrose for 10
4499 days.

4500 Oral extended exposure studies should be undertaken for both the active ingredient and the product
4501 and any observed sub-lethal effects should be reported as for acute toxicity test.

4502 The chronic oral toxicity test should be conducted in compliance with a protocol for extending
4503 exposure adapted from Decourtye et al (2005), Suchail et al. (2001) and Thompson (p.c.).

4504 *Experimental conditions:* Adult honey bees or young emerged honeybees are used to run the test. They
4505 should be from a single strain in order to provide a similar status regarding origin and healthy. At least
4506 10 bees are kept in holding cages with a syrup feeder. During the test, the cages are placed in

4507 incubators or in a controlled room at $25 \pm 2^\circ\text{C}$ and with Relative Humidity higher than 50%. For each
4508 test product, five concentrations are selected so as to range from 10 to greater than 100% mortality
4509 with no more than 2 fold dilutions between doses. A preliminary test can be carried out with a
4510 concentration range of factor 10 in order to determine the choice of the appropriate concentrations.

4511 A control with bees fed with only sugar solution is included in each test. Test solutions should be
4512 stored in the fridge at $0-10^\circ\text{C}$ until required for dosing. From three to five replicates of the cages with
4513 each test dose are used to constitute a test. Three replicates of the test (3x3) can be performed during
4514 different periods of the bee season.

4515 *Mode of treatment:* Immediately prior to treatment each group of bees in its cage is anaesthetised by
4516 placing the cage into a beaker filled with carbon dioxide gas. Any bees which were visibly damaged
4517 are excluded from the study. The bees will be anaesthetised with carbon dioxide immediately before
4518 dosing and gently tipped out onto filter paper and counted into the cage (drones were discarded). Each
4519 group of 10-20 newly eclosed worker bees is offered a known weight of a given concentration (or
4520 controls as above) for 10 days, the dose being measured into the feeder each day (1-2 ml per cage).
4521 Every day the feeders are removed and weighed and replaced with fresh feed so that bees has
4522 continuous access to the treated feed throughout the study. The dose consumed is determined by
4523 comparison of the weight of the dose remaining in the feeders with the initial weight of the feeders and
4524 weight of a known volume of the test solutions. The individual daily consumption was corrected by
4525 the surviving bees.

4526 *Data assessment and reporting:* Observations of mortality and behaviour are recorded at daily
4527 intervals up to 10 days. The data is used to determine both the LC50 (mg/kg) and NOEC (mg/kg) and
4528 to investigate whether there are any indications of cumulative effects according to Chapter 4.1. Test is
4529 valid if the mortality in the control group is less than 15%.

4530

4531 **Laboratory tests for honey bees (Brood)**

4532 **Aupinel test**

4533 A honey bee larvae toxicity test is performed in the First Tier for any substance that can reach the hive
4534 via pollen or nectar. A test method based on the *in vitro* rearing method of honey bee larvae (Aupinel
4535 et al. 2005) is proposed for brood risk assessment following the Aupinel methodology (Aupinel et al.
4536 2007). This test is run under laboratory conditions and permits to control exactly individual exposure
4537 providing quantitative oral toxicity data. It is designed for *in vitro* treatments of active substances or
4538 formulated pesticides. Larvae at the L1 stage are fed with standardized amounts of artificial diet. Test
4539 products are incorporated into the food at the different concentrations within an appropriate range in
4540 order to compute the end points: LD50, LC50, NOAEL and NOAEC. In Aupinel protocol, the
4541 reference product is dimethoate but a more relevant water-soluble active substance is recommended
4542 (EFSA, 2012a). This method also allows assessing several sublethal effects such as prepupal weight,
4543 duration of development, adult morphology and behavior. The method can be used either to study
4544 acute effects by applying contaminated diet to one particular instar, or to investigate chronic effects by
4545 each day providing the larvae with the test substance. The chronic dosing study is more relevant to the
4546 exposure of larvae in the hive than a single acute dose and this test design is recommended for
4547 pesticide risk assessment. This method has already been ring-tested (Aupinel et al, 2009) by 7
4548 laboratories from 6 countries and validated: < 15% mortality in the control at D6 and successful
4549 workers adults eclosion in at least the control group. Currently, it is proposed for a validation at
4550 OECD. The endpoints of this study should be: LC50 larvae (mg/kg), NOEL (mg/kg).

4551 *Rearing procedure:* The rearing method is described in details in Aupinel et al. (2005) or in the
4552 BeeBook (in preparation) and summarized in Figure M1. Larvae have to be collected in an healthy
4553 colony with no visible clinical signs. No treatment has to be applied in the hive within the 4 weeks

4554 preceding the beginning of experiments and the test should be carried out with summer larvae. The
4555 experimental unit is a 48 larvae plate. From a comb the young larvae are transferred into individual
4556 rearing cells with a grafting tool. The larvae are fed once a day (except day 2) with a micropipette.
4557 Diet composition, temperature and humidity during the test vary according to larvae age (Figure M1,
4558 Table M1). Before adult emergence (at D15), each plate is transferred into an emergence box with *ad*
4559 *libitum* food and checked for longevity.

4560 *Mode of treatment:* For each tested product, 5 concentrations (1 plate/concentration) should be used in
4561 order to provide a regression line and the LC50. A control (1 plate) and a reference treatment with
4562 dimethoate or a more relevant water-soluble active substance (1 plate) must be included.

4563 One test has a minimum of three replicates with one different larvae origin and new tested solutions
4564 for each replicate. The test pesticide is preferably dissolved in water. If it is not soluble in water at the
4565 experimental concentrations, it is possible to use another solvent such as acetone. In that case, it is
4566 necessary to prepare a second control feed with diet containing the solvent at the same concentration
4567 as the treated samples. In the chronic toxicity test, larvae are treated every day (except D2) with the
4568 diets containing the preparation to test at a constant concentration.

4569 When dimethoate is used as toxic reference it should be mixed with the three diets at the constant
4570 concentration of 20,000 µg/kg diet. The treatment procedures are described in details in Aupinel et al.
4571 (2005) or the BeeBook (in preparation).

4572 *Data assessment and results:* Larva mortality is checked every day and systematically removed for
4573 sanitary reasons. The larval mortality rate is noted at D7 (immobile larva or a larva which does not
4574 react to the contact) and the pupal mortality is noted at D22 (non emerged bees).

4575 The test is considered valid if: in control samples, larval mortality (number of dead larvae/48), pupal
4576 mortality (number of dead pupae at D22/number of alive pre pupae at D7) and adult mortality (number
4577 of dead emerged bees at D22/total number of emerged bees) are lower or equal to 15% (for the
4578 assessment of a LD50 or a LC50) or 20% (for the assessment of a NOAEL or a NOAEL).

4579 In case dimethoate is used as standard toxic, the mortality rate must be higher than or equal to 50% at
4580 D7. The calculated LD50 and LC50 must be in each case between the two extreme tested doses.

4581 LC50 is calculated from percentage of mortalities after an adjustment according to the Abbott formula.
4582 The NOAEL and NOAEC are the highest dose and concentration respectively, which do not induce
4583 mortality significantly higher than that observed in controls. This analysis will be done by using a
4584 Chi2 test.

4585

4586

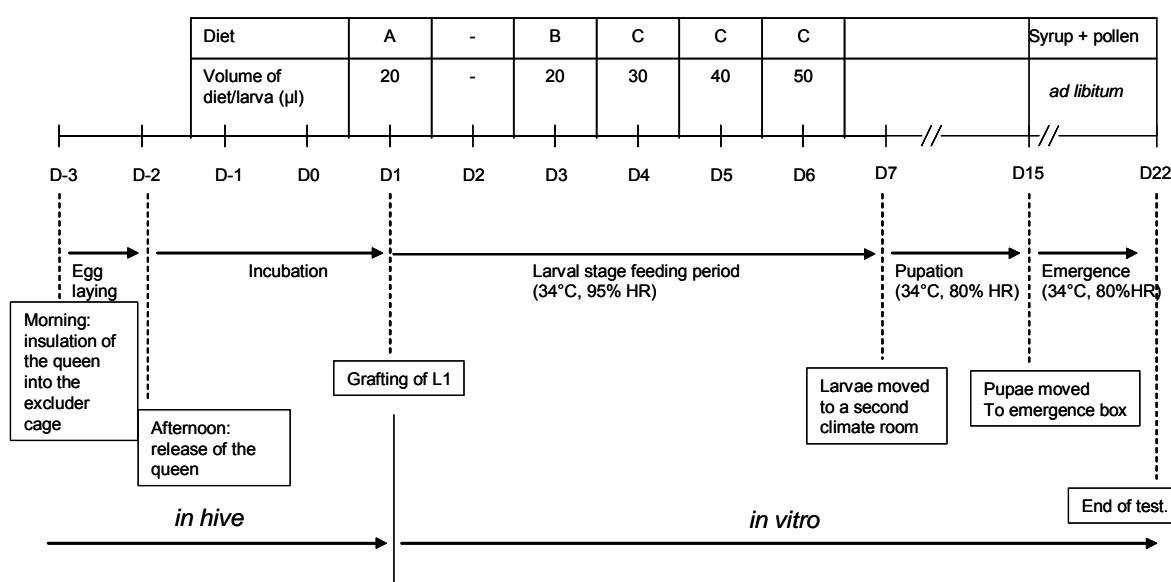
4587

4588

4589

4590

4591


4592

4593

4594

4595

4596

4605

 4606 **Figure M1:** Steps of an *in vitro* test

4607

 4607 **Table M1:** Composition of the diets provided to larvae (Aupinel et al, 2005)

Diet	A	B	C
Royal jelly (%)	50	50	50
Yeast extract (%)	1.0	1.5	2.0
D glucose (%)	6.0	7.5	9.0
D fructose (%)	6.0	7.5	9.0
Dry matter (%)	29.6	33.1	36.6

4608

4609

4610

Oomen tests (Brood)

 4611
 4612
 4613
 4614
 4615
 4616
 4617
 4618

The Oomen test is designed for investigation of effects following oral exposure especially of oral exposure of bee brood. The endpoints are the mortality at 7 days and just prior to emergence, together with assessments of brood deformities in pupae extracted just prior to emergence. This test may be run under semi-field or field conditions and permits to assess the effects after exposure to defined concentration of active substance in the sugar solution fed to bee colonies. It is described in the laboratory section as feeding of defined concentrations and e.g. a dose-response testing is possible; thus it is considered as an intermediate test between first and Higher Tier testing. Brood rearing and brood care is conducted by the nurse bees of the bee colony. The test may be designed for formulated

4619 pesticides but may also be used for of active substances. Presumably all larval stages and also in hive
4620 bees are exposed to the test solution, as stores – especially nectar stores- should be reduced to a
4621 minimum while ensuring the colony has enough stores to just prevent starvation. Due to in-hive
4622 feeding of the sugar solution, even lower nectar/honey stores need to remain in the colonies compared
4623 to semi-field tests with bee attractive crops, as bees may access the food also during rainy or cold
4624 weather conditions.

4625 *Test procedure:* Set-up in semi-field conditions should in general follow EPPO 170. In field
4626 conditions, study should be conducted in an environment with negligible natural nectar/honey flow.
4627 Colonies in field conditions should be of natural size (full size colonies) according to season (e.g. in
4628 early spring at least 10.000- 15.000 bees) and the region. Colonies in semi-field should be adapted to
4629 semi-field conditions (smaller colonies, see Appendix N on semi-field tests for details) but additional
4630 pollen feeding in the hive or in the tunnel may be necessary to prevent starvation of pollen. Further
4631 standard measurements which are necessary in semi-field or field tests with colonies, e.g. diagnose of
4632 bee diseases and status of colony health, assessment of colony development and food stores in hives,
4633 assessment of weather conditions should be conducted as described in the EPPO Guidelines and in the
4634 semi-field and field section of this document. As a minimum, 3 replicates per treatment concentration
4635 are recommended.

4636 *Mode of treatment:* The test solution is made of sucrose sirup mixed with the test item and fed daily to
4637 the bees, as toxic standard Fenoxy carb is recommended. Feeding sucrose solution during the exposure
4638 period should be extended from a single dose feed on one day to feeding contaminated solution daily
4639 for 9 days to ensure that all larval stages are exposed. Usually test products are fed at a concentration
4640 recommended for a high-volume use.

4641 *Data assessment and results:* The duration of the study should be at least 28 days after start of feeding
4642 (DAF) and first assessment of different brood stages to ensure all larval stages are assessed and that
4643 new eggs are laid into the cells after successful hatch of one brood cycle. Individual cells should be
4644 assessed on DAF +5 ±1, DAF +10 ±1, DAF +17 ±1, DAF +22 ±1, DAF +28 ±1 (DAF 0: Day of first
4645 feeding of the test item). Measurements of dead adult bees and dead bee larvae should be assessed
4646 daily using dead bee traps.

4647 The development, the mortality of different brood stages and hatching success are assessed in regular
4648 intervals by assessment of brood development of all stages, egg, larvae, pupae. For this purpose at
4649 least 200 eggs, at least 200 young larvae and at least 200 old larvae should be assessed, preferably using
4650 digital brood assessment. The development of pupae should be assessed by extracting additional pupae
4651 on another comb, just prior to emergence to assess morphological abnormalities and weight of pupae.
4652 Although the implications of decreased pupal weight are not fully understood there are obvious
4653 implications of lower weights on fitness and longevity. Once before start of feeding (control) and at
4654 DAF+ 13 ±1 for old larvae, DAF+ 15 ±1 for young larvae and DAF+17 ±1 for eggs, 50 pupae each
4655 should be taken for weighing from the test colonies. As pupae are removed at the last assessment for
4656 each stage (just prior to expected emergence) to determine morphological effects, the actual growth
4657 stage (from colour of the body and wing pads) and the weights of pupae should also be assessed to
4658 determine any adverse effects on development, e.g. delayed development.

4659

4660

4661

4662

4663

4664

4665 N. CHECKLISTS FOR EVALUATING SEMI-FIELD STUDIES

4666 For semi-field testing (cage, tunnel or tent tests) in principle the approach as described in EPPO 170
4667 (4), the OECD 75 brood Guidance Document (OECD, 2007), and the Oomen et al. (1992) test is
4668 considered appropriate. Semi-field studies aim at assessing the level of effects that may be expected on
4669 bees exposed to the product under realistic use conditions when the target crop has been treated. The
4670 exposure is worst-case and more intensive than in the field (bees/colonies confined and forced to
4671 forage on the treated crop) and potential mortality is easy to assess. Next to the standard information
4672 required by the guidelines in the following section, several further recommendations are provided to
4673 enhance the quality of the tests. Semi-field testing should be designed to address and reproduce the
4674 route(s) of exposure of bees and the maximum level of exposure expected by these routes, as a result
4675 of a spray or of the presence of residues in flowers (nectar/pollen). For all test systems in the semi-
4676 field, it is necessary that all categories of bees are thoroughly exposed and proof of exposure and
4677 consumption of the test item needs to be provided for all categories of bees. For accurate
4678 quantification of exposure, semi-field studies may provide suitable and reproducible information on
4679 residue levels both for sprayed products and also for residues following seed treatments or soil
4680 applications with systemic compounds. Modifications of the guidelines or test methods depending on
4681 study aim may be necessary and should be justified.

4682

4683 Test crop and preparation of the colonies

4684 The use of small colonies is required in the semi-field methodology compared to field tests due to
4685 limited forage area. For semi-field testing colonies should be of similar size and the strength adapted
4686 to forage area but as large as possible. It is recommended to use bigger colonies but at least 6000 adult
4687 bees and 3 to 4 brood combs (at least 15.000 brood cells), containing a high amount of capped brood
4688 and to start, if possible, studies early in the season. Major modifications of the colonies shortly before
4689 application should be avoided. At least 4 replicates per treatment are recommended.

4690 The level of stores within the colonies should be reduced to a minimum before the start of the trial. As
4691 and effective forage area $> 60 \text{ m}^2$, preferably $> 80 \text{ m}^2$ are recommended. In principle, *Phacelia* or a
4692 highly bee attractive crop, e.g. Winter oilseed rape should be used as a test crop for assessing the
4693 effects of spray applications. Nevertheless, e.g. for systemic compounds, identification of a surrogate
4694 (worst-case) test crop may be more difficult, where the test crop should be one for intended use. For
4695 assessing the effects of crops which might have low numbers of flowers per m^2 (e.g. zucchini) a worst-
4696 case flowering crop like *Phacelia tanacetifolia* is recommended to be used for testing potential risks
4697 assuming worst-case exposure. For sprayed products, semi-field tests may be used for demonstration
4698 of acceptable or unacceptable effects in a semi-field test using a worst-case flowering crop, in some
4699 cases also standard crops (i.e., wheat) which have been made artificially attractive through a sugar
4700 solution and treated at the maximum application rate.

4701 The colonies should be healthy at the beginning of the experiment, e.g. free of clinical signs of
4702 significant brood diseases such as American Foul Brood and European Foul Brood. As most of the
4703 European colonies, even strong ones, contain infectious agents, it is not possible to use colonies that
4704 are completely free of them. Regarding the mite *Varroa destructor*, present in almost all European
4705 colonies, the level of infestation of the control and test colonies should be as low as possible. During
4706 and after the exposure period up to termination of the study, infestation of Varroa should be monitored
4707 at regular intervals. During and after the experiment, the health of the colonies should be evaluated for
4708 the whole range of bee diseases (including Nosema, acarine and the main viruses, e.g. through
4709 molecular screening).

4710

4711

4712 **Assessments**

4713 Standard assessments which should be observed in semi-field tests are flight activity as well foraging
4714 behaviour on the treated crop and potential behavioural abnormalities (e.g. according to CEB 230),
4715 observations of behaviour of bees at hive entrance, observations of behaviour of colonies (e.g.
4716 aggressive) as well as daily assessments mortality on linen sheets in the crop and daily assessments
4717 mortality in front of hives. A detailed description and categorization of all observed behavioral
4718 abnormalities should be provided. Colony assessments should include brood development (all stages,
4719 egg, larvae, pupae), morphological abnormalities of the brood and appearance of brood nest, Colony
4720 development as well as the mortality in the bottom of the hives, nectar and pollen stores, and the
4721 diagnose of bee diseases.

4722 For all tests it is recommended that the OECD Guidance Document is extended to assess adverse
4723 effects on all 3 stages of brood. There are significant advantages to interpretation if the effects of
4724 pesticides on eggs, young larvae and old larvae are assessed, so this should be included in assessments
4725 of effects on brood in all studies. For OECD 75 and Oomen et al. the development of at least 100 eggs,
4726 100 young larvae and 100 old larvae per colony should be used, preferably by the use digital imaging
4727 instead of acetate sheets. The contents of all cells including deformities in pupae should be assessed as
4728 well as weight of pupae before and after treatment to determine any adverse effects on development,
4729 e.g. delayed development.

4730 Depending on the study aim, further endpoints e.g. specific behaviour, homing behaviour, homing
4731 ability or the weight or lifespan of hatching bees can be addressed in all studies for investigation of
4732 special effects. Residue analyses must be performed on the nectar and pollen brought back to the
4733 colonies in the treatment and the control. More detailed residue sampling of foraging bees and in hive
4734 (e.g. nectar/pollen/wax/larvae/bees/propolis) may be required in some cases; as some assessments may
4735 be difficult to conduct in one tunnel different tunnels may be needed for further special investigations
4736 (e.g. high frequency of residue sampling in hive; due to frequent colony disturbance increased
4737 mortality). Consideration should be given to extending studies where significant exposure is likely to
4738 occur over a period longer than a single brood cycle, e.g. systemic or highly persistent residues.

4739

4740 **Reporting**

4741 Results should be analysed with appropriate statistical methods, information on statistical power of the
4742 method is required. Statistical evaluation is needed for mortality and of the flight intensity before and
4743 after treatment. Specific statistical analysis for bee trials in semi-field and field conditions is still under
4744 development. In general it is recommended to follow the OECD guidelines (OECD, 2006) until that
4745 further specific guidance on the appropriateness of methods and statistical evaluation for bee trials is
4746 elaborated.

4747 Furthermore, all further interpretation needed for the interpretation of a study e.g. details on study
4748 substance, application, climate conditions, crop stage, crop development during study should be
4749 reported.

4750 **Further guidance on semi-field studies is given in Appendix O.**

4751

4752

4753

4754 **O. HIGHER TIER EFFECTS STUDIES**

4755 **FIELD STUDIES**

4756

4757 **BACKGROUND**

4758

4759 Outlined below is guidance on how to determine the potential effects of a pesticide on honey bees
4760 under field conditions. The guidance is split into two parts, one for applications via spray and one for
4761 application of solids. If a field study is to be undertaken it is important to ensure that the 90th percentile
4762 PEC is determined beforehand and that this is achieved in the study. If adequate exposure is not
4763 achieved, the field study will be of limited use. Please see Chapter 3 for guidance on how to determine
4764 appropriate exposure levels. Please also see Section ‘Study methodology for field study’ (c) below
4765 regarding how this information will be used in validating and hence using a field study in the risk
4766 assessment. It should be noted from Section ‘Study methodology for field study’ (c) below that it may
4767 be necessary to carry out a semi-field study (see Section 2 for details) in order to determine the
4768 appropriate exposure. Please note that exposure will be determined by residues in pollen and nectar in
4769 the hive and hence this will be used to demonstrate whether the field study’s exposure was appropriate
4770 for making a risk assessment.

4771

4772 There are two sets of assessment endpoints for field studies and these are as follows:

4773

- 4774 • **Primary assessment endpoints:** forager mortality, colony strength (number of bees), over-
4775 wintering success, honey production
- 4776 • **Secondary assessment endpoints:** behavioural effects

4777

4778 The primary assessment endpoints link directly to the Specific Protection Goals outlined in Chapter 2.

4779

4780 In order to address concerns raised in EFSA, 2012a regarding the limited ability of field studies to
4781 adequately assess adverse effects on behaviour of bees, and in particular effects on orientation and
4782 homing ability of bees, it is proposed that a **homing study** should be carried out. Such a study can be
4783 carried out as part of the field study. Details as to how to carry out such a study are provided in the
4784 Section ‘Methodology for homing study’ below.

4785

4786 Observations of the secondary assessment endpoints (behavioural effects) will be used to help explain
4787 any effects observed on the primary assessment endpoints. Even in the event that these observations
4788 suggest detrimental impacts, this cannot be used as the sole basis for a regulatory decision because
4789 effects on secondary endpoints do not in themselves threaten the Specific Protection Goals (SPG). For
4790 example, if there is no effect on colony strength and/or overwintering survival or mortality, but there is
4791 an effect on foraging behaviour this will not over-ride an assessment’s conclusion of ‘acceptable risk’
4792 when based on a lack of effects on colony strength, over-wintering success and forager mortality.

4793

4794 In principle, the same concepts apply to both spray and solid applications but some practical
4795 differences are better handled separately and so schemes for field studies of both modes of application
4796 are presented below.

4797

4798 **METHOD FOR APPLICATIONS VIA A SPRAY**

4799

4800 **Assessment methodology for field study for applications applied via a spray**

4801

4802 Presented below is an outline as to how the primary and secondary assessment endpoints can be
4803 determined:

4804

4805 The **primary assessment endpoint** of **colony strength** can be determined by using the Liebefeld
 4806 Method (Imdorf et al., 1987). This method estimates the adult bee population and the amount of brood
 4807 present in the colony. The adult bee population is assessed by visual estimation of the percentage of
 4808 comb surface covered by bees. Each percentage value is then transformed into a number of bees
 4809 according to the size of frame. In order to control some of the intrinsic variation among colonies, it is
 4810 proposed to determine the number of adult bees at the beginning of the experiment and at the end of
 4811 the exposure (after at least two brood cycles). A methodology for carrying this out is provided by
 4812 Costa et al., 2012. It is proposed to use a similar approach to determine over-wintering survival.

4813 The **primary assessment endpoint** of **mortality of foragers** needs to be determined. This can be done
 4814 via the use of dead bees traps placed at the entrance of the colony as well as via the use of collecting
 4815 sheets placed around the colonies. It is appreciated that this method will underestimate total mortality.
 4816 Alternative methods are available, for example the quantitative measure of returning foraging honey
 4817 bees via the use of marking individual bees, and these can be used if preferred.

4818 The **primary assessment endpoint** of **honey production** can be determined by estimating the amount
 4819 (in terms of weight) of honey produced in the colonies compared to that produced by the control
 4820 colonies.

4821 The **secondary assessment endpoint** of **behavioural effects** can be determined using the following
 4822 approaches:

4823 The **behaviour of foragers** on flowers should be assessed both qualitatively and quantitatively. In
 4824 order to determine the level of exposure of nectar and pollen foragers, the foragers should be counted
 4825 on the test and control crops, at different moments of the day, during a significant period of time, and
 4826 throughout the experiment (see, for example Karise et al., 2007). The number of data collected should
 4827 be sufficient for allowing statistical treatment⁹. The behaviour of nectar and pollen foragers should be
 4828 observed, at least once a day. In particular, it is important to check that the honey bees are able to
 4829 make the pollen pellet and to collect nectar.

4830

4831 In addition to behaviour on flowers, there should be a consideration of the following:

4832

- 4833 • **Presence signs:** this parameter refers mainly to motionless bees on the flower and to bees on
 4834 the whole plant but not on the flower.
- 4835 • **Cleaning signs:** observation and counting of the bees that clean themselves in two ways: (a)
 4836 limited cleaning of legs and antennae, (b) overall cleaning (the whole body is brushed with
 4837 middle or hind legs). These observations should be made for at least a few seconds and
 4838 sometimes for several minutes for one bee.
- 4839 • **Clinical intoxication signs:** Bees hang from leaves or from flowers by one or two legs.
 4840 Sometimes bees are motionless, sometimes they clean themselves. Any such honey bee is
 4841 supposed to fly away when pushed by the experimenter's finger and is counted as 'hanging
 4842 bee'. When the bee falls and lays down, it is counted as a 'falling bee'. Paralysis and
 4843 disordered wings or legs or disturbed movements - cramping or shaking bees, regurgitation
 4844 stomach content.

4845

4846 Study methodology for field study

4847

4848 (a) Definition of terms

4849

- 4850 • **'Field':** a contiguous area of crop with a single chemical regime - either treated or untreated
 4851 (control) with the pesticide, i.e. it is appropriate to refer to a 'control field'.
- 4852
- 4853 • **'Site':** a location in the region for which the applicant seeks permission to use the pesticide.
 4854 The site may include one or more fields, i.e. a site may include both control and treated fields.

4855

4856

(b) Principles

⁹ It is appreciated that currently there is a lack of guidance on appropriate statistical techniques.

4857

4858 The following principles are considered key to carrying out a field study:

4859

- 4860 a. The field test must emulate the appropriate exposure of honey bees to the pesticide as used in
4861 agricultural practice – see below.
- 4862 b. Bee colonies that are exposed to the pesticide in the field must be compared to control
4863 colonies that are not exposed or exposed to only a negligible degree (i.e. where the exposure is
4864 less than the lowest achievable LOD.)
- 4865 c. In order to show that the hives are affected consistently by the exposure, the test include more
4866 than one hive in both exposed and control treatments.
- 4867 d. In order to demonstrate that the pesticide's effects (if any) apply to sites/landscapes in general,
4868 the test must include more than one study site.
- 4869 e. The test must be conducted without conscious or unconscious bias.
- 4870 f. The test must be sufficiently powerful to detect the maximum effects allowed under the
4871 protection goals.

4872

4873 **(c) Appropriate exposure**

4874

4875 The key to achieving a valid study is ensuring adequate exposure. As stated above, the study must be
4876 designed to ensure that residues will be in line with the exposure assessment. In order to ensure
4877 adequate exposure, the Applicant may consider either carrying out multiple studies at various rates, or
4878 applying the pesticide at a sufficient rate to ensure that residues in both pollen and nectar are
4879 appropriate so that they are at least as high as the concentrations determined in the exposure section –
4880 see Chapter 3.

4881

4882 An ideal field study will be one where the bees forage almost exclusively on the target crop and where
4883 the nectar and pollen in the flowers contain residues at least equivalent to the 90th percentile that has
4884 been generated from previous studies. It should be noted that if the HQ-contact is the only risk
4885 quotient that is breached, then it may not be appropriate to carry out a field study at increased rates as
4886 this will not reflect reality. In such circumstances, it is recommended to carry out a semi-field study
4887 only.

4888

Views are requested on the proposal to rely on a semi-field study when the only risk quotient to be breached is the HQ-contact.

4889

4890 In the exposure assessment (see Chapter 3), it is assumed that the residues in the pollen and nectar in
4891 flowers are equal to the residues in pollen and nectar in the colonies. This assumption has been made
4892 due to the lack of data to indicate how the residues in flowers compare to the residues in the colonies.
4893 Instead, residues in colonies could be lower due to factors such as compound degradation and
4894 metabolism by the bees themselves. Whilst residues in pollen and nectar of the treated plant can be
4895 compared to residues from previous studies used to determine the 90th percentile exposure value (as
4896 outlined in Appendix J of Chapter 3) there is no similar threshold to establish that the exposure of the
4897 colony in a field study has been adequate to investigate a 90th percentile scenario. For example, it may
4898 be that an undesirable dilution of residues has occurred due to honey bees foraging on flowers other
4899 than those of the treated crop. Thus it could be unclear whether an observation of a low level of
4900 residues in the colony is as expected after appropriate exposure or whether, instead, foraging bees
4901 have avoided the treated field. Applicants can justify the adequacy of the exposure by demonstrating
4902 that a similar differential exists between the concentration of residue in flowers and colonies in semi-
4903 field trials where exclusive foraging on treated flowers is enforced by (for example) an enclosure.

4904

4905 It is recommended to:

4906

- 4907 1. Carry out studies to determine the range of residues of the active substance in the pollen and
4908 nectar of flowers of the treated crop. See Appendix J for further information.

4909

4910 2. This information will first be to refine the First Tier risk assessment (see Risk Assessment
 4911 Schemes). If as a result, risk quotient(s) are breached, then it is recommended to carry out
 4912 semi-field studies (see below for details) or implement suitable risk mitigation measures (see
 4913 Chapter 3). The semi-field studies can be used to determine both the effect of the pesticide as
 4914 well as to establish the differential (if any) in the concentrations of residues in pollen and
 4915 nectar of flowers versus in the colony when exclusive foraging on treated flowers is enforced.
 4916 Samples of pollen and nectar from the colony should be taken to ensure that the peak residues
 4917 have been determined, or that the residue data match the toxicity study in terms of duration,
 4918 i.e. 48 hours. In practice, this is likely to be achieved at two days post spraying. The residue
 4919 information can be used to estimate the ratio between residues in flowers with those in the
 4920 colony. This information is used to generate an adjustment factor for compound degradation
 4921 and metabolism of the active substance. This 'metabolism adjustment factor' will be used to
 4922 validate the adequacy of the exposure achieved in field studies if/when undertaken.
 4923

4924 3. In designing a field study it is essential to take note of the above information and hence ensure
 4925 that exposure within the colony is appropriate. In practice, this may mean adjusting the
 4926 application rate in order to ensure adequate exposure. It should be noted that the
 4927 concentration achieved in in-hive residues in the field study has to be at least as high as the
 4928 concentration achieved in the semi-field study. The Applicant may therefore consider either
 4929 carrying out multiple studies at various application rates, or applying the pesticide at high(er)
 4930 rates to ensure that residues in both pollen and nectar in the flower and colonies of the field
 4931 study are appropriate so that they meet the concentrations determined in the exposure section.
 4932

4933 4. Residues in pollen and nectar from both the treated (and control) flower and hive stores should
 4934 be determined during the field study.
 4935

4936 5. Once completed, the residues in both flowers and hive stores need to meet or exceed the 90th
 4937 percentile estimates produced as a result of the exposure assessment. In order to achieve this,
 4938 an applicant should collect all the residue data from pollen and nectar in flowers from the
 4939 residue and effects field study. The datasets should be kept separate – i.e. there should be one
 4940 dataset for pollen and one for nectar. To account for the differential in concentrations between
 4941 flowers and the in-hive residues, apply the 'metabolism adjustment factor' determined from
 4942 the ratio between floral and in-hive residues in the semi-field studies (if appropriate) to the
 4943 separate datasets and form a distribution by pooling these resulting numbers with the in-hive
 4944 residues obtained from the semi-field studies. These data are then used to determine the 90th
 4945 percentile of in-hive residue levels against which the in-hive residues from the field study will
 4946 be compared.
 4947

4948 It is also possible to use existing datasets to establish the distribution required in point (5).
 4949

4950 If following the above procedure, the in-hive residues under field conditions were either not achieved
 4951 or achievable, then the Applicant needs to provide evidence to justify that the exposure achieved is
 4952 nevertheless in line with the exposure assessment. For example, low in-hive residues may be realistic
 4953 if under field conditions bees normally collect only small proportions of their pollen from the target
 4954 crop¹⁰.
 4955

4956 **Design of a field study**

4958 *Choice of crop*

4959 ¹⁰ In order to measure the proportion of pollen coming from the treated and control plants compared to pollens coming from other plants in the foraging area, pollen traps should be provided in some test and control hives, for further pollen analysis. This pollen analysis should not be limited to the observation of the pollen pellets colour, but should include the identification of the pollen grains under the microscope (palynology).

4960 The choice of crop that can be used for this study is up to the Applicant. It may be possible to carry
 4961 out this study with the proposed crop outlined on the label but alternatively it may be possible to use a
 4962 highly attractive model plant (e.g. *Phacelia tanacetifolia* or oilseed rape) and extrapolate the study
 4963 findings to a range of crops. The key issue in selecting a suitable crop is to ensure that it is attractive
 4964 to honey bees and that the residues, and hence the exposure to honey bees, is environmentally relevant
 4965 and at least as high as predicted in the exposure section.

4966

4967 *Number of colonies*

4968

4969 The number of test and control colonies must be high enough to account for the normal inter-colony
 4970 variability and allow statistical analyses (Principle c and f).

4971

4972 Conventionally, a statistical test has adequate power when there is 80% confidence that the experiment
 4973 detects an effect of the specified magnitude, if it exists. For example, roughly speaking, it requires
 4974 treatment groups of $n = 13$ to detect an effect whose magnitude is similar to the standard deviation of
 4975 the individual measurements with 80% confidence in a one-sided Student's t-test (i.e. when the
 4976 treatment with the lower mean is specified in advance; one-sided tests are appropriate here because
 4977 only the detrimental effect of the pesticide is sought).

4978

4979 The Specific Protection Goal (SPG) requires the experiment to detect a >7% detrimental effect on
 4980 colony size and it is reasonable to expect that the average colony will differ by at least about 7% from
 4981 the mean value of colony strength in the control group (colony growth rate is likely to be a relatively
 4982 noisy variable even when the initial colony size and quality is tightly controlled), which means that the
 4983 standard deviation of the measurements is equivalent to the magnitude of the effect sought. It will be
 4984 the Applicant's responsibility to show that the experiment had the required statistical power (Principle
 4985 f),

4986

Currently, it is not possible to recommend a precise number of colonies that need to be tested. EFSA would welcome thoughts on this issue, as well as indication of the number of colonies considered appropriate. For more details on how to calculate the required number of colonies to detect a certain magnitude of effects at a given coefficient of variation is given in the example below.

4987

4988 To measure the effect (X) of pesticides on a bee hive several measures are under discussion, e.g. the
 4989 difference of numbers of adult bees before and after application ($X = \Delta A$) / the difference in number of
 4990 brood before and after application ($X = \Delta B$).

4991 We would assume a multiplicative effect, which can be transformed by the logarithmic function into
 4992 an additive one:

4993 Hives without exposure: $\ln(X_C) = \mu + \varepsilon$ (Control)

4994 Hives with pesticide exposure: $\ln(X_E) = \mu + \rho + \varepsilon$ (Exposed)

4995 with: μ Logarithmic mean effect in control group

4996 ρ Logarithmic treatment effect

4997 ε Stochastic error, assumed: $\sim N(0, \sigma^2)$

4998 σ^2 Between hive variation (all other conditions are fixed)

4999 In reality many other factors will influence the result and give additional variation τ^2 , these are the
 5000 type and condition of the field, topography of the landscape etc. We would consider the mean effect as
 5001 random:

5002 μ Random mean effect, assumed: $\sim N(v, \tau^2)$

5003 The global model is therefore:

5004 Hives without exposure: $\ln(X_C) = v + \varepsilon$ (Control)

5005 Hives with pesticide exposure: $\ln(X_E) = v + \rho + \varepsilon$ (Exposed)

5006 with: v Logarithmic mean effect in control group

5007 ρ Logarithmic treatment effect

5008 ε Stochastic error, assumed: $\sim N(0, \sigma^2 + \tau^2)$

5009 $\sigma^2 + \tau^2$ Total variation (between hives and fields)

5010 The regulatory condition should be justified for all fields and should be expressed in relation to the
 5011 overall mean v :

5012
$$E(X_C) = \exp(v) \cdot \exp\left(\frac{1}{2}(\sigma^2 + \tau^2)\right)$$

$$E(X_E) = \exp(v) \cdot \exp(\rho) \cdot \exp\left(\frac{1}{2}(\sigma^2 + \tau^2)\right)$$

5013
$$E(X_E) / E(X_C) = \exp(\rho) \geq 0.925$$

$$\Rightarrow \ln(E(X_E) / E(X_C)) = \rho \geq \ln(0.925) = -0.0253$$

5014

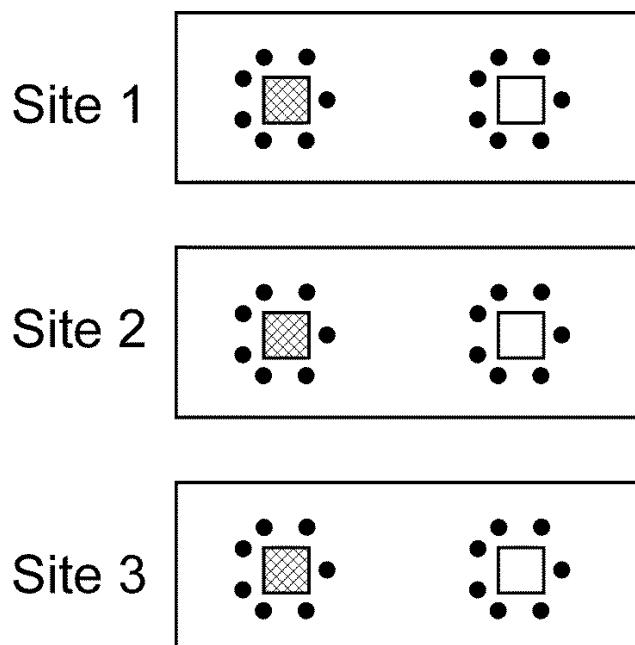
5015 To calculate the sample size to observe this difference we use a simple t-test on the logarithmic
 5016 transformed observation (on independent samples of controls and treatment groups) and the
 5017 approximation for the null hypothesis of no increase after treatment. To detect a decrease in colony
 5018 size of at least 7% the following approximate formula can be used.

5019
$$N = \frac{(z_\alpha + z_\beta)}{\rho^2 / (\sigma^2 + \tau^2)}$$

5020 N Number of independent pairs of observations (treated and untreated fields)

5021 α Significance level of the t-test

5022 z_α α -quantile of standard normal distribution $N(0,1)$


5023 $1-\beta$ Power of the t-test to observe minimal effect

5024 z_β β -quantile of standard normal distribution $N(0,1)$

5025 ρ Logarithmic treatment effect

5026 $\sigma^2 + \tau^2$ Total variation (between hives and fields)

5027

 5028
 5029

5030 **Figure O1:** Hypothetical design of experiment to test the effect of exposure to a pesticide on
 5031 honeybee colonies. Each hive is denoted by ●. Treated fields are shown crosshatched squares and
 5032 untreated fields by open squares. The diagram does not show the exact locations of individual hives –
 5033 the symbols are only to show the overall number of colonies associated with each field.
 5034

5035 This implies that N pairs of fields should be tested to conclude on the effect. In reality several (n)
 5036 hives will be used at only one (treated or untreated) field. This test design reduces the number of
 5037 fields, but increases the total number of hives needed to reach the requested power:

$$5038 N = \frac{(z_\alpha + z_\beta) \left[1 + (n-1) \frac{\tau^2}{\sigma^2 + \tau^2} \right]}{n \cdot \rho^2 / (\sigma^2 + \tau^2)}$$

5039 N Number of independent pairs of observations (treated and untreated fields)

5040 α Significance level of the t-test

5041 z_α α -quantile of standard normal distribution $N(0,1)$

5042 $1-\beta$ Power of the t-test to observe minimal effect

5043 z_β β -quantile of standard normal distribution $N(0,1)$

5044 ρ Logarithmic treatment effect

5045 $\sigma^2 + \tau^2$ Total variation (between hives and fields)

5046 τ^2 Variation between fields

5047 n Number of hives per field

5048 Given an example with a coefficient of variation between hives of $CV_H = 15\% (\Rightarrow \sigma^2 = \ln(CV_H^2 + 1) =$
5049 $0.022)$, between fields of $CV_F = 5\% (\Rightarrow \tau^2 = 0.0025)$ and a number of hives per field of $n=7$. The
5050 number of pairs of fields is then $N=14$ (or 98 pairs of hives in total). Would only one hive per field
5051 used in the experiment, then 60 pairs of fields (or hives) are needed.

5052 For the same input parameters (coefficient of variation) but an effect size of 50% (increase in forager
5053 mortality rate by a factor of 1.5) the number of fields is then $N=2$ (or 14 pairs of hives in total).

5054 These formulas give an approximation of the number of hives needed to test the difference of effect
5055 size between control and treatment of 7% (colony size) and 50% (forager mortality) to significance
5056 level $\alpha=5\%$ and a power of $\beta=80\%$. For a concrete study design, the calculation must be adjusted to
5057 the individual situation.

5058
5059

5060 Size of treated field

5061

5062 In order to ensure appropriate exposure (Principle a), the treated and control fields should each be at
5063 least 2 ha in area and otherwise large enough to provide sufficient flowers to support exclusive
5064 foraging by the experimental hives. In order to ensure that honey bees forage principally from the
5065 experimental fields (Principle a), sources of nearby alternative forage should be sparse during the field
5066 test. It is appreciated that this size cannot prevent foragers who do not visit the test field from bringing
5067 pollen and nectar from untreated flowers to the hive.

5068

5069 Colony size and health

5070

5071 At the beginning of the experiment, all colonies (treated and controls) must be in the same state
5072 (population size, health status). In order to ensure exposure of honey bees to the nectar and pollen
5073 from treated flowers, most of the frames containing food stocks should be removed from the colony
5074 before the beginning of the experiment to a level that just prevents starvation but allows sufficient
5075 stores for survival. It is acknowledged that this operation is difficult as it could cause a weakening of
5076 the colonies and it should only be conducted by experienced beekeepers.

5077

5078 All colonies should be of equal strength initially and then allocated to treatment (control, exposed) at
5079 random (Principle e). Applicants should ensure that genetic variation is properly controlled. Ideally,
5080 the experimental colonies should initially comprise sister queens and identical numbers of adult
5081 workers taken from a common stock. To improve statistical power, steps should be taken wherever
5082 possible to minimise variation among colonies, including ensuring uniform initial colony composition
5083 before the colonies are allocated randomly between the control and treated fields at each site.

5084

5085 For testing a pesticide on a given crop, the most realistic conditions are to use colonies having the
5086 same level of development as the other colonies in this region at the time of year when they forage on
5087 the respective crop.

5088

5089 Generally, the normal size of a colony during the spring and summer seasons, is between 20000
5090 (spring) and 60000 or more (June - July) individuals, depending on the climate region. A colony of
5091 10000 individuals corresponds to the beginning of its development at the end of the over-wintering
5092 period in Europe when it starts rapid expansion in the early spring.

5093

5094 The colonies should be healthy at the beginning of the experiment, e.g. free of clinical signs of
5095 significant brood diseases such as American Foul Brood (AFB) and European Foul Brood (EFB). As
5096 most of the European colonies, even strong ones, contain infectious agents, it is not possible to use
5097 colonies that are completely free of them. Regarding the mite *Varroa destructor*, present in almost all
5098 European colonies, the level of infestation of the control and test colonies should be as low as
5099 possible. During and after the experiment, the health of the colonies should be evaluated for the whole

5100 range of bee diseases (including *Nosema*, *acarine* and the main viruses, e.g. through molecular
5101 screening).

5102

5103 *Number of sites and location of field*

5104

5105 The sites should be representative of the region(s) for which authorization is sought. As regards
5106 location of the control and treated fields within a single site, it is recommended that they should be as
5107 similar as possible in terms of size and surrounding landscape.

5108

5109 The distance between the tested and the control colonies must be sufficient for preventing cross-
5110 foraging between treated and control plots. If there is an overlap in the foraging area of the control and
5111 tested colonies, the presence of significant residues in control hives could threaten the validity of the
5112 study. In particular, if the control bees can forage in the treated field, the controls colonies will fail
5113 principle (b) above and conversely, the honey bees from the treated field could forage on the untreated
5114 crop and hence the resulting residue will be less than required by the exposure assessment.
5115 Information presented in EFSA (2012a) indicates that a distance of 2-3 km between the treated and
5116 control colonies cannot fully guarantee the absence of an overlap between the foraging area of the
5117 control and tested colonies. Therefore, it is proposed to choose areas presenting similar environmental
5118 conditions, where possible at least 4 km away apart. If necessary, the fields may each be situated on a
5119 unique site.

5120

5121 At each site that contains a pair of fields, the location of the control and treated fields should be
5122 decided at random (principle e).

5123

5124 *Duration of study*

5125

5126 The colonies used in the experiments (including controls) should be monitored for a time covering the
5127 entire flowering period and beyond. The study should last at least two brood cycles (42 days) to ensure
5128 that a significant proportion of brood is exposed to residues stored within the colony.

5129

5130 For those pesticides that are persistent in hive products, it is recommended that monitoring should be
5131 maintained for a time after the wintering period as contaminated honey and pollen stores could be
5132 consumed during winter (honey) and after the wintering period (honey and pollen).

5133

5134 For long-term study, including the over-wintering phase, the treated and control colonies should be
5135 placed in an area far from fields in intensive agriculture in order to avoid a new exposure to pesticides.
5136 All experimental colonies should be set up together at the same post-treatment location where no
5137 further pesticide exposure is expected (i.e. no flowering crops present), so that they are not exposed to
5138 different location-specific factors.

5139

5140

5141 *Determination of exposure*

5142

5143 *Residue analyses*

5144

5145 Residue analyses must be performed on the nectar and pollen in both the treated and control fields.
5146 These analyses should have two goals: (1) to check that the bees from the treated fields have been
5147 exposed to the pesticide; and (2) to check that the bees at the control fields have not been exposed to
5148 the pesticide from either the treated field or another one. If a biologically significant level of residues
5149 is detected in the flowers and/or colonies at a control field then it is not appropriate to include that
5150 field in the risk assessment. In addition, residues in nectar and pollen in the colonies should be
5151 determined. All the residue analyses should be realized with the lowest possible LOD and LOQ.

5152

5153

5154 **METHOD FOR APPLICATIONS FOR A PESTICIDE APPLIED VIA A SOLID**

5155

5156 A field study with a pesticide applied as a solid may be triggered for two reasons:

5157

- 5158 • The potential risk from deposition of dust on to adjacent crops/weeds and directly on foraging
5159 bees when they are flying over or near the sowed field, or
- 5160 • The presence of the active substance in pollen and nectar of the treated crop, weeds, or
5161 adjacent crops.

5162

5163 The design of these field studies will be fundamentally the same as outlined above, but will differ in
5164 the following respects:

5165

5166 **Exposure via dust**

5167

5168 If a risk from dust is predicted, then it is proposed that a study as outlined above for sprays is
5169 conducted, however it is essential that the exposure is in line with that determined in semi-field studies
5170 (see above) and Chapter 3.

5171

5172 **Exposure via the presence of the active substance in the pollen and nectar (e.g. systemic 5173 compounds)**

5174

5175 If a risk is predicted via this route, it may be possible to address this as outlined above ensuring that
5176 the concentrations in pollen and nectar are in line with those determined in semi-field studies (see
5177 above) and the Chapter 3. It will be important to ensure that the exposure profile in terms of duration
5178 is considered; for example in plants grown from treated seed residues may occur for the duration of
5179 flowering, hence bees will be exposed for many days possibly weeks. In these circumstances, it may
5180 be appropriate to use the crop of concern rather than a model species, ensuring that the residues in
5181 pollen and nectar are at least as high as those predicted in Chapter 3.

5182

5183 In carrying out a study as outlined in the two sections above it is important to consider Section 'study
5184 methodology for field study' above and in particular point 2. For solids, samples of pollen and nectar
5185 from the colony should be taken to ensure that the residue data match the toxicity study in terms of
5186 duration, i.e. 10 days; it is considered that in practice this means at peak bloom.

5187

5188 **SEMI-FIELD STUDIES**

5189

5190 **BACKGROUND**

5191

5192 Outlined below is guidance on how to determine the potential effects of a pesticide on honey bees
5193 under semi-field conditions. As for field studies, the guidance is split in to two parts, one for
5194 applications via spray and one for application of solids. If a semi-field study is to be undertaken it is
5195 important to ensure that the 90th percentile exposure is determined beforehand and that this is achieved
5196 in the study. If an adequate exposure is not achieved, the semi-field study will be of limited use.
5197 Please see the Chapter 3 to determine appropriate exposure levels.

5198

5199 Considering the Specific Protection Goals outlined in Chapter 2, it can be concluded that the key
5200 assessment endpoints from semi-field studies should be:

5201

- 5202 • colony strength, over-wintering capacity, honey production, behavioural effects, forager
5203 mortality

5204

5205 Small colonies are used in the semi-field studies and hence assessment of realistic impacts on colony
5206 strength and over-wintering capacity may be potentially difficult. Similarly, it is difficult to determine
5207 effects on honey production. Due to these issues, it is proposed that other endpoints, for example
5208 flight activity, foraging behaviour, behavioural abnormalities, observations of behaviour of bees at

5209 colony entrance, observations of behaviour of colonies (e.g. aggressive) as well as daily assessments
5210 of adult mortality (e.g. counts of dead bees on linen sheets in the crop and in front of hives) should be
5211 determined.

5212
5213 Providing residues in pollen and nectar are considered to be at least as high as predicted as a result of
5214 the exposure assessment (see Chapter 3) and no adverse effects were observed under semi-field
5215 conditions, then it is proposed that no effects are likely under field conditions. In this case, a full-
5216 scale field study may be obviated except that a homing study should first be carried out to check that
5217 there are no unacceptable impacts due to navigation failure at realistic foraging distances. The homing
5218 study is necessary in order to address concerns raised in EFSA (2012a) regarding the limited ability of
5219 field studies to adequately assess potential adverse effects on behaviour of bees, and in particular
5220 effects on orientation and a subsequent effect on the ability of bees to return to the colony.

5221

5222 **METHOD FOR APPLICATIONS VIA A SPRAY**

5223

5224 As for field studies, it is proposed that the same methodologies should be used for semi-field studies
5225 under various modes of pesticide application.

5226

5227 **Assessment methodology for semi-field study**

5228

5229 **(a) Definition of terms**

5230

- 5231 • ‘Plot’: an area of crop with a single chemical regime - either treated or untreated (control)
5232 with the pesticide, i.e. it is appropriate to refer to a ‘control plot’.
- 5233 • ‘Site’: a location in the region for which the applicant seeks permission to use the pesticide.
5234 The site may include one or more plots i.e. a site may include both control and treated plots.

5235 **(b) Principles**

5236 The same principles as presented above are considered appropriate for semi-field studies as well.

5237 **(c) Exposure**

5238 Key to any study is ensuring adequate exposure. As stated above, the semi-field study must be
5239 designed to ensure that residues will be as predicted in the exposure assessment. In order to ensure
5240 adequate exposure, the Applicant may consider either carrying out multiple studies at various rates, or
5241 applying the pesticide at a high rate to ensure that residues in both pollen and nectar are appropriate so
5242 that they meet the concentrations determined in the exposure section – see Chapter 3.

5243 In order to carry out a valid semi-field study, it is recommended to:

5244

- 5245 1. Carry out a number of studies in order to determine the residue of the active substance in the
5246 pollen and nectar of flowers of the treated crop. See Appendix J for further information.
- 5247 2. This information will be used as a Higher Tier in the exposure assessment and hence can be
5248 used to refine the First Tier risk assessment (see Risk Assessment Schemes). If as a result,
5249 risk quotient(s) are breached, then it is recommended to carry out semi-field studies,
5250 alternatively risk mitigation may be considered (see Chapter 3). These studies can be used to
5251 determine both the effect of the pesticide as well as determine the residues in pollen and nectar
5252 in the colony under exclusive foraging as well as the flowers. The residue information can be
5253 used to estimate the ratio between residues in flowers with those in the colony which will
5254 provide an adjustment factor for compound degradation and metabolism of the active
5255 substance. This adjustment factor will be used to validate field studies if/when undertaken.

5263

5264 Design of semi-field study

5265

5266 Choice of crop

5267

5268 The choice of crop that can be used for this study is up to the Applicant. It may be possible to carry
5269 out this study with the proposed crop outlined on the label, alternatively it may be possible to use a
5270 representative crop, e.g. *Phacelia tanacetifolia* or oilseed rape and extrapolate the findings to a range
5271 of crops. The key issue in selecting a suitable crop is to ensure that it is attractive to honey bees and
5272 that the residues, and hence the exposure to honey bees, is at least as high as predicted in the exposure
5273 section.

5274

5275 Number of colonies and plots

5276

5277 Each plot should have one colony. The number of test and control plots must be high enough to
5278 account for the normal inter-colony and inter-plot variability and allow for statistical analyses
5279 (Principle f).

5280

5281 **Please note that further work is required by the Applicant to determine the number of plots
5282 required.**

5283

5284 Size of plots

5285

5286 In order to ensure appropriate exposure (Principle a), the treated and control fields should each be
5287 >60m² and preferably >80m² in area.

5288

5289 Colony size and health

5290

5291 The use of small colonies is required in the semi-field methodology compared to field tests due to
5292 limited forage area. Colonies should be of similar size and the strength should be adapted to the forage
5293 area but as large as possible. It is recommended to use colonies of at least 6000 adult bees and 3 to 4
5294 brood combs (at least 15000 brood cells), containing a high amount of capped brood. The study
5295 should start, if possible, early in the season. Major modifications of the colonies shortly before
5296 application should be avoided. At least 4 replicates per treatment are recommended.

5297

5298 At the beginning of the experiment, all colonies (treatment and controls) must be in the same state
5299 (population size, health status). In order to reinforce the level of exposure of honey bees to the
5300 contaminated nectar and pollen, most of the frames containing food stocks should be removed from
5301 the colony before the beginning of the experiment to a level that just prevents starvation but allows
5302 sufficient stores for survival. It is acknowledged that this operation is difficult as it could cause a
5303 weakening of the colonies. It should only be conducted by experienced beekeepers.

5304

5305 All colonies should be of equal strength initially and then allocated to treatment (control, exposed) at
5306 random (principle e). Applicants should ensure that genetic variation is properly controlled. Ideally,
5307 the experimental colonies should initially comprise sister queens and identical numbers of adults taken
5308 from a common stock. In practice, variation from this is allowable, but wherever possible uniform
5309 initial colony composition should be achieved among the colonies allocated between the control and
5310 treated fields at each site.

5311

5312 The colonies should be healthy at the beginning of the experiment, e.g. free of clinical signs of
5313 significant brood diseases such as American Foul Brood (AFB) and European Foul Brood (EFB). As
5314 most of the European colonies, even strong ones, contain infectious agents, it is not possible to use
5315 colonies that are completely free of them. Regarding the mite *Varroa destructor*, present in almost all
5316 European colonies, the level of infestation of the control and test colonies should be as low as
5317 possible. During and after the experiment, the health of the colonies should be evaluated for the whole

5318 range of bee diseases (including *Nosema*, *acarine* and the main viruses, e.g. through molecular
5319 screening).

5320

5321 *Number of sites and location of plots*

5322

5323 The sites should be representative of the region(s) for which authorization is sought. As regards
5324 location of the control and treated plots within a single site, it is recommended that they should be as
5325 similar as possible in terms of size and surrounding landscape.

5326

5327 At each site, the location of the control and treated plots should be decided at random (principle e).

5328

5329 *Duration of study*

5330

5331 It is recommended that the study assesses effects on all 3 stages of brood. There are significant
5332 advantages to interpretation if the effects of pesticides on eggs, young larvae and old larvae are
5333 assessed. It is proposed that the development of at least 100 eggs, 100 young larvae and 100 old larvae
5334 per colony should be used, preferably by the use digital imaging instead of acetate sheets. The contents
5335 of all cells including deformities in pupae should be assessed as well as weight of pupae before and
5336 after treatment to determine any adverse effects on development, e.g. delayed development.

5337

5338 *Determination of exposure*

5339

5340 *Residue analyses*

5341

5342 Residue analyses must be performed on the nectar and pollen in the treated semi-field. These analyses
5343 should have two goals: the first one, to check that the bees from the experimental hives have been
5344 exposed to the pesticide, and the second one to check that the control bees have not been exposed to
5345 the pesticide of the treated field or by another one, also present in the environment. If there are
5346 residues detected in the controls then the study is not valid. In addition, residues in nectar and pollen in
5347 the colonies should be determined. All the residue analyses should be realized with the lowest
5348 possible LOD and LOQ.

5349

5350 **METHOD FOR APPLICATIONS FOR A PESTICIDE APPLIED VIA A SOLID**

5351

5352 A semi-field study with a pesticide applied as a solid may be triggered for two reasons:

5353

- 5354 • The potential risk from deposition of dust on to adjacent crops/weeds, and directly on foraging
5355 bees when they are flying over or near the sowed field, or
- 5356 • The presence of the active substance in pollen and nectar of the treated crop, weeds, or
5357 adjacent crops.

5358

5359 The design of these semi-field studies will be fundamentally the same as outlined above, but will
5360 differ in the following respects:

5361

5362 **Exposure via dust**

5363

5364 If a risk from dust is predicted, then it is proposed that a semi-field study as outlined above for sprays
5365 is conducted, however it is essential that the exposure is in line with that determined in residue data
5366 from previously conducted studies (see Appendix J).

5367

5368 **Exposure via the presented of the active substance in the pollen and nectar**

5369

5370 If a risk is predicted via this route, it may be possible to address this as outlined above ensuring that
5371 the concentrations in pollen and nectar are in line with those determined in semi-field studies (see

5372 above) and the Chapter 3. It will be important to ensure that the exposure profile in terms of duration
5373 is considered; for example in plants grown from treated seed residues may occur for the duration of
5374 flowering, hence bees will be exposed for many days and possibly weeks. In these circumstances, it
5375 may be appropriate to use the crop of concern, ensuring that the residues in pollen and nectar are at
5376 least as high as those predicted in the Chapter 3.

5377

5378 METHODOLOGY FOR THE HOMING STUDY

5379

5380 The aim of this study is to determine whether an active substance causes an adverse effect on the
5381 ability of forager honey bees to return to the colony. It is proposed that the following approach should
5382 be taken:

5383

- 5384 1. The study should be a dose-response study with up to 3 doses. It is recommended to carry out
5385 a dose-response study rather than a single dose as this will be of more use should the use rates
5386 change and therefore the doses should be based on the potential exposure of honey bees
5387 foraging the crop. There should be a control and a positive control (e.g. high dose that causes
5388 a clear detrimental effect).
- 5389 2. A total of 100 bees per dose group should be used. These should be young foragers that have
5390 not been exposed to the a.s. before.
- 5391 3. In order to ensure that the bees are adequately dosed, they should be exposed to treated
5392 sucrose in the same manner as in the LD50 oral study.
- 5393 4. All bees should be individually marked so that it can be determined if and when they return to
5394 the colony. It is proposed that either RFID tags are used or colour number tags are used.
- 5395 5. Once exposed the bees should be taken to a distance of 1 km from their colony and released.
- 5396 6. The returning bees should be recorded.
- 5397 7. Statistical analysis should test whether the proportion of dosed bees that return successfully
5398 differs from control levels. If there is no significant difference between treatments, then no
5399 further work is required and it can be concluded that the a.s. does not adversely affect the
5400 homing ability of foraging honey bees. If there is an effect that is treatment and dose related,
5401 then the importance of this effect needs to be determined. This can be evaluated by using the
5402 method of Henry et al. (2012), which depends on the model presented in Khoury et al. (2010).

5403

**The above is a proposal to determine the potential effect of the a.s. on the homing ability
of foragers. Comments on this proposal are welcomed, as are alternative approaches.**

5404
5405

**As presented above a semi-field study is required whenever a field study is required.
This is so that the exposure in the field study can be verified. If effects are determined
in the primary assessment endpoints of a semi-field study then a field study is required.
In addition, a homing study is required.**

**If, however a semi-field study is conducted and no effects are determined on the primary
assessment endpoints, no field study is required. A homing study is still required.**

**Views are requested on whether this approach is appropriate or whether, due to the
potential short-comings of semi-field studies field studies should always be requested.**

5406
5407
5408

5409
5410

P. TEST PROTOCOLS FOR BUMBLEBEES (*BOMBUS TERRESTRIS*)

5411
5412
5413
5414
5415
5416

***Bombus terrestris* as key species in the Risk assessment for bumblebees**

The genus *Bombus* (family Apidae) comprises approximately 250 species and they are mainly distributed in the Northern Hemisphere with many more species and subgenera in Eurasia than in North America (Michener, 2007). *Bombus terrestris* is proposed as test species in the risk assessment scheme for bumblebees because:

- 5417 1) This species is commercially reared for the pollination of agricultural and horticultural crops
5418 in Europe;
- 5419 2) Several toxicological studies are available in literature on this species and some protocols are
5420 already suitable for inclusion in the risk assessment (see Opinion 2012 for full list of
5421 references).

5422 At the moment official test protocols are not available for bumblebees. In this section the methods
5423 from literature to test compounds on *Bombus* spp. are proposed in outline (see EFSA 2012a for the full
5424 list of references) but they have to be fully developed and validated by ring-testing.

Laboratory tests

5425
5426

Acute oral toxicity test (Adults)

5427 The acute oral toxicity test is designed to establish the oral LD50 (median lethal dose) value, i.e. the
5428 dose, expressed in µg of active ingredient per bee, inducing 50% mortality following oral exposure of
5429 measured amounts of active ingredients or commercial pesticide formulations.

5430 In the oral toxicity test for *Apis mellifera* (EPPO 170 and OECD 213) a common feeder is provided to
5431 a group of workers assuming that, through trophallaxis, all individuals will receive similar doses of
5432 test solution. However, bumblebees do not show trophallaxis behavior and thus individual feeding is
5433 required.

5434 *Test procedure:* For the laboratory toxicity test it is recommended to collect worker bees of average
5435 size and ages. Thirty bees individually caged per dose should be used and kept in dark conditions at
5436 25±2°C during the test. Bees should be starved for about 2-3 hr before dosing.

5437 For each test product, five concentrations are selected so as to range from 10 to greater than 100%
5438 mortality with no more than 2-fold dilutions between doses. A control of bees fed with only sugar
5439 solution is included in each test. The reference compound, 40% dimethoate or 20% parathion, is used
5440 as toxic standard. After a single exposure to the test solution (see mode of treatment), bumblebees can
5441 be housed together by dose feeding sucrose *ad libitum*.

5442 *Mode of treatment:* Bees should be individually fed 10 µL of test solution using an individual feeder
5443 and a 2 hr dosing period.

5444 *Data assessment and reporting:* After dosing, mortality and sugar solution consumption should be
5445 checked daily (and corrected for evaporation). The LD50 values (µg/bee) at 24, 48 and 72 h from
5446 exposure with 95% confidence limits have to be determined using Probit analysis. The test is valid if
5447 the mortality in control is <=10%.

Acute contact toxicity test (Adults)

5448 The OECD 214 protocol for contact toxicity test in *A. mellifera* can be easily applied to bumblebees or
5449 other species of bees. The endpoint of this test is the contact LD50 (µg/bee) following topical
5450 exposure.

5451 *Test procedure:* As the acute oral toxicity test.

5452
5453
5454
5455
5456
5457
5458
5459
5460

5461 *Mode of treatment:* Bees are anaesthetised (by carbon dioxide, for example) for as short a time as
5462 possible until they stopped moving. One μL of test solution is then pipetted onto the ventral part of
5463 thorax between the 2nd and 3rd pairs of legs.

5464
5465 The test solution is prepared by dissolving each compound in acetone. A negative control with acetone
5466 and a positive one with either dimethoate or parathion are also recommended.

5467
5468 *Data assessment and reporting:* as the acute oral toxicity test.

5469
5470
5471

5472 **Chronic oral toxicity test (Adults)**

5473 The chronic oral toxicity test is designed to establish the oral LC50 (median lethal concentration)
5474 value expressed in mg of active ingredient per kilogram of food ingested.

5475
5476 Because no official guideline is available the following protocol is based on the studies available in
5477 literature. In particular the use of bumblebee microcolonies in laboratory conditions is recommended
5478 (see Mommaerts et al. 2010) in order to cover a wide range of endpoints.

5479
5480 *Test procedure:* the study is performed with worker bumblebees under standardized laboratory
5481 conditions of 28–30 °C and 60–65% RH (Relative Humidity) and continuous darkness. The insects
5482 should be fed *ad libitum* with sugar solution and commercial pollen as energy and protein source,
5483 respectively. Newly emerged workers should be collected from the bumblebee colony and five
5484 workers should be placed in an artificial nest box (i.e., 15 cm x 15 cm x 10 cm). In each nest box a
5485 worker will normally become dominant and begin to lay the eggs within a week, playing the role of a
5486 queen (only male progeny because the false queen is not inseminated). The four other workers help the
5487 false queen for brood care, which mainly consisted in feeding larvae, building and heating cells.

5488
5489 *Mode of treatment:* The duration of the exposure is chosen to reflect the environmentally relevant
5490 period of exposure, which depends on the blooming period of the crop. In the experiment, the adult
5491 workers should be exposed orally to the test compound via syrup feeders over a period up to 11 weeks,
5492 or bees can be fed for a period of 30 days after which they are then provided for 30 days with
5493 untreated food. The experiment requires a range of different concentrations and in the control nests,
5494 workers were exposed with untreated sugar solution. For each concentration, at least four artificial
5495 nests, each containing five worker bees, should be used. Each experiment should be repeated twice.

5496
5497 This protocol can be improved using the new bioassay of Mommaerts et al. (2010) in order to assess
5498 the impact of sublethal concentrations on the bumblebee foraging behavior under laboratory
5499 conditions. In brief, the experimental setup of this behavior test consists of two artificial boxes
5500 connected with a tube of about 20 cm and use of queenless microcolonies of 5 workers. One box is
5501 used as nest where the worker bees rear the brood, the other box is used for the food (sugar and
5502 pollen). Before exposure (for 2 days), the worker bees are allowed a training to forage for untreated
5503 food; afterwards this is replaced by treated food.

5504
5505 *Data assessment and reporting:* In the artificial nest boxes, worker survival should be evaluated daily
5506 for the first 3 days post treatment and then on a weekly basis for a period of up to 11 weeks. The
5507 adverse sublethal effects on reproduction should be monitored on a weekly basis for 11 weeks by
5508 scoring the numbers of offspring (total number of eggs, larval brood and adults) and/or drones
5509 produced per nest. These data are used to calculate the LC50 and the NOEC50 (expressed in mg/kg).

5510

5511 **Oral toxicity test (larvae)**

5512 In this section a protocol to study the effects of pesticides (with specific reference to IGR) to larvae of
5513 bumblebees in laboratory conditions based on data available in literature (see in particular Gretenkord
5514 and Drescher 1996). In this protocol the toxicity of pesticide on brood is tested when the substance is

5515 ingested by workers for 24 hours. At the moment there is no protocols to test the pesticide directly to
5516 brood.

5517 *Test procedure:* Eggs should be removed from a queenright *Bombus terrestris* colonies and incubated
5518 in the laboratory (at 32°C and 55-60% HR) until hatching. For each test concentration, 10 young
5519 larvae have to be placed in small rearing boxes at 28°C and 50±5% HR. In each box, three nurse
5520 workers should be added with sucrose syrup and pollen. On the 7th day, the first larvae begin to
5521 pupate. After pupation, workers should be removed and the brood have to be reared until adult
5522 emergences.

5523
5524 *Mode of treatment:* The test substance have to be dissolved in the food and fed to the test groups for
5525 24 hours. The exposure of the larvae to the test substance is carried out with larvae 1, 4 or 6 days old,
5526 each for 24 hours. For each larval age and each test substance three replications are necessary.

5527
5528 *Data assessment and reporting:* The amounts of pollen consumed by the larvae and the numbers of
5529 larvae developing into an adult have to be determined. To determine the amount of food consumed by
5530 the larvae, the amount consumed by a test group of larvae and a test group of 3 workers without larvae
5531 are compared. With these data the average consumption of each larva can be estimated.

Semi-field tests

5532
5533
5534
5535 Semi-field tests are higher-tier studies conducted in field cages or greenhouse cages or glasshouse
5536 compartments and they may be triggered as a result of possible concerns during laboratory studies in
5537 the Tier 1. By far the majority of higher-tier studies in bumble bees have been conducted in the
5538 glasshouse due to the widespread use of bumblebees for pollination. At the moment there are no
5539 formalised guidelines but a number of methods have been published (see EFSA 2012a for the full list
5540 of references or review in van der Steen, 2001). In this section the protocol from Tasei *et al.* (1993) is
5541 proposed but the method will need further development because the main problem with the use of
5542 crops in small compartments is that there is not enough pollen and nectar available in the cages for a
5543 colony of normal size and adding pollen and sugar syrup can dilute the possible effects.

5544
5545 *Test procedure:* Small bumble bee colonies are placed in glasshouse compartments (3 m x 2 m)
5546 containing flowering plants (2 m²). *Phacelia tanacetifolia* plants should be used as crop.

5547
5548 *Mode of treatment:* The crop is spray with the pesticide at the recommended concentration.

5549
5550 *Data assessment and reporting:* Assessment endpoints can be similar to those used in semi-field trials
5551 of honey bees and may include adult and larval mortality, colony strength, amount of brood and
5552 foraging activity.

Field tests

5553
5554
5555
5556
5557 Several approaches have been used to assess the effects of applications of pesticides on bumblebee
5558 colonies in the field (see Opinion 2012a for full list of references). In this section we proposed a
5559 protocol described by Schaefer and Mühlen (1996). However, significant further work is required to
5560 develop guidelines, including the minimum field size, number of colonies per treatment, methodology
5561 for dead bee assessments and foraging assessments and agreement of appropriate approaches for
5562 determining colony development. The recent paper of Whitehorn *et al.* (2012) can be used as
5563 alternative field test or as complementary test in the Higher Tier.

5564 *Test procedure:* Six small bumble bee colonies (less than 50 workers) should be placed in a treated
5565 field (2400 m²) with flowering *Phacelia tanacetifolia*. A further six are placed in a control field.

5566
5567 *Mode of treatment:* The crop should be spray with the pesticide at the recommended concentration
5568 three days after colony introduction. The control field should be treated only with water.

5569

5570 *Data assessment and reporting:* Assessments of effects should include colony vitality (numbers of brood, workers, and honey pots, and weights of queens, workers and whole colonies with hives), workers foraging activity (forager density on 5x1 m² spots and the flight activity for 10 minutes every day at the hive entrance), marking all introduced workers to assess homing rate and growth rate of the colony, and defensive response to an aggressive stimulus. Pollen and nectar sampling for residue sampling and assessment of forage should be undertaken by collecting foragers returning to the colonies.

5577

5578

5579 Q. TEST PROTOCOLS SOLITARY BEES (*OSMIA CORNUTA* AND *OSMIA BICORNIS*=*O. RUFA*)

5580

5581 ***Osmia cornuta* and *Osmia bicornis* (=*O. rufa*) as key species in the Risk assessment for solitary** 5582 **bees**

5583

Two mason bees of the genus *Osmia* (*O. cornuta* and *O. bicornis*) are proposed as test species in the risk assessment scheme for solitary bees. *Osmia cornuta* and *O. bicornis* are very closely related species from Palearctic region, and share many life history and behavioral traits. *O. cornuta* is distributed in central and southern Europe, Turkey and parts of North Africa and the Middle East (Peters, 1977). *O. bicornis* can be found also in northern Europe (fig. 1). These two species can be suitable as key species because:

- 1) species of the genus *Osmia* are already used in ecotoxicological studies and some protocols are available in literature (see Opinion 2012 for the full list of references).
- 2) these species are quite easy to rear and it is possible to obtain large populations (Bosch et al. 2008; Krunic and Stanisavljevic 2006);
- 3) compared with other species of solitary bees, the biology of these species is well known (Bosch et al. 2008);
- 4) they are economically important species and management methods have been developed to use various *Osmia* species as commercial pollinators used in crop pollination in Asia, North America and Europe (Bosch and Kemp 2002);
- 5) the genus *Osmia* comprises more than 400 species in the world and their show several behavior and life cycle traits representative of many species of solitary bees nesting above the ground.

5602 They show also some limitations:

- 1) the soil exposure contamination could be underestimated in *Osmia* if compared with the ground-nesting bees. In fact, *Osmia* spp. nest in pre-established cavities in which females build series of cells separated by mud partition, however, compared to the ground-nesting species, the genus *Osmia* are less exposed to pesticide applied into the soil;
- 2) *Osmia cornuta* and *O. bicornis* populations fly early in the year for about 2-3 months and are univoltine. This means the tests can be carried out only during spring.

5610 Others two species were used in toxicological studies (*Nomia melanderi* and *Megachile rotundata*) in
5611 US because they are widely used as alfalfa crop pollinator in North America but not in Europe.

At the moment official test protocols are not available for solitary bees. In this section the methods from literature to test compounds on *Osmia* spp. are proposed (see EFSA 2012a for the full list of references) but they have to be ring-tested and validated. In order to obtain standardized results, it is recommended that *Osmia* populations used in the tests are reared under optimal temperature conditions according to their geographical origin (Bosch et al. 2008; Sgolastra et al. 2012).

Laboratory tests

5620 Acute oral toxicity test (Adults)

The acute oral toxicity test is designed to establish the oral LD50 (median lethal dose) value, i.e. the dose, expressed in μg of active ingredient per gram of bee, inducing 50% mortality following oral exposure of measured amounts of active ingredients or commercial pesticide formulations. After emergence, each bee should be weighed in order to calculate the LD50 expressed in $\mu\text{g/g}$ of bees.

5625 In the oral toxicity test for *Apis mellifera* (EPPO 170 and OECD 213) a common feeder is provided to
5626 a group of workers assuming that, through trophallaxis, all individuals will receive similar doses of
5627 test solution. However, the current oral toxicity tests cannot be applicable to non-*Apis* bees because
5628 most other bee species don't show trophallaxis behavior and thus a individual feeding is required.

5629 *Test procedure:* During spring, *Osmia cornuta* (or *Osmia bicornis*) females should be used to run the
5630 test approximately 24 h after emergence from their cocoons. Females should be starved overnight and
5631 than exposed to a compound the next morning.

5632 For each test product, five concentrations are selected so as to range from 10 to greater than 100%
5633 mortality with no more than 2 fold dilutions between doses. A control with bees feed with only sugar
5634 solution is included in each test. The reference compound, dimethoate, is used as toxic standard. After
5635 single exposure to test solution (see mode of treatment), three set of 10 bees for dose are transferred to
5636 a holding cage, provided with an artificial feeder. The artificial feeder can consist of a 5 mL-LDPE
5637 sample vial, containing a sucrose solution, with a soaked cigarette filter inserted through the lid of the
5638 vial.

5639 During the test bees are kept in an incubator at: $t = 22\text{ }^{\circ}\text{C}$, R.H. = 60–80%, L:D = 12:12 h.

5640 *Mode of treatment:* *Osmia* females should individually fed 10 μL of test solution using an individual
5641 feeder with the “flower method” proposed by Ladurner et al. (2003). In the “flower method” the test
5642 solution is pipetted into a plastic ampoule, inserted into the calyx of a flower (i.e. cherry, *Prunus*
5643 *avium* L.). Flowers and bees are individually housed in holding cages and kept in an incubator at 22 $^{\circ}\text{C}$
5644 under artificial light for 1 h.

5645 *Data assessment and reporting:* the LD50 values (expressed in $\mu\text{g/g}$ of bee) at 24, 48 and 72 h from
5646 exposure with 95% confidence limits have to be determined using Probit analysis. LD50 after 7 days
5647 from exposure should be calculate if the mortality is still increasing. Mortality data are corrected for
5648 control mortality using Abbott’s formula.

5649

5650 **Acute contact toxicity test (Adults)**

5651 Methods used to study contact toxicity in *A. mellifera* can be easily applied to other species of solitary
5652 bees including *Osmia cornuta* and *O. bicornis*. The endpoint of this test is the contact LD50 ($\mu\text{g/g}$ of
5653 bees) following topical exposure.

5654 *Test procedure:* see the acute oral toxicity test.

5655 *Mode of treatment:* *Osmia* females are cooled at 4 $^{\circ}\text{C}$ (for a maximum of 30 minutes) until they
5656 stopped moving. One μL of test solution is then applied to the dorsal surface of the thorax. The test
5657 solution is prepared by dissolving each compound in acetone and purified distilled water (50% v/v) to
5658 obtain desired concentrations.

5659 *Data assessment and reporting:* see the acute oral toxicity test.

5660

5661

5662

5663 **Chronic oral toxicity test (Adults)**

5664 The chronic oral toxicity test is designed to establish the oral LC50 (median lethal concentration)
5665 value expressed in mg of active ingredient per kilogram of food ingested.

5666 As for the acute oral toxicity test a common feeder cannot be applicable to non-*Apis* bees thus, an
5667 individual feeding is required. A new artificial feeding method to provide test solutions to adult
5668 solitary bees *ad libitum* was developed by Konrad et al. (2009).

5669 *Test procedure:* During spring, newly emerged females of *Osmia cornuta* (or *O. bicornis*) should be
5670 used to run the test. For each test product, five concentrations are selected so as to range from 10 to
5671 greater than 100% mortality with no more than 2 fold dilutions between doses. A control with bees
5672 feed with only sugar solution is included in each test. Thirty bees per concentration should be used and
5673 individually caged with the artificial feeder (see mode of treatment). During the test, bees are kept in
5674 an incubator at: $t = 22\text{ }^{\circ}\text{C}$, R.H. = 60–80%, L:D = 12:12 h.

5675 *Mode of treatment:* *Osmia* females should individually fed the test solution for 10 days using the
5676 individual feeder proposed by Konrad et al. (2009). The feeders are prepared by cutting off the Luer
5677 tips (leaving a drinking hole of approximately 2 mm in diameter) of a 5 ml-syringes and then affixing
5678 rings of yellow and blue adhesive tape around the drinking hole as colour cues. Syringes are filled
5679 with 1 ml test solution and two fresh flower petals of oilseed rape are pinned next to the drinking hole.
5680 Only bees that successfully drink from the test solution are used for the test.

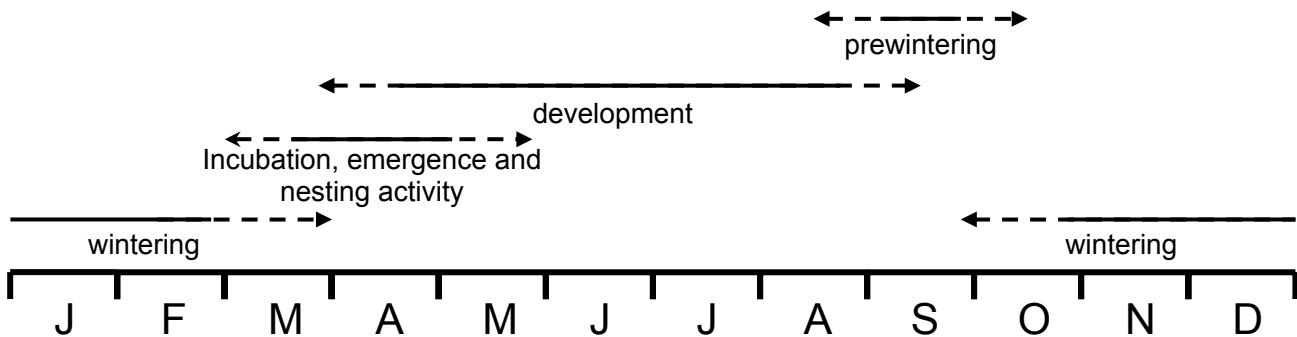
5681 Every day the feeders should be removed and replaced with fresh feed so that bees has continuous
5682 access to the treated feed throughout the study. The amount of sugar solution consumed by a bee

5683 between two syringe replacements are determined by weighing the syringe before and after exposure.
 5684 Weight loss due to evaporation is measured with control.

5685 *Data assessment and reporting:* bee mortality and behaviour is recorded daily in order to calculate the
 5686 LC50 and the NOEC values (expressed in mg/kg) after 10 days of chronic exposure to pesticide.

5687

5688 Oral toxicity test (larvae)


5689 Unlike honey bee larvae that feed primarily on secretions (brood food or royal jelly) from nurse bees,
 5690 the eggs of most non-*Apis* species are laid directly on a loaf of pollen mixed with nectar, on which the
 5691 larvae feed. That provision may contain much higher levels of pesticide contamination than the
 5692 glandular secretions of nurse bees on which honey bee larvae feed. In literature some tests are
 5693 available for *Megachile rotundata* and *Osmia* spp. in laboratory conditions (see EFSA, 2012a for full
 5694 list of references) however they need to further improvements. A critical point is to obtain an
 5695 homogeneous distribution of the test product in the mass provisions.

5696 *Test procedure:* Provision masses with eggs are obtained from nests of *Osmia cornuta* or *Osmia*
 5697 *bicornis* released in glasshouse or in an organic field with flowering oilseed rapes or other attractive
 5698 crops for *Osmia* spp. (i.e. phacelia). Artificial nests can consist of wood blocks with drilled holes filled
 5699 with paper straws. During nesting period, nests should be checked daily and newly-plugged paper
 5700 straws (completed nests) are pulled out of the wood block and taken to the laboratory. Nests are then
 5701 dissected and provisions with eggs are weighed and individually placed in clay wells or in 48-well
 5702 culture plates. Eggs were sexed based on provision size and cell position within the nest (females are
 5703 produced deeper in the nest and are assigned larger provisions). After the pesticide application (see
 5704 mode of treatment), the clay wells or the culture plates with provisions and eggs are transferred in an
 5705 incubator at constant temperature condition until adulthood (late summer). The optimal temperature
 5706 condition during development and the period of adult eclosion depends on the species and the origin of
 5707 the population used in the test (Bosch et al. 2008; Sgolastra et al. 2012; Figure Q1). In the autumn,
 5708 after ~ 30 days from adult eclosion, the bees are cooled for wintering (15 days at 14 °C + 150 days at
 5709 3-4 °C). After wintering, bees inside the cocoons are removed from the wells and individually caged
 5710 with water availability but no food. Cocoons are checked daily for emergence of adult bees and their
 5711 survival will be recorded.

5712 *Mode of treatment:* Test product should be distributed within the mass provision as evenly as possible
 5713 without removing the attached egg. The test product can be dissolved in water reaching the desired
 5714 concentration and 50 µL of this solution per gram of provision is delivered into a longitudinal fissure
 5715 or in an hole previously formed in the provision mass. Five different concentrations should be tested in
 5716 order to calculate the LC50.

5717 *Data assessment and reporting:* The fresh pollen provisions with the attached eggs are weighed before
 5718 treatment. Larval development and mortality are observed daily until cocoon spinning. Bee mortality
 5719 is observed and recorded also after emergence. The LC50 is calculated from percentage of bee
 5720 mortalities (total number of bees dead during the development and not emerged from the cocoon after
 5721 incubation). Other endpoints can be: the NOAEC (considered the highest concentration which do not
 5722 induce mortality significantly higher than that observed in control), the longevity, the larval
 5723 development duration (from egg to the completion of cocoon spinning). Usually, eggs are dated
 5724 assuming a cell production rate of 1 cells/day.

5725

5726

5727 **Figure Q1:** Life cycle and phenology of a univoltine *Osmia* species. The phenological variability in
5728 *Osmia* populations from different geographic area is indicated by dashed lines.

Semi-field tests

5733 Semi-field tests are higher-tier studies and they may be triggered as a result of possible concerns
5734 during laboratory studies in the Tier 1. Moreover, semi-field and field tests are more appropriate to test
5735 sub-lethal effects (nesting behaviour) of pesticide to solitary bees.

5736 There are no standardized guidelines but a number of methods have been published to test pesticides
5737 on solitary bees in cage, tunnel or glasshouse conditions (e.g. Ladurner et al. 2008 but see EFSA,
5738 2012a for the full list of references).

5739 *Test procedure:* Nesting females of *Osmia cornuta* or *O. bicornis* are forced to forage on a attractive
5740 flowering crop in field cages. Common pollen-nectar sources for *O. cornuta* and *O. bicornis* are
5741 *Phacelia tanacetifolia* Benth and the oilseed rape (*Brassica napus* L.). With the onset of bloom, cages
5742 of ~40 m² each are confined within the field with anti-aphid screen cages (mesh size ≤ 3mm) and a
5743 nesting shelter should be placed in the center of each cage. Nesting shelters can consist of several
5744 wood blocks with drilled holes filled with paper straws. To facilitate observations, nesting cavities can
5745 be numbered with white grease pencils.

5746 During full bloom, new emerged females of *O. cornuta* or *O. bicornis* are released with an adequate
5747 number of males in the cages. From 10 to 15 individually marked females and 15-20 males should be
5748 released in each cage. After starting of nesting activities (once at least five females per cage has
5749 established) the active ingredient is applied in the crop.

5750 *Mode of treatment:* Test product should be applied in separate cages at the highest recommended field
5751 rate when bees are actively foraging on the crop. However, this may be modified if appropriate for the
5752 objective of the study (e.g. when testing systemic compounds applied pre-flowering or for assessing
5753 mitigation measures). One cage should be treated only with water (control) while an other one should
5754 be treated with a toxic standard. Each cage should be randomly assigned to a treatment. More cages
5755 per treatment can be used as replicates.

5756 *Data assessment and reporting:* Observations on nesting activity should be performed before and after
5757 treatment in each cage. The number of nesting females and other parameters should be recorded on
5758 day 0 (day of treatment for evening applications; day before treatment for morning application), and
5759 on days 1, 2 and 4. In case of systemic pesticides, the assessment period can be extended. For each
5760 nesting female, the following parameters are recorded on each of assessment days:

- 5761 - In-nest time: the time spent inside the nest depositing pollen and nectar load in the morning
5762 during 1 hr of observation;
- 5763 - Foraging time: the time spent outside the nest foraging for pollen and nectar in the morning
5764 during 1 hr of observation;
- 5765 - Bee mortality: nesting cavities are inspected with a flashlight every night and the number of
5766 females inside is counted (night counts), in fact *Osmia* spp. females spend the night in their
5767 nesting cavity;
- 5768 - Cell production rate: during the night counts, paper straws containing females are removed
5769 with forceps and nest progression is marked and dated on each straw.

5770 Four days after treatment the cages can be opened in order to allow the free foraging activity of bees.
5771 At the end of the nesting activity, the marked nests are brought to the laboratory and dissected to
5772 record larval mortality. Temperature and relative humidity inside the cages should be recorded
5773 throughout the study. The endpoints (bee mortality rate, cell production rate, foraging and in-nest
5774 times, progeny survival) are compared between treatments with appropriate statistical analysis.

5775
5776
5777
5778
5779

Field tests

5780
5781
5782 Field studies are required when concern has not been adequately addressed at lower tiers. They can be
5783 suitable to study the sublethal effects in solitary bees under the worst case scenario in natural
5784 conditions. At the moment field studies are not available in literature for *Osmia* spp. (see EFSA, 2012a
5785 for reference). In this section it is proposed a protocol adapted from a study on *Megachile rotundata*
5786 (Torchio, 1983).

5787 *Test procedure:* Nesting females of *Osmia cornuta* or *O. bicornis* are released in nesting shelters
5788 placed in the centre of test fields of flowering crops. Nesting shelters can consist of several wood
5789 blocks with drilled holes filled with paper straws. To facilitate observations, nesting cavities can
5790 be numbered with white grease pencils. Test should be performed in spring during the natural period of
5791 *Osmia* nesting activity in according with the local climatic conditions. During blooming (with ~15%
5792 of open flowers), at least 400 nesting females with a relative number of males (ratio 1♀:2♂) should be
5793 released per hectare of field. Compared with honey bees, solitary bees show much smaller foraging
5794 area (range: 200-400 m) thus, a smaller size of field is necessary and the distance of 1 Km between
5795 nesting shelters should be sufficient for preventing cross-foraging between test and control fields.
5796 Alternatively, a large field divided into two nearly equal parts can be used. Each of these "half-field"
5797 (plot) is subsequently used as treatment or control field. In any case, at the end of the nesting period,
5798 accidental cross-foraging can be verified by residue analysis of the mass provisions. After starting of
5799 nesting activities and in coincidence with the full blooming, the active ingredient is applied in the
5800 crop.

5801 *Mode of treatment:* Test product should be applied in the crop at the highest recommended field rate
5802 during daytime (when bees are actively foraging on the crop) or in the evening (if appropriate for the
5803 objective of the study). Control field/plot should be treated only with water and more fields/plots per
5804 treatment can be used as replicates. During spray applications, the nesting shelters should be protected
5805 from spray drift.

5806 *Data assessment and reporting:* Observations on nesting activity should be performed before and after
5807 treatment in each field/plot. The number of nesting females and other parameters should be recorded
5808 on day -2, -1, 0 (day of treatment for evening applications; day before treatment for morning
5809 application), and on days 1, 2, 3, 4, 7. In case of systemic pesticides, the assessment period can be
5810 extended till the end of the blooming period. On each of the assessment days, the following parameters
5811 are recorded:

- 5812 - Active nests: nesting cavities are inspected with a flashlight every night and the number of
5813 females inside is counted (night counts), in fact *Osmia* spp. females spend the night in their
5814 nesting cavity;
- 5815 - Cell production rate: during the nigh counts, paper straws containing females are removed
5816 with forceps and nest progression is marked and dated on each straw.

5817 For substances for which effects on growth or development cannot be excluded, it is possible to survey
5818 the progeny development and survival transferring the nests in laboratory. Progeny should be reared
5819 under standardized temperature conditions till next spring and the percentage of bee survival recorded
5820 (see laboratory test for larvae). The endpoints (number of active bees, cell production rate and progeny
5821 survival) are compared between treatments with appropriate statistical analysis.

5822
5823
5824
5825

5826

5827 R. TEST CROPS TO BE USED

5828

5829 Spray applications

5830

5831 The EPPO 170 (4) describes that for testing of effects on honey bees following spray applications that
5832 in the first instance, rape, mustard, *Phacelia* or another crop highly attractive to bees should be used as
5833 test plants, e.g. in the case of a standard semi-field or field trial based on acute toxicity.

5834

5835 The EFSA working group recommends *Phacelia* to be used in semi-field and field tests because of the
5836 following reasons:

- 5837 1. It is a worst case crop for spray applications as the highest exposure can be achieved due to
 - 5838 - maximum contamination of nectar and pollen in flowers is expected, as nectaries and anthers
5839 are directly exposed to the spray
 - 5840 - Very high attractivity for bees
 - 5841 - Very high density of foragers in semi-field and field trials per m²

5842

- 5843 2. It is a crop which has features making it particularly suitable for semi-field and field tests
5844 because:
 - 5845 - Pollen is visually easy to distinguish from all other pollen sources (by purplish colour)
 - 5846 - Flowering period can be adapted to time with low alternative forage in the surrounding to
5847 maximize exposure
 - 5848 - Several plantings in season possible resulting in flowering at different times allows testing e.g.
5849 at different times of year according to GAP or assessment of repeated applications
 - 5850 - ability to extrapolate the risk assessment carried out on *Phacelia* to a range of other crops

5851

5852 In the EPPO 170 (4) guideline it is stated that in other cases, identification of a surrogate (worst-case)
5853 test crop may be more difficult, e.g. for systemic compounds, where the test crop should be one for
5854 intended use.

5855

5856 This would also be recommended by the working group; for seed treatments the target crop e.g.
5857 Winter oilseed rape should be used. If the test is conducted with a crop which is not the target crop,
5858 residue analysis of nectar and pollen are required to determine the level of exposure to residues in
5859 these matrices.

5860

5861

5862

5863

5864

5865

S. CALCULATION OF THE ORAL EXPOSURE WITH WORKING EXAMPLES

5866

5867 Knowing the residue levels that may occur in nectar and pollen (PECnectar and PECpollen) and the
 5868 consumption of these items by the bees and bee larvae, their exposure can be calculated using the
 5869 formulas Eqn S1 or Eqn S2, below.

5870

$$5871 \quad ORI = \frac{(PECpollen \times Cp) + (PECnectar \times Cn)}{1000} \quad (Eqn \, S1)$$

5872

5873

$$5874 \quad ORC = \frac{(PECpollen \times Cp) + (PECnectar \times Cn)}{Cp + Cn} \quad (Eqn \, S2)$$

5875

5876 Where: PECpollen is residue level in pollen (mg/kg)

5877 PECnectar is residue level in nectar (mg/kg)

5878 Cp is consumption of pollen in mg (mg/bee/day for adults or mg/larva)

5879 Cn is consumption of nectar in mg (mg/bee/day for adults or mg/larva)

5880 ORI is the overall residue intake expressed in $\mu\text{g}/\text{bee}/\text{day}$

5881 ORC is the overall residue concentration in the diet expressed in mg/kg

5882

5883 The overall residue intake will be necessary to be calculated to compare with the LC_{50} value obtained
 5884 from the chronic toxicity test on adult bees (calculation of ETR_{adult}). The overall residue concentration
 5885 will be compared to the NOEC/NOAEC from the larval test (calculation of ETR_{larvae}).

5886 It should be taken into account that for each assessment, several PEC values need to be generated such
 5887 as PEC for the target crop, for weeds (except for seed treatments); for field margins, for adjacent crop
 5888 and for succeeding crops (unless if the compound is not-persistent). However in the risk assessment,
 5889 the highest PECs should always be used. For details regarding the calculation of PEC values, chapter 3
 5890 of the GD needs to be consulted.

5891 As a screening step, the default residue values can be used as indicated in Table S1.

5892

5893 **Table S1:** Default conservative RUD or PEC values to be used in a screening assessment

5894

Scenario	Residue level to be considered	Comment
For all PECs, except PEC for the target crop if the application is seed treatment	RUDnectar – 21 mg/kg RUDpollen – 150 mg/kg*	To derive PECs, these values needs to be multiplied with the application rate expressed in kg/ha before used in the risk assessment. Additional adjustment factors may be applied pending on the exposure flowchart that is followed (see chapter 3).
Seed dressing application for the target crop	PECnectar – 1 mg/kg PECpollen – 1 mg/kg	Considered as absolute values independently from the application rate.

5895

5896 *: the highest RUD values from Table 1 of Appendix I (rounded up from 20.7 and 149.8 mg/kg) are
 5897 recommended to be used as default for screening, considering that the available data set for default
 5898 RUDs is relatively small

5899

5900 Data for consumption of nectar and pollen by adult bees and larvae are indicated in Tables S2 and S3.
 5901 The consumption data originates from EFSA, 2012a, except where a footnote clarifies the origin. Only
 5902 the most exposed type/cast of bees are considered here (e.g. drone honey bees eat less diet than
 5903 foragers or nurse bees, therefore a scenario for drones is not necessary). Since in most of the cases the
 energy demand of the bees or larva is available (sugar consumption) rather than the nectar

5904 consumption, the sugar content of the nectar needs to be considered. The sugar contents of nectar,
 5905 which maybe foraged by the bees, were agreed by the group of experts based on information from the
 5906 scientific literature (Nicolson, 2008; Maccagnani et al., 2003; Monzon et al., 2004). It was noted by
 5907 the working group that only very little is known about the distribution and frequency of the sugar
 5908 content carried by bees and it was identified that further research are needed in this field. It was also
 5909 noted that for example the nectar consumption of a forager honey bee varies largely on several factors,
 5910 therefore the variation of the overall exposure of the colonies should be considerable.

5911
 5912 **Table S2:** Data to be considered for nectar and pollen consumption by adult individuals
 5913

	consumption of sugar (mg/bee/day)	sugar content of nectar (%)	consumption of pollen (mg/bee/day)
Honey bee	forager: 32-128 nurse: 34-50	15-65	forager: - nurse: 6.5-12
Bumble bee	worker: 73-149	15-60	26.6-30.3
Solitary bee	female osmia 18-77 ¹	10-60	10.2 ²

5914 ¹: this value was erroneously reported as nectar consumption in EFSA, 2012a
 5915 ²: estimated from bumble bee queen pollen consumption (Pridal et. al., 1996) considering the
 5916 difference in bodyweight

5917
 5918 **Table S3:** Data to be considered for of nectar and pollen consumption by a larva
 5919

	consumption of sugar (mg/larva)	sugar content of nectar (%)	consumption of pollen (mg/larva)
Honey bee	59.4/5 days	15-65	1.5-2/5 days
Bumble bee	23.8/day	15-60	22-23/day
Solitary bee	54 mg nectar/30 days ¹	-	488 mg/30 days

5920 ¹: this value refers to nectar instead of sugar (the sugar content of the nectar used in the study from
 5921 where the data originate is assumed to be around 10 %)

5922 Note: The data for honey bee larva refer to worker larva. The difference in the ratio of pollen and
 5923 nectar consumption of drone larvae to worker larvae is negligible, therefore no separate scenario for
 5924 drone larvae was considered necessary.

5925
 5926 For the screening step, as a simply worst case approach, the 90th percentile of the ranges of
 5927 consumption of nectar and pollen was calculated. In case of nectar, first the worst case sugar
 5928 consumption was combined with the worst case sugar content and the best case sugar consumption
 5929 with the best case sugar content to get the consumption ranges for adults. For example for honey bee
 5930 forager the consumption of 128 mg sugar combined with 15% sugar content resulted in the maximum
 5931 nectar consumption of 853 mg. The minimum consumption was calculated similarly (32 mg sugar
 5932 consumption combined with 65% sugar content) and resulted in 49 mg (the 90th % of the range 49-853
 5933 was further considered). For larvae, the 90th% sugar content of nectar was combined with the relevant
 5934 consumption data (consumption always a single value for larvae). It is noted that when more than one
 5935 variable is considered (for most of the scenarios this was the case), the overall exposure level will be
 5936 higher than 90th%. In case of solitary bee larva there was no variable. In this case simply the reported
 5937 values were used. The values for the consumption to be used for the screening step are reported in
 5938 Table S4.
 5939

5940 **Table S4:** Nectar and pollen consumption (conservative estimates) to be used for the screening steps
 5941

	consumption of nectar by adults (mg/bee/day)	consumption of pollen by adults (mg/bee/day)	consumption of nectar by larvae (mg/larva)	consumption of pollen by larvae (mg/larva)

Honey bee	forager: 773 nurse: 305	forager: 0 nurse: 11.5	297	1.95
Bumble bee	906	29.9	159	22.9
Solitary bee	696	10.2	54	488

5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952

It is acknowledged that this approach is conservative and assumes higher exposure level than the target 90th%. The overall 90th% exposure can be calculated considering the variation of nectar and pollen concentrations combined with the variation of the consumptions of the feed items. Since the variation in nectar and pollen concentrations varies from pesticide to pesticide it is not possible to establish default percentiles for the consumption data, which can always be used (note that using the values in Table 4 will always result a higher exposure level than overall 90th%). Therefore, when the nectar and pollen concentrations of a pesticide molecule under evaluation is available, it is recommended to undertake a statistical exercise to identify the percentiles of the ranges of nectar and pollen consumptions and the ranges of sugar content of nectar to be combined with the variation of the residues to calculate the overall 90th% oral exposure.

5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965

Shortcut values and shortcut calculations

The consumption data reported in table S4 can be combined (using equations Eqn S1 or Eqn S2) with the default worst case RUD values (for the first screening steps) or with the calculated PEC values (which also based on the default RUDs in the initial steps). Table S5 contains the shortcut values considering the default RUD values and Table S6 contains the simplified equations to be used with the PEC values. It has to be noted that in case of seed treatment, for PEC calculations for the target crop the default of 1 mg/kg shall be used for both pollen and nectar (and not the values from Table S5). For further details see Table S1, above.

Table S5: Shortcut values based on default RUD values and conservative feed consumption of different bees and bee larvae

	the overall residue intake ($\mu\text{g}/\text{bee}/\text{day}$) to be used in calculation of $\text{ETR}_{\text{adult}}$	overall residue concentration (mg/kg) to be used in calculation of $\text{ETR}_{\text{larvae}}$
Honey bee	16.2	21.8
Bumble bee	23.5	37.2
Solitary bee	16.1	137.1

5966
5967
5968
5969
5970
5971
5972
5973

Notes: These values needs to be multiplied with the application rate expressed in kg/ha. Additional adjustment factors may be applied pending on the exposure flowchart that is followed (for details see chapter 3)

For seed treatment for the target crop use PECpollen and PECnectar of 1 mg/kg

Table S6: Simplified calculations taking into consideration conservative feed consumption of different bees and bee larvae

	the overall residue intake ($\mu\text{g}/\text{bee}/\text{day}$) to be used in calculation of $\text{ETR}_{\text{adult}}$	overall residue concentration (mg/kg) to be used in calculation of $\text{ETR}_{\text{larvae}}$
Honey bee	forager: 0.773 x PECnectar nurse: 0.305 x PECnectar + 0.0115 x PECpollen	0.9935 x PECnectar + 0.0065 x PECpollen
Bumble bee	0.906 x PECnectar + 0.0299 x PECpollen	0.8741 x PECnectar + 0.1259 x PECpollen

Solitary bee	0.696 x PECnectar + 0.0102 x PECpollen	0.0996 x PECnectar + 0.9004 x PECpollen
--------------	--	---

5974

Hypothetical working example (oral exposure):

5975 Pesticide X is used as spray in winter cereals in late growing stages, which encompass the time of
 5976 flowering (e.g. May). The highest recommended application rate is 400 g a.s./ha.

5978

- 5979 • The toxicological profile is the following (keys: HB - honeybee, BB - bumble bee, SB - solitary
 5980 bee):

5981 Oral LD₅₀ for HB: 0.3 µg a.s./bee

5982 Oral LD₅₀ for BB: 0.5 µg a.s./bee

5983 Oral LD₅₀ for SB: 0.6 µg a.s./bee

5984 LC₅₀ (HB): 0.03 µg a.s./bee

5985 NOEC_{brood} (HB): 2.0 mg a.s./kg

5986

- 5987 • The calculations of Hazard Quotient (HQ=application rate/toxicity endpoint) using the oral LD₅₀
 5988 values resulted in HQs of 1333, 1000 and 800 for HB, BB and SB, respectively. All HQs are
 5989 above the relevant triggers (33, 5.5, 2), indicating high potential for acute risk.
- 5990 • As suggested by the relevant flowchart in chapter 3, Pesticide X should not be used when honey
 5991 dew occurs (unless special assessment is made to address this issue).
- 5992 • Independently of these results, the chronic risk to adults and the risk to larval development
 5993 needed to be addressed.
- 5994 • The exposure chapter offers a screening step, which assumes that the bees will be exposed to the
 5995 default worst case concentrations (default RUDs x application rate) that occur in flowering weeds
 5996 in the treated field. The shortcut values (Table S5 above) includes the default RUD values and
 5997 conservative estimations for consumption of nectar and pollen. Considering an application rate of
 5998 400 g/ha, the following conservative intake/overall concentrations and ETR values will be
 5999 obtained:

6000

	ORI	ETR_{adult}	ORC	ETR_{larva}
HB	16.2x0.4 = 6.5	6.5/0.03 = 216	21.8x0.4 = 8.7	8.7/2 = 4.4
BB	23.5x0.4 = 9.4	9.4/0.03 = 314	37.2x0.4 = 14.9	14.9/2 = 7.4
SB	16.1x0.4 = 6.5	6.5/0.03 = 215	137.1x0.4 = 54.9	54.9/2=27.4

6001

6002

- 6003 • All ETR values are above the relevant triggers (0.03, 0.0024 or 0.0027 and 0.1 or 0.01), therefore
 6004 further steps need to be considered.
- 6005 • Since cereals are not considered to be attractive to pollinators, logically the exposure to target
 6006 crop will not be the one, which drives the risk assessment and the concentrations in other crops
 6007 within the foraging area should be lower than the concentrations for the target crop. Therefore,
 6008 PEC calculations for nectar and pollen were undertaken using the recommendations of chapter 3.
 6009 The first set of calculations still used the default RUD values and resulted in the following PEC
 6010 values:

6011

	PECpollen (mg/kg)	PECnectar (mg/kg)
target crop (cereal)	0	0
weeds	18	2.5
field margin	0.54	0.076
adjacent crop	0.18	0.025
following crop	0.002	0.002

6012

6013 • The updated risk assessment using the PECs calculated for weeds resulted in the following
 6014 values:
 6015

	ETR_{adult}	ETR_{larva}
HB	forager: 1.9/0.03 = 64 nurse: 1.0/0.03 = 32	2.6/2 = 1.3
BB	2.8/0.03 = 93	4.5/2 = 2.2
SB	1.9/0.03 = 64	16.5/2=8.2

6016
 6017 • Still, all ETR values are above the relevant triggers (0.03, 0.0024 or 0.0027 and 0.1 or 0.01),
 6018 therefore further steps still need to be considered.
 6019 • To further refine the exposure estimates, field residue trials were undertaken in relevant crops,
 6020 which represent relevant weeds that occur in the field at the time of application, therefore
 6021 extrapolation is reliable. The measured concentrations were two and three order of magnitude
 6022 lower than the PECs estimated using the default RUDs.
 6023 • The PEC values derived from the field measurement were combined with the consumption data
 6024 available for the bees (Table 2 and 3) and the overall 90th% exposure level were calculated. These
 6025 resulted in the following values:
 6026

	ORI	ORC
HB	forager: 0.0028 nurse: 0.0014	0.0033
BB	0.004	0.0057
SB	0.0028	0.021

6027 • The repeated risk assessment resulted in the following ETR values:
 6028
 6029

	ETR_{adult}	ETR_{larva}
HB	forager: 0.0947 nurse: 0.0468	0.0017
BB	0.1354	0.0029
SB	0.0929	0.0105

6030 Bold values indicate ETR values when the relevant trigger is breached
 6031

6032 • The results of these refinement steps indicate that further efforts needs to be undertaken to justify
 6033 low risk to pollinators. It is also indicated that these steps should focus particularly on adult bees;
 6034 in case of honeybees, both foragers and in hive bees are potentially under risk by the use of
 6035 pesticide X. Regarding larvae only the scenario for solitary bees indicated high risk and the ETR
 6036 value was only slightly above the trigger of 0.01.
 6037
 6038
 6039

6040

6041 T. LITERATURE REVIEW ON DAILY MORTALITY RATE

6042

FORAGER HONEYBEES

6043

Visscher and Dukas (1997) investigated the lifetime foraging duration and survivorship of individual honey bees (*Apis mellifera* L.) foraging in a natural setting.

6044

In the experiment, bees were allowed to emerge in an incubator. Bees were individually marked with numbered tags and introduced into a 2-frame observation hive containing about 3000 bees. Totally, 3 introductions of 40 bees each 3 days apart were made. Two weeks after introducing the first bees into the hive, the few marked bees that had already begun foraging were removed, and the observations started. The nearest bee colonies were about 100 m away in the opposite direction from the flight line from their colony, and there were many nearby distinctive landmarks, so that drifting of foraging bees from their colony was minimized. A 50 cm transparent tunnel provided the bees access to the outdoors. A portion at the centre of the tunnel could be gated at each side and removed. In this removable cage, each marked bee was individually trapped each time it either departed on or returned from a foraging trip. The bee was weighed on a balance which reported the bee's weight with precision of $+ 0.1$ mg, directly to a personal computer, which averaged a total of at least 5 readings. The computer recorded the time of day, and information about the bee's identification number and its direction was added, either exiting or returning to the hive. From these records, trip time was later calculated, net weight of nectar uptake, and net rate of nectar uptake (mg/min) for each foraging trip by each bee. The analysis includes 33 bees for which a complete lifetime record was available from the first foraging trip until the bee did not return; all 33 of these bees foraged exclusively for nectar.

6045

The lifespan of foraging bees had a mean (+ 1 SE) of 7.7 days ± 0.75 days, median of 7 days, and range of 2 to 17 days. Then the daily mortality is about 13%.

6046

6047

6048

6049

6050

6051

6052

6053

6054

6055

6056

6057

6058

6059

6060

6061

6062

6063

6064

6065

6066

6067

6068

6069

6070

6071

6072

6073

6074

6075

6076

6077

6078

6079

6080

6081

6082

6083

6084

6085

6086

6087

6088

6089

6090

Schippers et al., (2006) assessed honeybee foraging performance.

The research was carried out in southern Ontario, Canada from early June to early July 2004. The average (\pm s.e.m.) daily high temperature was $23.2 \pm 0.65^\circ\text{C}$. Forage during this period was abundant. The empty honeycomb placed in the observation hive at the start of the experiment was 100% full 29 days later. Assuming a full frame mass of 4.5 kg, this corresponds to an average daily increase in frame mass of 155 g. Newly eclosed bees (*Apis mellifera* L.) were marked with individually numbered tags and introduced into a two-frame observation hive containing approximately 2000 bees. Four introductions of 80 bees 3 days apart were made in order to have bees commencing foraging over several days. Two weeks after introducing the first bee cohort, a few bees that had already initiated foraging were removed and data recording began. All bees departing and entering the hive travelled through a transparent Plexiglas tunnel. These bees were collected at four different life stages: hive bees (11–15 days old), young foragers (2 days of foraging experience), mature foragers (4–11 days of foraging experience) and old foragers (12 days of foraging experience).

The average foraging life span of the 27 bees (out of 38) that died before the end of the experiment was 9.7 ± 0.9 days, and the median foraging span was 8 days. This means a daily mortality rate of 10.3%

6085

6086

6087

6088

6089

6090

Rueppel at al., (2007) assessed the importance of extrinsic risk on worker mortality, how foraging is quantitatively related to mortality, how variation in life history between two selected strains correlates with mortality and how chronological age affects mortality.

Focal cohorts of honey bees (*Apis mellifera* L.) in colonies of a natural age composition were studied. Honey bee queens in the source colonies were induced to lay eggs in empty combs. These combs were brought into a humidity and temperature controlled incubator ($33^\circ\text{C}/60\%$ Rel. Humid.) 1 day prior to emergence of the focal cohort bees. Within 12 h of emergence, worker bees were marked with individually numbered colour-tags and introduced into an unrelated host colony. The host colonies were maintained in 4-frame observation hives in a dark, temperature-controlled room with immediate access to the outside (either flight cage or natural habitat).

6091 During the experiments, resource and brood levels were maintained equal between the respective
 6092 experimental groups by exchanging selected frames and additional feeding if necessary. The entrance
 6093 of each hive was observed for incoming, tagged bees during the peak of foraging activity.

6094 In the first experiment, the life-histories of workers that were free-flying was compared to those
 6095 workers that were confined to foraging in a flight cage in which food (30% sucrose solution and
 6096 ground, dried pollen) was offered from 10:00 am to 12:00 am daily.

6097 Two simultaneous replicates of the following paired design were used. Two equal colony halves were
 6098 established (ca. 4000 workers each) from a source colony, stocked with a queen, and introduced into a
 6099 4-frame observation hive. The two observation hives were connected at the back through a mesh-wire
 6100 screen to permit food exchange between colony halves. For one hive the hive entrance opened into the
 6101 natural foraging environment, for the other hive it led into a semi-circular flight cage (11 m long, 6.5
 6102 m wide, 3.3 m high, 60% shade cloth) with one sucrose and one pollen feeder located 5 m from the
 6103 hive entrance.

6104 At the beginning of the experiment 960 newly emerged, individually tagged workers were introduced
 6105 into each colony half. Daily foraging observations and nightly survival censuses began the following
 6106 day. Bees that died during the first 5 days were excluded from the analyses because the handling and
 6107 marking can artificially increase mortality. Foraging activity of both colony halves was observed for
 6108 30 min each during the feeding period. All incoming bees were recorded to obtain an estimate of total
 6109 foraging activity along with specific foraging data on the tagged bees to verify the experimental
 6110 treatment.

6111
 6112 **Table T1:** Results of the 1st experiment

	Free-flying		Caged (2h)	
	Col1	Col3	Col2	Col4
Foragers (n)	288	335	183	175
Forager lifespan (days)	26.3 (25.6-27.0)	25.6 (24.8-26.3)	30.7 (29.6-31.9)	32.9 (31.7-34.1)
Mortality rate (1/lifespan*100)	3.80%	3.91%	3.26%	3.04%
Flight span (days)	3.3(2.9-3.8)	4.9(4.4-5.4)	5.3(4.4-6.1)	4.7(3.9-5.5)
Daily mortality rate (1/flight span*100)	30.3%	20.4%	18.9%	21.3%

6113
 6114 In the second experiment, the quantitative effect of foraging into flight cages was assessed. Worker
 6115 mortality was compared between cohorts that had access to pollen and nectar sources in the flight
 6116 cages either ad-libitum or for only 1 h per day. Each cohort was introduced into a separate host colony,
 6117 controlled for levels of brood and food. In the ad-libitum treatment, three pollen and three nectar
 6118 feeders were available throughout the day. The other group of bees only had access to one pollen and
 6119 one nectar feeder from 10:00 am to 11:00 am. During feeding, foraging activity was not significantly
 6120 lower in the limited colony than in the unlimited colony but it was significantly reduced when no food
 6121 was available .

6122 A focal cohort of 480 workers was introduced into both colonies. In contrast to the first experiment,
 6123 these were initially installed in small hive boxes and only transferred to the 4- frame observation hives
 6124 at the onset of the observations (5 days after the introduction of the focal bees). Overall foraging
 6125 activity was assessed during 6 min entrance scans, but individual foraging data was collected by
 6126 directly observing the feeders (between 20 and 40 min daily).

6127 Individual survival was additionally monitored by nightly censuses, as in the first experiment.

6128
 6129
 6130
 6131
 6132

6133
 6134
 6135

Table T2: Results of the 2nd experiment

	Caged (24 h food)	Caged (1h food)
Foragers (n)	113	60
Forager lifespan (days)	20.4 (19.6-21.2)	21.0 (20.1-21.9)
Mortality rate (1/lifespan*100)	4.90%	4.76%
Flight span (days)	7.3 (6.2-8.4)	11.3 (9.2-13.5)
Daily mortality rate (1/flight span*100)	13.7% %	8.85%

 6136
 6137 The third experiment compared the mortality between the workers from the bidirectionally selected
 6138 high and low pollen-hoarding strains. One host colony received 350 high and 530 low pollen-hoarding
 6139 bees, the second host colony received 250 of each as focal cohorts. As in the second experiment, the
 6140 colonies were transferred to observation hives 5 days after the introduction of the focal cohorts, just
 6141 before the beginning of the observations. Both colonies foraged into the natural environment but their
 6142 resource and brood levels were maintain at comparable levels.

 6143
 6144
 6145
 6146

Table T3: Results of 3rd experiment

	Low pollen		High pollen	
	North	South	North	South
Foragers (n)	131	246	165	168
Forager lifespan (days)	26.7 (25.9-27.1)	26.5 (25.9-27.1)	23.4 (22.6-24.1)	23.2 (22.3-24.1)
Mortality rate (1/lifespan*100)	3.74%	3.77%	4.27%	4.31%
Flight span (days)	3.6 (3.0-4.1)	3.6 (3.0-4.1)	3.3 (2.8-3.7)	6.1 (5.3-6.7)
Daily mortality rate (1/flight span*100)	27.8%	27.8%	30.3%	16.4%

 6147
 6148
 6149 **Dukas (2008)** tested the effects of senescence on honey bees foraging in natural settings and
 6150 documented the predicted pattern of exponential increase immortality rate with forager age. Those
 6151 data indicated that, in spite of high rates of external mortality, senescence was an important factor
 6152 determining the performance of insects such as honey bees in the wild.

 6153 The main experiment involved a two-frame observation hive containing about 2500 bees. A second
 6154 similar observation hive was used primarily for another study, but the marked bees in that hive were
 6155 also monitored and are included in the data set. Dukas made 3 introductions of newly eclosed honey
 6156 bees with individually numbered plastic tags each about 10 days apart. The first hive received 250
 6157 marked bees at each introduction and the second hive received 100, 50 and 100 bees in the first,
 6158 second and third introductions respectively. The successive introductions resulted in bees commencing
 6159 foraging over a long period of time. This made monitoring of the bees easier and also decoupled
 6160 effects of age and day effects owing to variation in hive conditions, weather and other external factors
 6161 such as predator activity and competitors. Overall, bees initiated foraging at an average age of 12.8 ± 0.28 days,
 6162 and foragers from the two hives had nearly identical mean life spans (6.6 ± 0.3 and 6.8 ± 0.2).
 6163 The observation hives were placed inside a research trailer and connected to the outdoors through
 6164 transparent Plexiglas tunnels.

 6165 Out of the total of 852 marked bees observed throughout the study, 611 bees were recorded as
 6166 foragers. Only these 611 bees were included in the analysis.

6167 The results indicated an exponential increase in mortality rate with age in forager honey bees under
 6168 natural settings. This was in spite of the relatively high value (~13.4%) of the age-independent
 6169 mortality rate. It was likely that both the age-independent and age dependent mortality rates were
 6170 caused primarily by predation, with the age-dependent factor increasing exponentially owing to
 6171 physiological and mechanical deterioration.

6172
 6173 **Rueppel et al., (2009)** set up an experiment to compare individual worker life-histories and lifespan
 6174 between two differently-sized colonies as social environment. Large cohorts of individually marked
 6175 worker honey bees were used and monitored their foraging activity in addition to survival because the
 6176 transition from in-hive duties to foraging is a major determinant of honey bee worker lifespan.

6177 Two pairs (experimental trials) of one small and one large hive were made up from respectively one
 6178 and two pounds (one pound approximates 4500 individuals) of worker bees. The bees were shaken
 6179 from a mixture of European source hives and then randomly divided into the experimental treatment
 6180 groups. These groups were then installed in five-frame nucleus hives with queens that had mated
 6181 naturally. One week later, twelve frames of brood comb with ready-to emerge worker brood were
 6182 collected from the same European source hives kept in the experimental apiary. Bees emerged
 6183 overnight in a temperature (34 °C) and humidity (50%) controlled incubator. Bees were individually
 6184 marked by gluing numbered plastic tags on their dorsal thorax and 796 were introduced into each
 6185 observation hive. Just prior to that, 400 and 800 untagged new workers were introduced to the small
 6186 and large hive, respectively, to facilitate the introduction process for the tagged, focal individuals. One
 6187 day later, colonies were transferred into glass-walled observation hives that each contained one frame
 6188 of honey, one fully drawn, empty frame, and two frames of foundation. One day after this transfer,
 6189 daily survival and foraging observations began.

6190 Worker survival was monitored daily after sunset by systematically recording all marked individuals
 6191 present in the colony. Since worker bees return daily to their hive as long as they are alive, death was
 6192 inferred for one day after the last recording of a bee.

6193 All bees returning from foraging trips were recorded daily for 2 h during the peak of foraging activity
 6194 to determine the age of foraging initiation. Workers returning with pollen on their legs were classified
 6195 as pollen foragers, all others were classified non-pollen foragers. From the foraging records, the
 6196 number of foraging days was calculated and the pollen foraging bias as the proportion of foraging
 6197 observations for each worker that included pollen collection.

6198
 6199
 6200
Table T4: Worker life span and flight span

	Worker Lifespan	Flight span	Daily mortality rate (1/flight span*100)
Large Hive 1	22.8 ±9.4 (22.1-23.5), n=671	7.5±6.6	13.3
Large hive 2	22.3 ±7.6 21.7-22.9), n=609	6.5±5.3	15.4
Small hive 1	26.6 ±8.9 (26-27.3), n=680	6.7±6.0	14.9
Small hive 2	26.4±9.7 (25.6-27.1), n=709	8.8±6.9	11.4

6203
 6204
 6205
 6206 **Khoury et al., (2011)** developed a quantitative model of honey bee colony population dynamics. As
 6207 input parameters the values for life span reported by Rueppel et al., (2009) were used.

6208
 6209 **WORKER ADULT HONEYBEES**

6210
6211
6212
6213
6214
6215

Sakagami & Fukuda (1968) gave tables for workers honeybees throughout their all developmental stages. Their results showed an average longevity for June adult bees of 28.345 days (mortality rate 3.53%); an average longevity for July adult bees of 32.424 days (mortality rate 3.08%); an average longevity for wintering adult bees of 154.095 days (mortality rate 0.65%) and an average longevity for postwintering adult bees of 23.431 days (mortality rate 4.27%).

6216
6217
6218
6219
6220
6221

Schmid-Hempel and Wolf (1988) randomly selected workers of a single colony and forced them to restrict their foraging activities to different degrees while leaving in the natural context of their hive to maintain homogeneity among the tested workers with regards to colony, external conditions and heritable components. The relationship between life-span and work loads given under field conditions was studied.

6222
6223
6224
6225

One comb containing sealed cells ready for eclosion, together with nurse bees, was removed from the hive and put in an incubator at 35°C. From this comb, freshly hatched bees were collected several times a day, individually marked and reintroduced to the colony. This procedure was repeated until 280 bees had been marked.

6226
6227
6228
6229
6230
6231

The emerging bees were randomly assigned to one of the five treatment groups which differed in the amount of the individuals were allowed to forage outside the hive. An observer was placed at the entrance of the hive for 8h each day during the main foraging activity period. Within the 8h treatment period, the individuals could forage for 0, 2, 4, 6 and 8 hours (H0, H2, H4, H6, H8). Individuals of the H8 were always allowed to forage and thus served as control where the individuals of H0 could never leave the hive.

6232
6233
6234

Tab T5: Life span for forager bees in the 5 treatments.

	H0	H2	H4	H6	H8^(a)
Sample size	49	59	57	46	49
Life span (days)	41.6	41.3	41.9	45.1	39
Mortality rate % [(1/life span)*100]	2.40	2.42	2.39	2.22	2.56

(a) H8 is the control

6246
6247
6248

Schmickl and Crailsheim (2007) used the following values as mortality rate for their model:

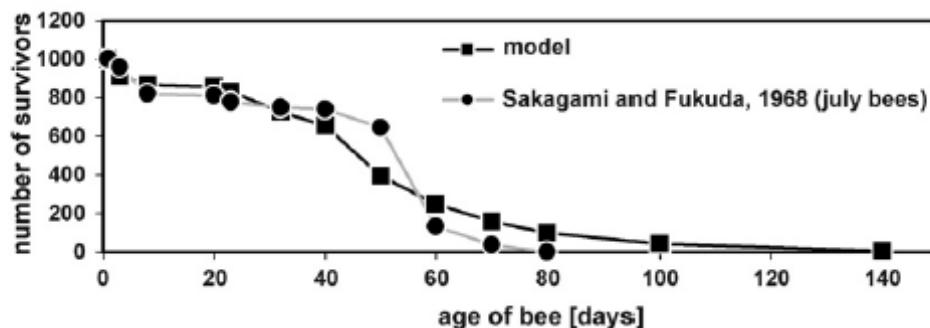
For adult bees: Base mortality = 1%;

Nursing mortality = 0.5%;

Processing mortality = 0.5%;

Foraging mortality = 3.5%;

For immature stages: Eggs = 3%;


Larvae = 1%;

Pupae = 0.1%

6257

They created a simple mathematical model for honeybee population model, using difference equations to model the population dynamics and the resource dynamics of a honeybee colony. They generated a simulated life-table based on the mortality rates they used in their model and compared the resulting survivorship with the one reported by Sakagami & Fukuda (1968).

6262
6263
6264

6265
6266
6267

Figure T1: Comparison of life-table given by Sakagami & Fukuda and the model's simulated life table

6268
6269
6270

BUMBLEBEEES

6271
6272
6273
6274

Schmid-Hempel and Heeb (1991) reported an average mortality rate for *B. lucorum* worker bees in the control colonies of 31.1 % per week. This gives a daily mortality rate of 4.4%

6275
6276
6277
6278
6279
6280
6281
6282
6283

Da Silva-Matos and Garofalo (2000) aimed at examining **adult worker longevity** in queenright (QR) and queenless (QL) colonies of *B. atratus* in order to verify if this bionomic character differs between the two types of colonies. Queenright colonies produced 1605 (QRC-1) and 639 (QRC-2) workers while in queenless colonies the number of workers produced was 798, in QLC-1, and 1119, in QCL-2. No distinction between house-bees and foragers was made in either colony because all workers, except the egg-laying ones, were observed to forage, although some of them began foraging early than others. The mean longevity for the workers from QLC was not significantly different from those of QRC. The daily mortality rate was QLC-1=4.50%; QLC-2=4.95%; QRC-1=4.11%; QRC-2=5.68%.

6284
6285
6286
6287
6288

Remark: *B. atratus* is a neotropical species and it is uncertain if the mortality rates are representative for European species. Therefore the analysis of the daily mortality rates relied on the study of Schmid-Hempel and Heeb (1991).

6289
 6290

Table T6: Overview on daily honey bee forager mortality rates

Study	Flight span	Daily mortality rate
Visscher and Dukas (1997)	7.7	12.99
Schippers et al (2006)	9.7	10.31
Rueppel (2007) (median values)	4.8	20.83
Dukas (2008)	7.5	13.33
Rueppel et al (2009) (median values)	7.1	14.1
Sakagami and Fukuda (1968)* average of June and July bees (life spans 8.345, 12.424)	10.4	9.63
Schmid-Hempel and Wolf* (1988) (only control group)	19	5.26
min	4.8	5.26
max	19	20.83
median	7.5	13
10th percentile	5.72	7.88

 6291
 6292
 6293
 6294
 6295

*The total adult life span was reported. It was assumed that adult bees will be 20 days in-hive before they start foraging. The forager flight span was calculated from the total life span minus 20 days.

6296
6297

U. TRIGGER VALUES

Use of HQ approach for solid formulations

6298
6299
6300
6301
6302
6303

EFSA (2012a) propose that it is possible to use the HQ approach, along with the associated trigger value as part of the seed treatment/granule, or solid formulation scheme. In particular EFSA (2012a) propose using it in the assessment of risk from dust drift.

6304
6305
6306
6307
6308
6309

The original concept behind the HQ approach and the associated trigger value was developed for spray applications. To read across to solid formulations, there needs to be an assessment of whether a solid formulation poses an equivalent (or lower) risk to sprays. In order to do this there should be a consideration of the toxicity of a spray formulation versus the toxicity of dust from a solid formulation, as well as a consideration of exposure

6310
6311
6312
6313

As regards toxicity, it is likely that in terms of toxicity, that when expressed in equivalent terms (i.e. $\mu\text{g a.s./bee}$), that a spray formulation is *potentially* more toxic than the active substance and that a solid formulation is probably of similar toxicity to the active substance.

6314
6315
6316
6317
6318
6319
6320

Exposure from spray formulations will mainly consist of oral and contact. Exposure via the oral route may occur when the bees consume contaminated pollen or nectar, water, guttation fluid which has either been contaminated directly by spray deposit or via systemic action of the active substance. As regards contact exposure, this is possible if the bee is sprayed directly or comes in to contact with spray deposits. It should be noted that when a bee cleans itself, it may then consume what is deposited on it.

6321
6322
6323
6324
6325
6326

As for exposure from dust from solid formulations, it is considered that the routes will be similar as for sprays above. In addition, it is feasible that if dust is present in or on the flower then a bee may come in to contact with this when working flowers. This may then be taken up orally when the bee cleans or is cleaned by others in the hive; it is feasible that this route could be greater compared to the similar route for spray applications.

6327
6328
6329
6330
6331
6332

According to the above, the toxicity of the formulation of a solid formulation is likely to be less than that for a spray formulation, as regards exposure, this is likely to be similar, although there is a possibility that the may be greater exposure compared to the spray from deposition of the dust in flowers. Taking all this together it is feasible that using a HQ approach may be appropriate and hence would mean the same as for a spray treatment – see earlier.

6333
6334
6335
6336
6337
6338
6339
6340
6341

The HQ is calculated with the in-field dose. Soil treatments and sowing of seeds are usually performed on bare soil, which means that bees are not expected to be exposed in the field. The off-field dose will always be (much) lower than the in-field dose (*refer to dust drift values elsewhere*). This means that the calculated HQ is much higher than the HQ relevant for the off-field. This may possibly cover the uncertainties regarding the extrapolation of the LD₅₀ determined for liquid formulation to dust.

6342
6343

Risk quotients and First Tier trigger values

6344
6345
6346
6347
6348
6349

The Toxicity Exposure Ratio, or TER, is a risk quotient that is calculated for each particular combination of a non-target organism and a PPP. Conventionally, the quotient is calculated as the ratio of the intake of the PPP that is lethal to half the subjects exposed, or the LD₅₀, and the level of environmental exposure, denoted E . Here we generalize the principle to any response variable, lethal or sublethal. Therefore, the dose required to reduce performance on any variable, including survivorship, is denoted by D₅₀. Thus, the TER is given by:

6350

6351

6352

6353 Higher Tier testing is invoked when the TER is less than the trigger criterion, T , i.e.

6354

6355

6356

6357

6358

6359

6360

6361

6362

6363

6364

6365

6366

6367

6368

6369

6370

6371

6372

6373

6374

6375

$$TER = D_{50}/E$$

Eqn U1

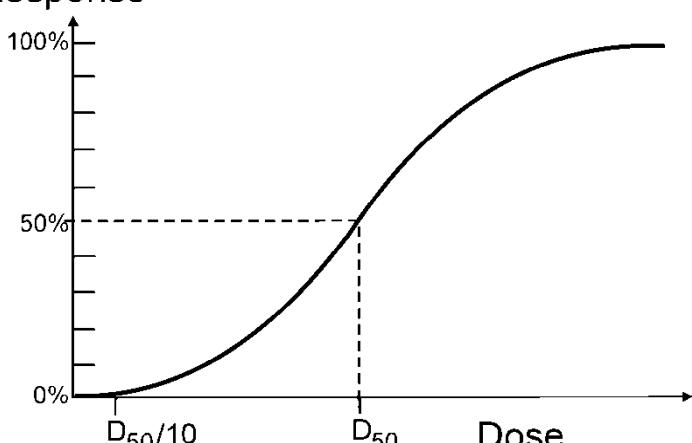
$$D_{50}/E < T$$

Eqn U2

Algebraic rearrangement of Eqn U2 shows that Higher Tier testing is invoked when the environmental exposure exceeds $100/T\%$ of the D_{50} :

$$E > D_{50}/T$$

Eqn U3


For lethal effects, the trigger criterion typically has been set at ten, so that Higher Tier testing is invoked when the environmental exposure exceeds 10% of the LD_{50} :

$$E > D_{50}/10$$

Eqn U4

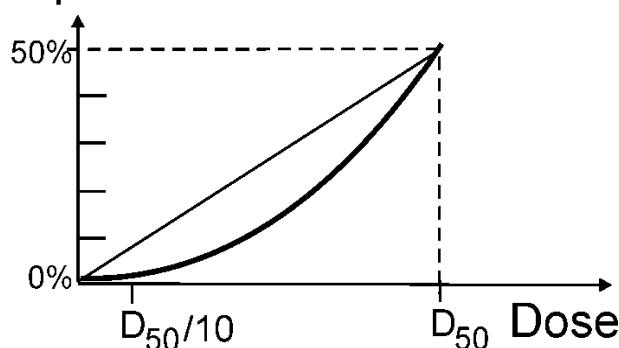
It is necessary to establish the maximum level of potential threat that can be expected from a PPP that has been eliminated from further consideration by First Tier testing. Specifically, we must establish the effect of a PPP that has just exceeded the trigger value by having a level of environmental exposure of $E = D_{50}/T$. The degree of detrimental effect due to a dose of D_{50}/T depends on the dose-response relationship, which is typically a sigmoidal function (Figure U1).

Response

Figure U1: A typical dose-response relationship where 'Dose' (x-axis) indicates the environmental exposure of an individual organism and 'Response' (y-axis) indicates the percentage of individuals that exhibit the response being measured. D_{50} denotes the dose at which 50% of individuals respond and for the case where the trigger criterion $T = 10$, $D_{50}/10$ denotes one tenth of this exposure.

6380

6381


6382

6383

6384

Provided that the dose-response relationship is sigmoidal and that its gradient accelerates at the lowest doses, the maximum response to a particular dose is given by a linear relationship, $response = dose \times 50/D_{50}$ (Figure 2).

Response

 6385
 6386

6387 **Figure U2:** The lower left quadrant of the dose-response relationship from Fig. 1. If the dose-
 6388 response relationship is sigmoidal, its gradient must accelerate in this quadrant, which implies that the
 6389 maximum response to $D_{50}/10$ is given by a linear relationship, $response = dose \times 50/D_{50}$. The slope
 6390 of this relationship is obtained because starting from the origin there is a rise of 50% in response
 6391 across a run of D_{50} and the slope of a linear relationship is given by rise over run.
 6392

6393 Given that $response = dose \times 50/D_{50}$, the maximum response to an exposure, or dose, of D_{50}/T is
 6394 obtained by $D_{50}/T \times 50/D_{50}$, or $(50/T)\%$. For the case where the trigger criterion $T = 10$, we obtain
 6395 a maximum response of $(50/10)\%$, or 5%. Consequently, we consider that the use of a trigger criterion
 6396 of $T = 10$ provides a reasonable safeguard for most protection goals.
 6397
 6398

6399 Notes

6400

6401 To defend this conclusion, the following must be further justified by evidence: that dose-response
 6402 relationships for PPPs are linear or sigmoidal. Gathering this evidence is a target for further research.
 6403

6404 Note that the dose-response relationships presented here are generic and not necessarily based on
 6405 mortality. It is an open question as to whether an exposure of $D_{50}/10$ based on mortality testing will
 6406 safeguard sublethal responses to a level below 5%. Other endpoints may be more sensitive than
 6407 mortality and so resolving this question requires further research.
 6408

6409 There is always statistical uncertainty associated with working from dose-response relationships fitted
 6410 to experimental data. Our guidelines will need to make reference to necessary levels of statistical
 6411 power etc. in this context.
 6412
 6413

6414 Determining a trigger value for an acute oral exposure

6415

6416 *Overview:-* By assuming that the dose-response relationship is linear in the low-dose range, it is
 6417 possible to identify the maximum exposure whose impact (imposed mortality) meets a specified
 6418 protection goal. By definition, it is possible to link this maximum exposure, or uptake, to the HQ.
 6419
 6420

6421 *Principles:-* Let A denote the field application rate of a compound (kg a.i. ha^{-1}) and let RUD denote the
 6422 residue unit dose of the bee's diet ($\text{mg a.i. per kg diet at } A = 1 \text{ kg a.i. ha}^{-1}$). Let c denote the daily
 6423 consumption rate (kg diet day^{-1}) and let d denote the duration of the exposure in days. If U denotes the
 6424 uptake of a compound by an individual bee (mg a.i.), then
 6425

$$6426 \quad U = A \times RUD \times c \times d \quad \text{Eqn U1}$$

6427

6428 Let LD_{50} (units of mg) denote the 48 h consumption of a.i. that causes mortality in 50% of exposed
 6429 bees. Dividing both sides of Eqn U1 by LD_{50} yields:

6430

$$6431 \quad U / LD_{50} = (A \times RUD \times c \times d) / LD_{50} \quad \text{Eqn U2}$$

6432

6433 Since by definition the hazard quotient is given by $HQ = A / LD_{50}$, we replace this quotient in the right
 6434 hand side of Eqn U2 and rearrange terms to obtain:

6435

6436 and hence:

6437

$$6438 \quad HQ = U / (RUD \times c \times d \times LD_{50}) \quad \text{Eqn U3}$$

6439

6440 Assuming that the dose-response relationship is linear through the origin (i.e. zero dose-dependent
 6441 mortality in the control dose) in the dosage range from zero to LD_{50} (see justification above), the
 6442 maximum dietary exposure (mg a.i. kg^{-1}) that meets a protection goal of mortality less than $M\%$ is
 6443 given by $U = M \times LD_{50}/50$, which is explained as follows.

6444

6445 Let X denote the exposure that causes the maximum mortality permitted under the Specific Protection
 6446 Goals. Assume that the dose-response relationship is a straight line defined by $mortality = exposure * 50 / LD_{50}$. (This assumption is conservative because it produces higher mortality at low
 6447 doses than an accelerating sigmoidal curve). Note that this dose-response relationship passes through
 6448 the origin (zero dose-dependent mortality above background at zero dose) and that $mortality = 50\%$ at
 6449 $exposure = LD_{50}$ as required.

6450

6451

6452 The point (U, M) lies on the dose-response relationship with coordinates $mortality = M$, $exposure = U$,
 6453 so we can find U given M . When $mortality = M$ and $exposure = U$, we use $mortality =$
 6454 $exposure * 50 / LD_{50}$ to obtain:

6455

$$6456 \quad M = U * 50 / LD_{50} \quad \text{Eqn U4}$$

6457

6458 and rearrangement yields the required

6459

$$6460 \quad U = M \times LD_{50} / 50 \quad \text{Eqn U5}$$

6461

6462 We now use this result as follows. Substituting the expression for U given by Eqn U5 into Eqn U3
 6463 yields:

6464

$$6465 \quad HQ = (M \times LD_{50} / 50) / (RUD \times c \times d \times LD_{50}) \quad \text{Eqn U6}$$

6466

6467 and algebraic simplification produces:

6468

$$6469 \quad HQ = M / (50 \times RUD \times c \times d) \quad \text{Eqn U7}$$

6470

6471 *Worked example.*

6472 Assume $RUD = 12.5 \times 10^{-3}$ mg a.i. mg^{-1} (which is 12.5 ppm), $c = 128 \times 10^{-3}$ mg d^{-1} , and $d = 2$.

6473

6474 If the protection goal specifies $M \leq 5.3\%$ then solving Eqn U7 yields

6475

$$6476 \quad HQ = 5.3 / (50 \times 12.5 \times 10^{-3} \times 128 \times 10^{-3} \times 2) = 5.3 / 0.16 = 33$$

6477

6478 The HQ trigger values are calculated as follows based on daily mortality rates based on life
 6479 span/mortality data of foragers retrieved from literature (see Annex T on mortality rates):

6480

6481

	Lowest observed mortality	10 th percentile	Median
Daily background mortality	5.3	7.8	13
HQ trigger	33	49	81

6482

6483 The HQ trigger values for bumble bees and solitary bees were recalculated based on daily mortality
 6484 rates of 4.4% (bumble bees) and 5% (Osmia) resulting in values of 27.5 and 31.5. An additional
 6485 assessment factor of 5 is suggested to account for higher susceptibility of forager losses in bumble
 6486 bees and uncertainties related to differences in species sensitivity distribution in solitary bees.

6487

6488

6489 Determining a trigger value for an acute contact exposure

6490

6491 This scenario covers direct overspray of bees sitting on a plant or on the ground in field. In the
 6492 Opinion of the PPR panel (EFSA, 2012a) it is proposed to assume “as a conservative assumption that
 6493 honey bees in the field during or shortly after spray applications are exposed to a mass corresponding
 6494 to the mass sprayed to 1 cm² of the field”. (Note that 1 cm² = 10⁻⁸ ha.)

6495

6496 As above the exposure/dose a bee receives is denoted as U and can be calculated as follows:

6497

6498

$$U = A \times 10^{-8} \quad \text{Eqn U8}$$

6499

6500 Since the application rate is given in kg a.s./ha it needs to be multiplied by 10⁶ to express it in mg a.s./
 6501 cm².

6502

6503

$$U = 10^{-2} \times A \quad \text{Eqn U9}$$

6504

6505

Dividing both sides of the Eqn U9 by LD₅₀ (contact) yields:

6506

6507

$$U / LD_{50} = 10^{-2} \times A / LD_{50} \quad \text{Eqn U10}$$

6508

6509

The hazard quotient is given by HQ = A / LD₅₀. We replace the quotient on the right hand side of Eqn
 6510 U10:

6511

6512

$$U / LD_{50} = 10^{-2} \times HQ \quad \text{Eqn U10}$$

6513

6514

The rearranged equation is:

6515

6516

$$100U / LD_{50} = HQ \quad \text{Eqn U11}$$

6517

6518

6519

6520

As above the point (U, M) in the dose-response curve can be used to find the dose at a certain
 mortality.

6521

6522

When mortality = M and exposure = U, we use mortality = exposure*50/LD₅₀ to obtain:

6523

6524

$$M = U * 50 / LD_{50} \quad \text{Eqn U4}$$

6525

6526

and rearrangement yields the required

6527

6528

$$U = M * LD_{50} / 50 \quad \text{Eqn U5}$$

6529

6530

6531 We now use this result as follows. Substituting the expression for U given by Eqn U5 into Eqn U11
 6532 yields:

6534
$$HQ = 100 (M \times LD_{50} / 50) / LD_{50}$$
 Eqn U12

6535 and algebraic simplification produces:

6537
$$HQ = 2M$$
 Eqn U13

6539 *Workedl example.*

6540

6541

6542

6543 If the protection goal specifies $M \leq 5.3\%$ then solving Eqn U13 yields

6544

6545
$$HQ = 5.3 \times 2 = 10.6$$

6546

6547 The HQ trigger values are calculated as follows based on daily mortality rates based on life
 6548 span/mortality data of forager honey bees retrieved from literature (see Annex T):

6549

	Lowest observed mortality	10 th percentile	Median
Daily background mortality	5.3	7.8	13
HQ trigger	10.6	15.6	26

6550

6551 The HQ trigger values for bumble bees and solitary bees were recalculated based on daily mortality
 6552 rates of 4.4% (bumble bees) and 5% (Osmia) resulting in values of 8.8 and 10. An additional
 6553 assessment factor of 5 is suggested to account for higher susceptibility of forager losses in bumble
 6554 bees and uncertainties related to differences in species sensitivity distribution in solitary bees.

6555

6556

6557 **Determining a trigger value for an oral 10 day exposure.**

6558

6559 *Overview:-* This procedure finds the maximum dietary exposure of a compound that causes a level of
 6560 mortality over 10 days that would impose no more than a negligible impact on a honeybee colony, as
 6561 required by the Specific Protection Goals. The required proportional elevation in mortality is
 6562 determined from the Khoury model (Khoury et al. 2011) and assuming the standard parameterisation
 6563 of Henry et al. (2012. Science 336: 348-50), which is conservative in assuming that the colony has a
 6564 relatively low capacity to replenish lost foragers (Cresswell & Thompson 2012. Science, *in press*) and
 6565 then this is applied to a more conservative estimate of the background rate of mortality under field
 6566 conditions. The exposure required to cause this elevation is determined from a laboratory dose-
 6567 response relationship.

6568

6569 1. Find the daily mortality rate in the Khoury model that causes a 7% decrease in colony size over 10
 6570 days (see the magnitude of a ‘negligible effect’ in the Specific Protection Goals). Denote this rate by
 6571 $m_{7,10}$

6572

6573 2. Find ratio of $m_{7,10}$ to the ‘background’ rate of daily mortality assumed in the Khoury model* (i.e.
 6574 0.154). The maximum relative increase in daily mortality rate that meets the Specific Protection Goal
 6575 is $I = m_{7,10}/0.154$

6576

6577 3. Assume that the environmentally relevant background rate of daily mortality under field conditions
 6578 is m_E . Therefore, the maximum rate of mortality that meets the Specific Protection Goals for the

6579 relevant environment is $I \times m_E$. The maximum increment above background level is therefore
 6580 $max.increment = (I - 1) \times m_E$

6581
 6582 4. For the compound in question, consider the dose-response relationship between oral dietary
 6583 exposure dosage (mg a.i. kg⁻¹) and mortality rate and determine the compound's LC₅₀, where LC₅₀
 6584 denotes the exposure dosage necessary to produce 50% mortality after 10 days.

6585
 6586 Assuming that the dose-response relationship is linear through the origin (i.e. zero dose-dependent
 6587 mortality in the control dose) in the dosage range zero to LC₅₀ (see justification in Appendix A), the
 6588 maximum dietary exposure (mg a.i. kg⁻¹) that meets the protection goal is given by $max.increment \times$
 6589 LC₅₀/50, which is explained as follows.

6590
 6591 Let X denote the exposure that causes the maximum mortality permitted under the Specific Protection
 6592 Goals. Assume that the dose-response relationship is a straight line defined by $mortality =$
 6593 $exposure*50/LC_{50}$. (This assumption is conservative because it produces higher mortality at low doses
 6594 than an accelerating sigmoidal curve). Note that this dose-response relationship passes through the
 6595 origin (zero dose-dependent mortality above background at zero dose) and that $mortality = 50\%$ at
 6596 $exposure = LC_{50}$ as required.

6597
 6598 The point ($max.increment, X$) lies on the dose-response relationship with coordinates $mortality =$
 6599 $max.increment$, $exposure = X$, so we can find X given $max.increment$. When $mortality =$
 6600 $max.increment$ and $exposure = X$, we use $mortality = exposure*50/LC_{50}$ to obtain:

6601
 6602 $max.increment = X*50/LC_{50}$

6603
 6604 and rearrangement yields

6605
 6606 $X = max.increment \times LC_{50} / 50$.

6607
 6608 5. Let T denote the trigger value for the TER and by definition $T = LC_{50} / exposure$ so substituting
 6609 $exposure = X = (max.increment \times LC_{50} / 50)$ yields

6610
 6611 $T = LC_{50} / (max.increment \times LC_{50} / 50)$

6612
 6613 and algebraic simplification yields $T = 50 / max.increment$.

6614
 6615 *Worked example (labelled by steps above).*

6616
 6617 1. The solution to the Khoury model that yields 7% reduction in colony size after 10 days is $m_{7,10} =$
 6618 0.195.

6619
 6620 2. Therefore $I = 0.195 / 0.154 = 1.27$

6621
 6622 3. If $m_E = 5.3\%$, $max.increment = 0.27 \times 5.3 = 1.43$

6623
 6624 5. Trigger value = $50 / 1.43 = T = 34$

6625
 6626
 6627 The TER trigger values are calculated as follows based on daily mortality rates based on life
 6628 span/mortality data of foragers retrieved from literature (see Annex T):

	Lowest observed mortality	10 th percentile	Median
Daily background mortality	5.3	7.8	13
<i>I</i>	1.27	1.27	1.27
Max. increment	0.27 x 5.3 = 1.43	0.27 x 7.8 = 2.1	0.27 x 13 = 3.5
TER Trigger	34	23	14
ETR Trigger	0.03	0.04	0.07

6633

6634 The ETR trigger values for bumble bees and solitary bees were recalculated based on daily mortality
 6635 rates of 4.4% (bumble bees) and 5% (Osmia) resulting in values of 0.024 and 0.027, respectively.

6636

6637

6638

6639 **GLOSSARY [AND/OR] ABBREVIATIONS**

6640

6641

a.i.	active ingredient
a.s.	active substance
BBCH	Growth stage; uniform coding of phenologically similar growth stages of all mono- and dicotyledonous plant species
CA	Concentration Addition
EA	Exposure Assessment
EC50	Concentration required killing half the members of a tested population after a specified test duration
ECx	Concentration with x% level of effect compared to the control
EPPO	European and Mediterranean Plant Protection Organization
ERC	Ecotoxicologically Relevant type of Concentration
ETR	Exposure toxicity ratio
EU	European Union
FOCUS	FOrum for Co-ordination of pesticide fate models and their Use
Guttation	Appearance of drops of xylem sap on the tips or edges of leaves of some vascular Plants
GD	Guidance Document
HQ	Hazard quotient i.e. the quotient of the application rate and the acute oral or contact toxicity
ICPBR	International Commission Plant Bee Relationship
IGR	Insect growth regulator, group of compounds that affect the ability of insects to grow and mature normally
Lab	Laboratory
LC50	Dose required killing half the members of a tested population after a specified test duration
LOD	Level of Detection
LOQ	Level of Quantification
NOAEC	No Observed Adverse Effect Concentration

NOAEL	No Observed Adverse Effect Level
NOEC	No Observed Effect Concentration
NOEL	No Observed Effect Level
OECD	Organization for Economic Co-operation and Development
PEC	Predicted Exposure Concentration
PPP	Plant Protection Product
PUF	Plant Uptake Factor
RAC	Regulatory Acceptable Concentration
RUD	Residue Unit Dose
SCFoCAH	Standing Committee on Food Chain and Animal Health
SPG	Specific Protection Goal
TU	Toxic Unit

