SCIENTIFIC OPINION

Guidance on the assessment of bacterial susceptibility to antimicrobials of human and veterinary importance

EFSA Panel on Additives and Products or Substances used in Animal Feed (FEEDAP)

European Food Safety Authority (EFSA), Parma, Italy

Endorsed for public consultation on 1 February 2012

© European Food Safety Authority, 2012

1 This guidance document replaces the previous EFSA opinion on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance, adopted on 18 June 2008. (EFSA- EFSA-Q-2008-004)

2 On request from EFSA, Question No EFSA-Q-2011-01108, adopted on DD Month YYYY.

3 Panel members: Gabriele Aquilina, Georges Bories, Andrew Chesson, Pier Sandro Cocconcelli, Joop de Knecht, Noël Albert Dierick, Mikolaj Antoni Gralak, Jürgen Gropp, Ingrid Halle, Christer Hogstrand, Reinhard Kroker, Lubomir Leng, Secundino López Puente, Anne-Katrine Lundbye Haldorsen, Alberto Mantovani, Giovanna Martelli, Miklós Mézes, Derek Renshaw, Maria Saarela, Kristen Sejrsen and Johannes Westendorf. [In case of minority opinion(s), please add:] [Part of this/This] Scientific Opinion is not shared by the following members of the Panel: name surname, name surname and name surname. [names of Panel member(s) with minority opinion] [In case of identified conflict(s) of interest, please add:] x [number written in words, e.g. three] members of the Panel did not participate in [part of] the discussion on the subject referred to above because of potential conflicts of interest identified in accordance with the EFSA policy on declarations of interests. Correspondence: FEEDAP@efs.europa.eu

4 Acknowledgement: The Panel wishes to thank wishes to thank the members of the Working Group on Micro-organisms including Atte von Wright and Roland Leclercq for the preparation of this opinion.

© European Food Safety Authority, 20YY
1 **TABLE OF CONTENTS**

2 Table of contents ... 2
3 Introduction... 3
4 1. Criteria for identifying bacterial strains with acquired resistance to antimicrobials 3
5 1.1. Microbiological cut-off values .. 4
6 1.2. Quantitative methods for the MIC determination ... 6
7 2. Defining the genetic basis of resistance ... 6
8 References ... 8

9
Guidance on the assessment of bacterial antimicrobial susceptibility

INTRODUCTION

The development of resistance amongst bacteria to antimicrobials remains a serious concern. For this reason, viable micro-organisms used as the active agent(s) in feed additives should not add to the pool of antimicrobial resistance genes already present in the gut bacterial population or otherwise increase the risk of transfer of drug resistance.

The European Food Safety Authority (EFSA) requires as part of its Qualified Presumption of Safety approach to the safety assessment of bacteria deliberately introduced in the food chain, that acquired resistance determinants to antimicrobials of clinical importance are absent.

When resistance to an antimicrobial is inherent to a bacterial species, it is generally referred to as ‘intrinsic resistance’ (sometimes called ‘natural resistance’) and is typical of all the strains of that species. In contrast, when a strain of a typically susceptible species is resistant to a given antimicrobial drug, it is considered to be ‘acquired resistance’. Acquired resistance can be due either to added genes (genes acquired by the bacteria via gain of exogenous DNA) or to the mutation of indigenous genes (Ammor et al., 2007; van Reenen and Dicks, 2011).

The actual possibility of the transfer of resistance to human or animal pathogenic bacteria, which could result from the use of microbial products based on drug-resistant strains, is related to the genetic basis of resistance. Although it is reasonable to assume that gene transfer from viable micro-organisms to other micro-organisms will occur in an open environment such as the gastrointestinal tract, intrinsic resistance is presumed to present a minimal potential for horizontal spread, whereas acquired resistance mediated by added genes is considered as having a high potential for lateral spread (Devirgiliis et al., 2011; van Reenen and Dicks, 2011).

Added genes are the result of gene exchange between bacteria. The presence of added genes coding for antimicrobial resistance, particularly when carried by mobile genetic elements, presents the greatest risk for horizontal dissemination of resistance. Antibiotic resistance (AR) genes database ARDB (http://ardb.cbcb.umd.edu/) provides a centralized compendium of information on antibiotic resistance by providing a non-comprehensive list of AR gene sequences. Resistance by mutation of chromosomal genes presents a low risk of horizontal dissemination (Devirgiliis et al., 2011; van Reenen and Dicks, 2011).

In principle, the selection of micro-organisms for use as feed additives should be oriented towards the least resistant organism whenever possible.

This guidance document replaces the previous EFSA opinion on the updating of the criteria used in the assessment of bacteria for resistance to antibiotics of human or veterinary importance, adopted in 2008 (EFSA, 2008). It will be subject to regular updating when data from the scientific community and other relevant sources (e.g., the European Medicines Agency, the European Centre of Diseases Prevention and Control) become available.

1. CRITERIA FOR IDENTIFYING BACTERIAL STRAINS WITH ACQUIRED RESISTANCE TO ANTMICROBIALS

All bacterial products intended for use as feed additives must be examined to establish the susceptibility of the component strain(s) to a relevant range of antimicrobials of human and veterinary importance. It is essential that such tests are made in a consistent manner using internationally recognised and standardised methods. As a basic requirement, the minimum inhibitory concentration (MIC) of the antimicrobials expressed as mg/L or µg/mL should be determined for each of the following substances: ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline, chloramphenicol and, in specific cases, tylosin, apramycin, nalidixic acid, sulfonamide and trimethoprim (see Table 1). These antimicrobials are chosen to maximise the...
detection of resistance genotypes to the most commonly used antimicrobials by assessing the resistance phenotypes.

1.1. Microbiological cut-off values

For the purpose of distinguishing resistant from susceptible strains, the FEEDAP Panel defines microbiological cut-off values. Microbiological cut-off values are set by studying the distribution of MICs of the chosen antimicrobials in bacterial populations belonging to a single taxonomical unit (species or genus). The part of the population that clearly deviates from the normal susceptible populations is categorised as resistant. The data used for the definition of microbiological cut-off values, as reported in Table 1, were derived from the published body of research, the European Committee on Antimicrobial Susceptibility Testing (EUCAST, http://www.eucast.org/), and from national and European monitoring programmes.

For the assessment of bacteria used as feed additives, strains can be categorised as susceptible or resistant to antimicrobials:

- Susceptible (S): a bacterial strain is defined as susceptible when it is inhibited at a concentration of a specific antimicrobial equal or lower than the established cut-off value ($S \leq x$ mg/L).
- Resistant (R): a bacterial strain is defined as resistant when it is not inhibited at a concentration of a specific antimicrobial higher than the established cut-off value ($R > x$ mg/L).

The cut-off values identified should be seen as a pragmatic response intended to introduce consistency in the separation of strains with acquired resistance from susceptible strains. The cut-off values are not intended for any purpose other than the assessment of microbial products for the possible presence of antimicrobial resistance.
Table 1. Bacterial cut-off values (mg/L)

<table>
<thead>
<tr>
<th></th>
<th>ampicillin</th>
<th>vancomycin</th>
<th>gentamicin</th>
<th>kanamycin</th>
<th>streptomycin</th>
<th>erythromycin</th>
<th>chloramphenicol</th>
<th>tylosine</th>
<th>tetracycline</th>
<th>chloramphenicol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lactobacillus obligate homofermentative<sup>a</sup></td>
<td>1</td>
<td>2<sup>b</sup></td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lactobacillus acidophilus group</td>
<td>1</td>
<td>2</td>
<td>16</td>
<td>64</td>
<td>16</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactobacillus obligate heterofermentative<sup>c</sup></td>
<td>2</td>
<td>n.r.</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lactobacillus reuteri</td>
<td>2</td>
<td>n.r.</td>
<td>8</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>16</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lactobacillus facultative heterofermentative</td>
<td>4</td>
<td>n.r.</td>
<td>16</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lactobacillus plantarum/pentosus</td>
<td>2</td>
<td>n.r.</td>
<td>16</td>
<td>64</td>
<td>n.r.</td>
<td>1</td>
<td>2</td>
<td>32</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Lactobacillus rhamnosus</td>
<td>4</td>
<td>n.r.</td>
<td>16</td>
<td>64</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lactobacillus casei /paracasei</td>
<td>4</td>
<td>n.r.</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Bifidobacterium</td>
<td>2</td>
<td>2</td>
<td>64</td>
<td>n.r.</td>
<td>128</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Pediococcus</td>
<td>4</td>
<td>n.r.</td>
<td>16</td>
<td>64</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Leuconostoc</td>
<td>2</td>
<td>n.r.</td>
<td>16</td>
<td>16</td>
<td>64</td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Lactococcus lactis</td>
<td>2</td>
<td>4</td>
<td>32</td>
<td>64</td>
<td>32</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Streptococcus thermophilus</td>
<td>2</td>
<td>4</td>
<td>32</td>
<td>64</td>
<td>64</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Bacillus spp</td>
<td>n.r.</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td>8</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Propionibacterium</td>
<td>2</td>
<td>4</td>
<td>64</td>
<td>64</td>
<td>0.5</td>
<td>0.25</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other Gram +</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>16</td>
<td>8</td>
<td>0.5</td>
<td>0.25</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

n.r. not required.
^a including L. delbrueckii, L. helveticus
^b not required for L. salivarius
^c including L. fermentum

Enterococcus faecium

<table>
<thead>
<tr>
<th></th>
<th>ampicillin</th>
<th>vancomycin</th>
<th>gentamicin</th>
<th>kanamycin</th>
<th>streptomycin</th>
<th>erythromycin</th>
<th>chloramphenicol</th>
<th>tylosine</th>
<th>tetracycline</th>
<th>chloramphenicol</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>4</td>
<td>32</td>
<td>1024</td>
<td>128</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

Escherichia coli

<table>
<thead>
<tr>
<th></th>
<th>ampicillin</th>
<th>gentamicin<sup>d</sup></th>
<th>kanamycin<sup>d</sup></th>
<th>streptomycin<sup>d</sup></th>
<th>tetracycline</th>
<th>chloramphenicol</th>
<th>nalidixic acid</th>
<th>sulfonamide</th>
<th>trimethoprim<sup>y</sup></th>
<th>ampicillin</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>2</td>
<td>8</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>16</td>
<td>256</td>
<td>2</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

^a Possible interference of the growth medium
The content of Table 1 is reviewed on a regular basis and modified as necessary when new data are made available.

1.2. Quantitative methods for the MIC determination

For the assessment of the susceptibility to antimicrobials of bacterial strains, serial two-fold dilution procedures in agar or broth should be used and include relevant quality control strains. The tests should be performed according to internationally recognised standards such as the Clinical and Laboratory Standard Institute (CLSI; www.clsi.org), ISO standard or similar. An ISO standard is currently available for bifidobacteria and non-enterococcal lactic acid bacteria (ISO 10932:2010 (IDF 223:2010)). After incubation, the MIC is defined as the lowest concentration of the antimicrobial that inhibits bacterial growth. Qualitative or semi-qualitative methods to determine MIC indirectly, such as diffusion methods, are generally not acceptable. The existing body of scientific information related to that specific or related bacterial species must be considered when the procedure for MIC determination (dilution method, growth media and incubation conditions) is chosen, keeping in mind the possible interference of media and growth conditions.

2. Defining the genetic basis of resistance

The detection of the MIC above the cut-off values, identified by the FEEDAP Panel for one or more antimicrobials, requires further investigation to determine the nature of the resistance. Initially, it may be necessary to make the distinction between acquired and intrinsic resistance. This would only arise when there is limited or no information on the MIC distribution within the considered taxonomical unit. In these cases the structural nature and genetic basis of the resistance must be demonstrated by analysing a representative selection of strains belonging to that taxonomical unit. Since intrinsic resistance is specific for a bacterial species or genus, an indispensable pre-requisite is the correct identification of the strain at species level by means of molecular taxonomy methods. Where all strains within a given taxonomic group show phenotypic resistance to an antimicrobial, such resistance can be considered intrinsic to the taxonomic group.

When a bacterial strain demonstrates higher resistance to a specific antimicrobial than the other strains of the same taxonomical unit, the presence of acquired resistance is indicated and additional information is needed on the genetic basis of the antimicrobial resistance. A single exception to this approach is *E. faecium* and ampicillin. Strains with ampicillin MIC >2 µg/mL are not considered suitable for feed use since this is a marker for the hospital associated clade and not considered safe.5

Acquired resistance can be due either to acquired genes (genes acquired by the bacteria via gain of exogenous DNA) or to the mutation of indigenous genes. The absence of known antimicrobial resistance genes (e.g. based on analysis utilising the ARBD) is not sufficient to explain the nature of the detected resistance.

The scheme proposed by the FEEDAP Panel for the antimicrobial resistance assessment of a bacterial strain used as a feed additive is shown in Figure 1.

The FEEDAP Panel considers that:

- Any bacterial strain carrying an intrinsic resistance to antimicrobial(s) presents a minimal potential for horizontal spread and thus, may be used as a feed additive.

- Any bacterial strain carrying an acquired resistance to antimicrobial(s) that is shown to be due to chromosomal mutation(s) presents a low potential for horizontal spread and generally may be used as a feed additive.

- Any bacterial strain carrying an acquired resistance to antimicrobial(s) that is shown to be due to the acquisition of genetic determinant(s) presents the greatest potential for horizontal spread and should not be used as a feed additive.

- In the absence of information on the genetic nature of a demonstrated resistance, the strain should not be used as a feed additive.
REFERENCES

The following were consulted in the updating the table with cut-off values:

D’Aimmo MR, Modesto M, Biavati B. 2007. Antibiotic resistance of lactic acid bacteria and
Bifidobacterium spp. isolated from dairy and pharmaceutical products. International Journal of
Food Microbiology 115, 35-42.

International Journal of Food Microbiology 82, 1-11.

and mechanism of resistance against macrolides, lincosamides, and streptogramins among
Enterococcus faecium isolates from food-producing animals and hospital patients in Belgium.
Microbial Drug Resistance 13, 135-141.

Delgado S, Belen Florez A, Mayo M. 2005. Antibiotic susceptibility of Lactobacillus and
Bifidobacterium species from the human gastrointestinal tract. Current Microbiology 50, 202-207.

selection of resistance to antibiotics in Lactobacillus isolates. Journal of Clinical Microbiology 49,
651-656.

profiles of Lactobacillus reuteri and Lactobacillus fermentum. Journal of Food Protection 70(2),
412-8.

EUCAST database: http://www.eucast.org/

diversity of tetracycline resistant lactic acid bacteria and their tet genes along the process line of

Hummel AS, Hertel C, Holzapfel WH, Franz CMAP. 2007. Antibiotic resistance of starter and
probiotic strains of lactic acid bacteria. Applied and Environmental Microbiology 73, 730-739.

and molecular assessment of antimicrobial resistance in Lactobacillus paracasei strains of food

culture bacteria used in Norwegian dairy products. International Journal of Food Microbiology 67
(1-2), 147-152.

Klare, I., Konstable C, Müller-Bertling S, Reissbrodt, R., Huys, G., Vancanneyt, M., Swings, J.,
Goossens, H. and Witte, W., 2005. Evaluation of new broth media for microdilution antibiotic
susceptibility testing of Lactobacilli, Pediococci, Lactococci, and Bifidobacteria. Applied and
Environmental Microbiology 71, 8982–8986.

Klare I, Konstable C, Werner G, Huys G, Vankerchoven V, Kahlmeter G, Hildebrandt B, Müller-
Bertling S, Witte W, Goossens H. 2007. Antimicrobial susceptibilities of Lactobacillus,
Pediococcus and Lactococcus human isolates and cultures intended for probiotic or nutritional use.

lactobacilli and their antibiotic resistance profiles from faecal samples of weaning piglets. Journal
of Applied Microbiology 103, 2496-2503.

