ROMANIA

The Report referred to in Article 9 of Directive 2003/99/EC

TRENDS AND SOURCES OF ZOONOSES AND ZOONOTIC AGENTS IN HUMANS, FOODSTUFFS, ANIMALS AND FEEDINGSTUFFS

including information on foodborne outbreaks, antimicrobial resistance in zoonotic agents and some pathogenic microbiological agents.

IN 2013
Country: Romania
Reporting Year: 2013

<table>
<thead>
<tr>
<th>Laboratory name</th>
<th>Description</th>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>National Sanitary Veterinary and Food Safety Authority</td>
<td>Central Competent Authority for Directive 2003/99</td>
<td>Coordination of the report production</td>
</tr>
<tr>
<td>Institute for Diagnostic and Animal Heath</td>
<td>I.D.A.H. (Institute for Diagnosis and Animal Heath) is the national reference laboratory concerning animal health</td>
<td>Data on zoonotic agents in animals, antimicrobial resistance data on isolates from animals in Romania</td>
</tr>
<tr>
<td>Institute for Hygiene and Veterinary Public Health</td>
<td>I.H.V.P.H. (Institute for Hygiene and Veterinary Public Health) is the national reference laboratory concerning the expertise of food and feed</td>
<td>Data on zoonotic agents in food and feed, antimicrobial resistance data on isolates from food and feed regarding foodborne outbreaks in Romania</td>
</tr>
<tr>
<td>County Sanitary Veterinary and Food Safety Directorates (C.S.V.F.S.D) and County Sanitary Veterinary and Food Safety Laboratories (C.S.V.F.S.L.)</td>
<td>Competent Authority for Directive 2003/99 at county level</td>
<td>CSVFSL provides animal disease surveillance at the county level, diagnostic services and research. There are 42 CSVFSD and 41 CSVFSL</td>
</tr>
</tbody>
</table>
PREFACE

This report is submitted to the European Commission in accordance with Article 9 of Council Directive 2003/99/EC*. The information has also been forwarded to the European Food Safety Authority (EFSA).

The report contains information on trends and sources of zoonoses and zoonotic agents in Romania during the year 2013.

The information covers the occurrence of these diseases and agents in humans, animals, foodstuffs and in some cases also in feedingstuffs. In addition the report includes data on antimicrobial resistance in some zoonotic agents and commensal bacteria as well as information on epidemiological investigations of foodborne outbreaks. Complementary data on susceptible animal populations in the country is also given. The information given covers both zoonoses that are important for the public health in the whole European Community as well as zoonoses, which are relevant on the basis of the national epidemiological situation. The report describes the monitoring systems in place and the prevention and control strategies applied in the country. For some zoonoses this monitoring is based on legal requirements laid down by the Community Legislation, while for the other zoonoses national approaches are applied.

The report presents the results of the examinations carried out in the reporting year. A national evaluation of the epidemiological situation, with special reference to trends and sources of zoonotic infections, is given. Whenever possible, the relevance of findings in foodstuffs and animals to zoonoses cases in humans is evaluated.

The information covered by this report is used in the annual Community Summary Report on zoonoses that is published each year by EFSA.

List of Contents

1 ANIMAL POPULATIONS 1

2 INFORMATION ON SPECIFIC ZOONOSES AND ZOONOTIC AGENTS 3

2.1 SALMONELLOSIS 4

2.1.1 General evaluation of the national situation 4

2.1.2 Salmonellosis in humans 6

2.1.3 Salmonella in foodstuffs 7

2.1.4 Salmonella in animals 127

2.1.5 Salmonella in feedingstuffs 155

2.1.6 Antimicrobial resistance in Salmonella isolates 174

2.2 CAMPYLOBACTERIOSIS 667

2.2.1 General evaluation of the national situation 667

2.2.2 Campylobacter in foodstuffs 668

2.2.3 Campylobacter in animals 673

2.2.4 Antimicrobial resistance in Campylobacter isolates 677

2.3 LISTERIOSIS 703

2.3.1 General evaluation of the national situation 703

2.3.2 Listeria in foodstuffs 704

2.4 E. COLI INFECTIONS 738

2.4.1 General evaluation of the national situation 738

2.4.2 Escherichia coli, pathogenic in animals 739

2.5 TUBERCULOSIS, MYCOBACTERIAL DISEASES 740

2.5.1 General evaluation of the national situation 740

2.5.2 Mycobacterium in animals 741

2.6 BRUCELLOSIS 747

2.6.1 General evaluation of the national situation 747

2.6.2 Brucella in animals 748

2.7 YERSINIOSIS 763

2.7.1 General evaluation of the national situation 763

2.7.2 Yersinia in animals 763

2.8 TRICHINELLOSIS 764

2.8.1 General evaluation of the national situation 764

2.8.2 Trichinellosis in humans 766

2.8.3 Trichinella in animals 767

2.9 ECHINOCOCCOSIS 775

2.9.1 General evaluation of the national situation 775

2.9.2 Echinococcosis in humans 789

2.9.3 Echinococcus in animals 790

2.10 TOXOPLASMOSIS 800

2.10.1 General evaluation of the national situation 800

2.10.2 Toxoplasma in animals 801
2.11 RABIES
 2.11.1 General evaluation of the national situation
 2.11.2 Lyssavirus (rabies) in animals
2.12 STAPHYLOCOCCUS INFECTION
 2.12.1 General evaluation of the national situation
2.13 Q-FEVER
 2.13.1 General evaluation of the national situation
 2.13.2 Coxiella (Q-fever) in animals
2.14 WEST NILE VIRUS INFECTIONS
 2.14.1 General evaluation of the national situation
 2.14.2 West Nile Virus in animals
3 INFORMATION ON SPECIFIC INDICATORS OF ANTIMICROBIAL
 3.1 ESCHERICHIA COLI, NON-PATHOGENIC
 3.1.1 General evaluation of the national situation
 3.1.2 Antimicrobial resistance in Escherichia coli, non-pathogenic
 3.2 ENTEROCOCCUS, NON-PATHOGENIC
 3.2.1 General evaluation of the national situation
 3.2.2 Antimicrobial resistance in Enterococcus, non-pathogenic isolates
4 INFORMATION ON SPECIFIC MICROBIOLOGICAL AGENTS
 4.1 CRONOBACTER
 4.1.1 General evaluation of the national situation
 4.1.2 Cronobacter in foodstuffs
 4.2 HISTAMINE
 4.2.1 General evaluation of the national situation
 4.2.2 Histamine in foodstuffs
 4.3 STAPHYLOCOCCAL ENTEROTOXINS
 4.3.1 General evaluation of the national situation
 4.3.2 Staphylococcal enterotoxins in foodstuffs
5 FOODBORNE OUTBREAKS
1. ANIMAL POPULATIONS

The relevance of the findings on zoonoses and zoonotic agents has to be related to the size and nature of the animal population in the country.
A. Information on susceptible animal population

Sources of information
Based on statistical research on livestock and livestock production in 2013, made by the National Institute of Statistics, at the date of December 1, 2013, compared to the same date of 2012, the livestock of bovine, sheep and goats have increased and livestock of swine and poultry have declined.

Data source is the annual survey (EPA) made by National Institute of Statistic, on livestock and livestock production in 2013, according to the European Parliament and Council Regulation no. 1165/2008/CE statistics on livestock and meat and our National Data Base.

Dates the figures relate to and the content of the figures
According to the National Institute of Statistics in December 2013, compared to the same month of the previous year, the number of slaughtered animals and poultry decreased for pigs, sheep and goats, remained constant for cattle and increased for poultry; the carcass weight decreased for cattle and pigs and increased for sheep and goats and poultry. Compared to 2012, in 2013 the number of slaughtered animals and poultry decreased for cattle and increased for pigs, sheep and goats and poultry; the carcass weight increased for all species.

Definitions used for different types of animals, herds, flocks and holdings as well as the types covered by the information
Definitions used for the purposes of monitoring and eradication of zoonoses are in compliance with the definitions determined by the Regulation 178/2002, Regulation 2160/2003 and Directives: 2003/99, 64/432, 90/539.
Holding: any establishment, construction or, in the case of an open air farm, any place in which animals are held, kept or handled.
The localization of the holding is based on the address and the coordinates of the geographical entity. A geographical entity is a unit of one building or a complex of buildings included grounds and territories where an animal species is or could be held.
Flock: a single group or multiple groups of animals which share the same production unit (i.e. using the same air-space or range area). Where housing systems are not typical, the situation is likely to be assessed on a case by case basis. Multiple groups of animals which have ‘beak-to-beak’ contact (inside or outside the house) are likely to be treated as a single flock for the same epidemiological reasons.

National evaluation of the numbers of susceptible population and trends in these figures
The administrative boundaries are the boundaries of the country. Romania is administrative divided in 42 counties.

Additional information
These statistics and numerical values may vary from other national or E.U. official sources of animal population records.
2. INFORMATION ON SPECIFIC ZOONOSES AND ZOONOTIC AGENTS

Zoonoses are diseases or infections, which are naturally transmissible directly or indirectly between animals and humans. Foodstuffs serve often as vehicles of zoonotic infections. Zoonotic agents cover viruses, bacteria, fungi, parasites or other biological entities that are likely to cause zoonoses.
2.1 SALMONELLOSIS

2.1.1 General evaluation of the national situation

A. General evaluation

History of the disease and/or infection in the country
Salmonella have been recognized as important pathogens. Salmonella Enteritidis and Salmonella Typhimurium have accounted for the majority of cases of human Salmonella for many years and have consistently been the most commonly implicated pathogens in general outbreaks of food-borne disease. Salmonella in Gallus gallus breeding flocks.

In 2007 in Romania was put in place the National Control Programme of S. Enteritidis, S. Typhimurium, S. Virchow, S. Infantis and S. Hadar in breeder flocks of Gallus gallus. This programme has been approved by the Commission with the Decision 2006/876/EC.

In 2008 in Romania the National Programme for Control of S. Enteritidis, S. Typhimurium, S. Virchow, S. Infantis and S. Hadar in breeder flocks of Gallus gallus and National Control Programme for S. Enteritidis and S. Typhimurium in laying hens of Gallus gallus was approved by the Commission with the Decision 782/2007.

In 2009 in Romania the National Programme for Control of S. Enteritidis, S. Typhimurium, S. Virchow, S. Infantis and S. Hadar in breeder flocks of Gallus gallus, National Control Programme for S. Enteritidis and S. Typhimurium in laying hens of Gallus gallus, National Control programme for Salmonella Enteritidis and S. Typhimurium was approved by the Commission with the Decision 897/2008.

In 2010 the National Programme for Control of S. Enteritidis, S. Typhimurium, S. Virchow, S. Infantis and S. Hadar in breeder flocks of Gallus gallus, National Control Programme for S. Enteritidis and S. Typhimurium in laying hens of Gallus gallus, the National Control programme for Salmonella Enteritidis and S. Typhimurium and the National Control Programme for S. Enteritidis and S. Typhimurium in turkeys were approved by the Commission with the Decision 883/2010.

Salmonella in geese, ducks, pigs, cattle.

There is not a national control programme in place in these animal species.

National evaluation of the recent situation, the trends and sources of infection
The Romanian National Surveillance Programme published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), yearly updated which is according with the provisions of Regulation 2005/2073/EC.

In 2013, 436 strains of Salmonella spp. were isolated, from which: 219 meat from broilers and products thereof, 93 meat from pig and products thereof, 64 meat, mixed meat, 42 meat from turkey and products thereof, 10 cheeses, 6 meat from bovine; 1 meat from sheep and 1 strain egg.

Relevance of the findings in animals, feedingstuffs and foodstuffs to human cases (as a source of infection)
Romania - 2013 Report on trends and sources of zoonoses

Comparison of the Salmonella sero-types found in animals, feeding stuffs, food and human helps to suggest possible sources of infection in the food chain.

Additional information

Salmonella in feeding stuffs:
The feeding stuffs for poultry and other animals must be free from Salmonella. The samples of feeding stuffs are sent for testing by the owners of poultry farms.
Veterinary Inspection conducts random, regular inspection in feeding stuffs production plants, in particular of microbiological standards, types of internal controls used by the owners of these plants to guarantee the appropriate quality of final product. In addition, it was foreseen that within the National Plan for the official control of animal feedstuffs in the scope of the supervision of Veterinary Inspection which is approved every year, samples are going to be randomly taken from the feedstuffs production plants, holdings and trading and tested for Salmonella.

Operators duties in case of detection of inappropriate microbiological quality of product
1. notifying the District Veterinary Officer on the results of sample testing and the batch of products from which they were taken
2. secondary processing of contaminated batch, according to an indicated method, under supervision of Veterinary Inspection
3. increasing the frequency of sampling

In 2013, 27 strains of Salmonella spp. were isolated, from which: 13 feed material of land animal origin, 10 compound feedingstuffs for poultry - laying hens, 6 compound feedingstuffs for pigs

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
2.1.2 Salmonellosis in humans

A. Salmonellosis in humans

National evaluation of the recent situation, the trends and sources of infection in the year 2009 were 3 outbreaks due to Salmonella infection in Romania.
2.1.3 Salmonella in foodstuffs

A. Salmonella spp. in broiler meat and products thereof

Monitoring system
Sampling strategy

At slaughterhouse and cutting plant

According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013) all food industry establishments are classified into 3 categories, based on the risk assessment provided by the official vets acting at regional/county Sanitary Veterinary and Food Safety Directorates level (i.e. category III - high risk, category II - medium risk, and category I - low risk).

According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants on the base of risk assessment of establishments, as follows:

- samples on broiler carcasses surfaces for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of whole broiler carcasses for testing of Salmonella: - once a month (monthly) at slaughterhouses in category III, II and I, in the framework of the Romanian national monitoring program of Salmonella in broilers at slaughterhouse level, issued by the Romanian National Sanitary Veterinary and Food Safety Authority and included into the Romanian National Surveillance Program approved by Order 43/2012;

- samples of broiler meat for Salmonella testing:
 - once a quarter (quarterly) at cutting plants in category III;
 - once a semester (twice/year) at cutting plants in category II;
 - once a year (annually) at cutting plants in category I.

At meat processing plant

According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets of the meat processing plant on the base of risk assessment of establishments, as follows:

- samples of broiler meat products for Salmonella testing:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
- once a year (annually) at meat processing plants in category I;

- samples of broiler minced meat for Salmonella testing:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;

- samples of broiler meat preparation for Salmonella testing:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

According to the provisions of the Regulation 2005/2073/EC, with subsequent amendments and completions, the food business operators of establishments producing minced meat, meat preparations or mechanically separated meat shall take samples for microbiological analysis at least once a week. In view to ensure that each day of the week is covered the day of sampling shall be changed each week. In the case of sampling for Salmonella analyses of minced meat, meat preparations and carcasses, the frequency may be reduced to fortnightly if satisfactory results have been obtained for 30 consecutive weeks.

At retail

According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets annually and in case of consumer complaints, suspicions or food borne outbreaks.

Frequency of the sampling

At slaughterhouse and cutting plant

Other: the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants on the base of risk assessment of establishments, as follows:

- samples on broiler carcasses surfaces for Salmonella testing:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of whole broiler carcasses for Salmonella testing: - once a month (monthly) at slaughterhouses in category III, II and I, in the framework of the Romanian national monitoring program for Salmonella in broilers at slaughterhouse level, issued by the Romanian National Sanitary Veterinary and Food Safety Authority and included into the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013).

- samples of broiler meat for testing Salmonella:
 - once a quarter (quarterly) at cutting plants in category III;
 - once a semester (twice/year) at cutting plants in category II;
 - once a year (annually) at cutting plants in category I.
At meat processing plant

- samples of broiler meat products for Salmonella testing:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;

- samples of broiler minced meat and mechanically separated meat (MSM) derived from broilers for Salmonella testing:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;

-samples of broiler meat preparation for Salmonella testing:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

At retail

- Other: annually and in case of consumer complaints, suspicions or food borne outbreaks.

Type of specimen taken

At slaughterhouse and cutting plant

- Other: surface of broiler carcasses, whole broiler carcasses, fresh meat including muscle tissue.

At meat processing plant

- Other: meat products, meat preparation, minced meat, mechanically separated meat (MSM).

At retail

- Other: raw material (fresh meat) and finish products (meat products, meat preparations, minced meat).

Methods of sampling (description of sampling techniques)

At slaughterhouse and cutting plant

According to the provisions of Regulation 2005/2073/EC, with subsequent amendments and completions, for the Salmonella analyzes, a minimum of 15 carcass were sampled at random during each sampling session and after chilling. A piece of approximately 10 g from neck skin was obtained from each carcass. On each occasion the neck skin samples from three carcasses were pooled before examination in order to form 5 × 25 g final samples.

For broiler meat including fresh meat (muscle tissue) at slaughterhouse level and for broiler at cutting plant level the final sample it is prepared in the lab and consists of at least 25 grams of each product.
Romania - 2013 Report on trends and sources of zoonoses

At meat processing plant

There are 2 situations:
- for the matrix which are found in Regulation 2005/2073 a sample consists of 5 pooled sample.
- for the matrix which are not found in Regulation 2005/2073, but are mentioned in The National Surveillance Program, a tested unit consists of 1 sample.

At retail

According to the provision of Regulation 2073/2005/EC, in the framework of National Surveillance Program and of food business operators own check programs.

Definition of positive finding

At slaughterhouse and cutting plant

Broiler meat and products thereof are considered to be positive when Salmonella spp. is isolated

At meat processing plant

Broiler meat and products thereof are considered to be positive when Salmonella spp. is isolated

At retail

Broiler meat and products thereof are considered to be positive when Salmonella spp. is isolated

Diagnostic/analytical methods used

At slaughterhouse and cutting plant

Bacteriological method: EN ISO 6579

At meat processing plant

Bacteriological method: EN ISO 6579

At retail

Bacteriological method: EN ISO 6579

Preventive measures in place

Control program/mechanisms

The control program/strategies in place

The Romanian Surveillance Program is a national program, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013). yearly updated and the susceptibility testing of Salmonella is a part of the program.

Measures in case of the positive findings or single cases

A positive laboratory finding of Salmonella spp. it is followed by a notification to RASFF to all levels (central, regional and local). Then all the food chain it is controlled in order to identify the source of contamination.

The contaminated batches of broiler meat are traced back and detent under restrictions, until the results of Salmonella serotyping is communicated and depending on the serotype of Salmonella the different
If the sample of broiler meat is found positive for Salmonella Enteritidis and/or Salmonella Typhimurium the whole batch of broiler meat is declared unfitted for human consumption and are denaturated.

If the sample of broiler meat is found positive for Salmonella spp., other than Salmonella Enteritidis and Salmonella Typhimurium, the broiler meat will admitted for human consumption only if it is undergone to an adequate heat treatment, under veterinary surveillance and if the results of the microbiological analysis of the heat treated broiler meat is found negative for Salmonella spp.

If the sample of broiler meat products is found positive for Salmonella spp. the whole batch of broiler meat products are declared unfitted for human consumption and are denaturated.

Notification system in place
Laboratories have to notify the positive results to the regional and central authority and the regional authority will notify the food business operator.

National evaluation of the recent situation, the trends and sources of infection

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
B. Salmonella spp. in pig meat and products thereof

Monitoring system

Sampling strategy

At slaughterhouse and cutting plant

According to the provisions of the Romanian National Surveillance Program approved by National Sanitary Veterinary and Food Safety Authority President Order no 43/2012 (also the Order was applicable for 2013) all food industry establishments are classified into 3 categories, based on the risk assessment provided by the official vets acting at regional/county Sanitary Veterinary and Food Safety Directorates level (i.e. category III - high risk, category II - medium risk, and category I - low risk).

According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants on the base of risk assessment of establishments, as follows:

- samples on pig carcasses surfaces for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of pig meat including fresh meat (muscle tissue) and offal (liver, kidney) for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of pig minced meat for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at cutting plants in category I.

At meat processing plant

According to the provisions of the Romanian National Surveillance Program approved by National Sanitary Veterinary and Food Safety Authority President Order no 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at meat processing plants, on the base of risk assessment of establishments, as follows:

- samples of pig meat products for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

- samples of pig minced meat for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
- once a year (annually) at meat processing plants in category I.

- samples of pig meat preparation for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

According to the provisions of the Regulation 2005/2073/EC, with subsequent amendments and completions, the food business operators of establishments producing minced meat, meat preparations or mechanically separated meat shall take samples for microbiological analysis at least once a week. The day of sampling shall be changed each week to ensure that each day of the week is covered.

In the case of sampling for Salmonella analyses of minced meat, meat preparations and carcases, the frequency may be reduced to fortnightly if satisfactory results have been obtained for 30 consecutive weeks.

At retail

According to the provisions of the Romanian National Surveillance Program approved by National Sanitary Veterinary and Food Safety Authority President Order no 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets annually and in case of consumer complaints, suspicions or food borne outbreaks.

Frequency of the sampling

At slaughterhouse and cutting plant

Other: the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants on the base of risk assessment of establishments, as follows:

- samples on pig carcasses surfaces for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of pig meat including fresh meat (muscle tissue) and offal (liver, kidney) for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

-samples of pig meat for testing of Salmonella:
 - once a quarter (quarterly) at cutting plants in category III;
 - once a semester (twice/year) at cutting plants in category II;
 - once a year (annually) at cutting plants in category I.

At meat processing plant

Other: According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at meat processing plants, on the base of risk assessment of establishments, as follows:
- samples of pig meat products for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

- samples of pig minced meat for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

- samples of pig meat preparation for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

At retail
 Other: annually and in case of consumer complaints, suspicions or food borne outbreaks.

Type of specimen taken
 At slaughterhouse and cutting plant
 Other: surface of carcass, fresh meat including muscle tissue and offal (liver, kidney)

 At meat processing plant
 Other: meat products, meat preparation, minced meat

At retail
 Other: raw material (fresh meat) and finish products (meat products, meat preparations, minced meat)

Methods of sampling (description of sampling techniques)
 At slaughterhouse and cutting plant

According to the provisions of the Regulation 2005/2073/EC, with subsequent amendments and completions, five pig carcases shall be sampled at random during each sampling session. Sample sites must be selected taking into account the slaughter technology used in each plant.

The sampling for Salmonella analyses is performed using an abrasive sponge sampling method. Areas most likely to be contaminated shall be selected. The total sampling area shall cover a minimum of 400 cm².

For pig meat including fresh meat (muscle tissue) and offal (liver, kidney) at slaughterhouse level and for pig meat at cutting plant level the final sample it is obtained in the lab and consists of at least 25 grams of each product.

At meat processing plant

There are 2 situations:
- for the matrix which are found in Regulation 2005/2073 a sample consists of 5 pooled samples were
At retail

According to the provision of Regulation 2073/2005/EC, in the framework of National Surveillance Programme and of food business operators own control programmes.

Definition of positive finding

At slaughterhouse and cutting plant

Pig meat and products thereof are considered to be positive when Salmonella spp. is isolated

At meat processing plant

Pig meat and products thereof are considered to be positive when Salmonella spp. is isolated

At retail

Pig meat and products thereof are considered to be positive when Salmonella spp. is isolated

Diagnostic/analytical methods used

At slaughterhouse and cutting plant

Bacteriological method: EN ISO 6579

At meat processing plant

Bacteriological method: EN ISO 6579

At retail

Bacteriological method: EN ISO 6579

Control program/mechanisms

The control program/strategies in place

The Romanian Surveillance Program is a national program, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013) yearly updated and the susceptibility testing of Salmonella is a part of the program.

Measures in case of the positive findings or single cases

A positive laboratory finding of Salmonella spp. is followed by a notification by RASFF to all levels (central, regional and local). Then all the food chain it is controlled in order to identify the source of contamination.

The contaminated batches of pig meat are traced back and detent under restrictions, until the results of Salmonella serotyping is communicate and depending on the serotype of Salmonella the different measures are applied.

If the sample of pig meat was found positive for Salmonella Enteritidis and/or Salmonella Typhimurium then the whole batch of pig meat is declared unfit for human consumption and is denatured.
If a sample of pig meat is found positive for Salmonella spp., other than Salmonella Enteritidis and Salmonella Typhimurium, the pig meat can be admitted for human consumption only if it is undergone to an adequate heat treatment, under veterinary surveillance and if the results of microbiological analysis of the pig meat heat treated are found negative for Salmonella spp.

If a sample of pig meat products is found positive for Salmonella spp. the whole batch of pig meat products are declared unfitted for human consumption and is denaturated.

Notification system in place

The laboratory has to notify the positive result to the regional and central authority and the regional authority will notify the food business operator.

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
C. Salmonella spp. in bovine meat and products thereof

Monitoring system

Sampling strategy

At slaughterhouse and cutting plant

According to the provisions of the Romanian National Surveillance Program approved by Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013) all food industry establishments are classified into 3 categories, based on the risk assessment provided by the official vets acting at regional/county Sanitary Veterinary and Food Safety Directorates level (i.e. category III - high risk, category II - medium risk, and category I - low risk).

According to the provisions of the Romanian National Surveillance Program approved by Order 43/2012 (also the Order was applicable for 2013), as amended, the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants on the base of risk assessment of establishments, as follows:

- samples on bovine carcasses surfaces for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of bovine meat including fresh meat (muscle tissue) and offal (liver, kidney) for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of bovine meat for testing of Salmonella:
 - once a quarter (quarterly) at cutting plants in category III;
 - once a semester (twice/year) at cutting plants in category II;
 - once a year (annually) at cutting plants in category I.

At meat processing plant

According to the provisions of the Romanian National Surveillance Program approved by Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at meat processing plant on the base of risk assessment of establishments, as follows:

- samples of bovine meat products for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;
Romania - 2013 Report on trends and sources of zoonoses

- samples of bovine minced meat for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;

-samples of bovine meat preparation for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

According to the provisions of the Regulation 2005/2073/EC, with subsequent amendments and completions, the food business operators of establishments producing minced meat, meat preparations or mechanically separated meat shall take samples for microbiological analysis at least once a week. The day of sampling shall be changed each week to ensure that each day of the week is covered.

In the case of sampling for Salmonella analyses of minced meat, meat preparations and carcasses, the frequency may be reduced to fortnightly if satisfactory results have been obtained for 30 consecutive weeks.

At retail

According to the provisions of the Romanian National Surveillance Program approved by Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013) the samples for monitoring and testing of Salmonella are compulsory taken by the official vets annually and in case of consumer complaints, suspicions or food borne outbreaks.

Frequency of the sampling

At slaughterhouse and cutting plant

Other: the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants on the base of risk assessment of establishments, as follows:

- samples on bovine carcasses surfaces for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

- samples of bovine meat including fresh meat (muscle tissue) and offal (liver, kidney) for testing of Salmonella:
 - once a month (monthly) at slaughterhouses in category III;
 - once a quarter (quarterly) at slaughterhouses in category II;
 - once a semester (twice/year) at slaughterhouses in category I;

-samples of bovine meat for testing of Salmonella:
 - once a quarter (quarterly) at cutting plants in category III;
 - once a semester (twice/year) at cutting plants in category II;
At meat processing plant

Other: the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at meat processing plant on the base of risk assessment of establishments, as follows:

- samples of bovine meat products for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;

- samples of bovine minced meat for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I;

-samples of bovine meat preparation for testing of Salmonella:
 - once a quarter (quarterly) at meat processing plants in category III;
 - once a semester (twice/year) at meat processing plants in category II;
 - once a year (annually) at meat processing plants in category I.

At retail

Other: annually and in case of consumer complaints, suspicions or food borne outbreaks.

Type of specimen taken

At slaughterhouse and cutting plant

Other: surface of carcass, fresh meat (muscle tissue), offal (liver, kidney).

At meat processing plant

Other: meat products, meat preparation, minced meat

At retail

Other: raw material (fresh meat) and finish products (meat products, meat preparations, minced meat)

Methods of sampling (description of sampling techniques)

At slaughterhouse and cutting plant

According to the provisions of the Regulation 2005/2073/EC, with subsequent amendments and completions, five bovine carcases shall be sampled at random during each sampling session. Sample sites must be selected taking into account the slaughter technology used in each plant.

The sampling for Salmonella analyses is performed using an abrasive sponge sampling method. Areas most likely to be contaminated shall be selected. The total sampling area shall cover a minimum of 400 cm².

For bovine meat including fresh meat (muscle tissue) and offal (liver, kidney) at slaughterhouse level and for bovine meat at cutting plant level the final sample it is obtained in the lab and consists of 25 grams of each product.
At meat processing plant

There are 2 situations:
- for the matrix which are found in Regulation 2005/2073 a sample consists of 5 pooled samples.
- for the matrix which are not found in Regulation 2005/2073, but are mentioned in The National Surveillance Program Order, a tested unit consists of 1 sample.

At retail

According to the provision of Regulation 2073/2005/EC, in the framework of National Surveillance Program and of food business operators own control program.

Definition of positive finding
At slaughterhouse and cutting plant

Bovine meat and products thereof are considered to be positive when Salmonella spp. is isolated

At meat processing plant

Bovine meat and products thereof are considered to be positive when Salmonella spp. is isolated

At retail

Bovine meat and products thereof are considered to be positive when Salmonella spp. is isolated

Diagnostic/analytical methods used
At slaughterhouse and cutting plant

Bacteriological method: EN ISO 6579

At meat processing plant

Bacteriological method: EN ISO 6579

At retail

Bacteriological method: EN ISO 6579

Control program/mechanisms

The control program/strategies in place

The Romanian Surveillance Program is a national program, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013) yearly updated and the susceptibility testing of Salmonella is a part of the program.

Measures in case of the positive findings or single cases
A positive laboratory finding of Salmonella spp. it is followed by a notification to RASFF to all levels (central, regional and local). Then all the food chain it is controlled in order to identify the source of contamination.

The contaminated batches of bovine meat are traced back and detent under restrictions, until the results of Salmonella serotyping is communicated and depending on the serotype of Salmonella the different measures are applied.

If the sample of bovine meat is found positive for Salmonella Enteritidis and/or Salmonella Typhimurium the whole batch of bovine meat is declared unfitted for human consumption and are denaturated.

If the sample of bovine meat is found positive for Salmonella spp., other than Salmonella Enteritidis and Salmonella Typhimurium, the bovine meat will admitted for human consumption only if it is undergone to an adequate heat treatment, under veterinary surveillance and if the results of the microbiological analysis of the heat treated bovine meat is found negative for Salmonella spp.

If the sample of bovine meat products is found positive for Salmonella spp., the whole batch of bovine meat products are declared unfitted for human consumption and are denaturated.

Notification system in place

Laboratory has to notify the positive result to the regional and central authority and the regional authority will notify the food business operator.

Results of the investigation

Relevance of the findings in animals to findings in foodstuffs and to human cases (as a source of infection)

Bovine meat is not considered to be an important source of human cases in Romania.

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
D. Salmonella spp. in turkey meat and products thereof

Monitoring system

Sampling strategy

At slaughterhouse and cutting plant

According to the provisions of the Romanian National Surveillance Program approved by National Sanitary Veterinary and Food Safety Authority President Order no 43/2012 (also the Order was applicable for 2013), the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at slaughterhouses and cutting plants as follows:
- samples on turkey carcasses surfaces for testing of Salmonella - once a month (monthly) at slaughterhouse;
- samples of turkey meat including fresh meat (muscle tissue) and offal (liver) for testing of Salmonella - once a month (monthly) at slaughterhouse;
- samples of turkey meat for testing of Salmonella - once a quarter (trimester) at cutting plant.

At meat processing plant

According to the provisions of the Romanian National Surveillance Program approved by National Sanitary Veterinary and Food Safety Authority President Order no 43/2012 (also the Order was applicable for 2013), the samples for monitoring and testing of Salmonella are compulsory taken by the official vets acting at meat processing plant as follows:
- samples of meat products for testing of Salmonella - once a quarter (trimester) at meat processing plant;
- samples of turkey minced meat for testing of Salmonella - once a quarter (trimester) at meat processing plant;
- samples of turkey meat preparation for testing of Salmonella - once a quarter (trimester) at meat processing plant.

According to the provisions of the Regulation 2005/2073/EC, with subsequent amendments and completions, the food business operators of establishments producing minced meat, meat preparations or mechanically separated meat shall take samples for microbiological analysis at least once a week. The day of sampling shall be changed each week to ensure that each day of the week is covered.

In the case of sampling for Salmonella analyzes of minced meat, meat preparations and carcasses, the frequency may be reduced to fortnightly if satisfactory results have been obtained for 30 consecutive weeks.

At retail

According to the provisions of the Romanian National Surveillance Program approved by National Sanitary Veterinary and Food Safety Authority President Order no 43/2012 (also the Order was applicable for 2013), the samples for monitoring and testing of Salmonella are compulsory taken by the official vets annually and in case of consumer complaints, suspicions or food borne outbreaks.

Frequency of the sampling

At slaughterhouse and cutting plant

Other: samples of turkey carcasses surfaces - once a month at slaughterhouse; samples of turkey meat including fresh meat (muscle tissue) and offal (liver) - once a month at slaughterhouse; samples of turkey meat - once a quarter at cutting plant.

At meat processing plant

Other: samples of meat products, minced meat and meat preparation - once a quarter.
At retail
Other: annually and in case of consumer complaints, suspicions or food borne outbreaks.

Type of specimen taken
At slaughterhouse and cutting plant
Other: surface of carcass, fresh meat including muscle tissue and offal (liver).

At meat processing plant
Other: meat products, meat preparation, minced meat, mechanically separated meat (MSM).

At retail
Other: raw material (fresh meat) and finish products (meat products, meat preparations, minced meat).

Methods of sampling (description of sampling techniques)
At slaughterhouse and cutting plant
According to the provisions of Regulation 2005/2073/EC, with subsequent amendments and completions, for the Salmonella analysis, a minimum of 15 carcasses were randomly sampled during each sampling session and after chilling. A piece of approximately 10 g from neck skin was obtained from each carcass. On each occasion the neck skin samples from three carcasses were pooled before examination in order to form 5 × 25 g final samples.
For turkey meat including fresh meat (muscle tissue) and offal (liver) at slaughterhouse level and for turkey meat at cutting plant level the final sample it is obtained in the lab and consists of at least 25 grams of each product.

At meat processing plant
There are 2 situations:
-for the matrix which are found in Regulation 2005/2073 a sample consists of 5 pooled samples.
-for the matrix which were not found in Regulation 2005/2073, but are found in The National Surveillance Program, a sample consists of 1 unit.

At retail
According to the provision of Regulation 2073/2005/EC, in the framework of National Surveillance Program and of food business operators own control programs.

Definition of positive finding
At slaughterhouse and cutting plant
Turkey meat and products thereof are considered to be positive when Salmonella spp. is isolated

At meat processing plant
Turkey meat and products thereof are considered to be positive when Salmonella spp. is isolated

At retail
Turkey meat and products thereof are considered to be positive when Salmonella spp. is isolated

Diagnostic/analytical methods used
At slaughterhouse and cutting plant
Bacteriological method: EN ISO 6579

At meat processing plant
Preventive measures in place

Control program/mechanisms

The control program/strategies in place

The Romanian Surveillance Program is a national program, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), yearly updated and the susceptibility testing of Salmonella is a part of the program.

Measures in case of the positive findings or single cases

A positive laboratory finding of Salmonella spp. it is followed by a notification to RASFF to all levels (central, regional and local). Then all the food chain it is controlled in order to identify the source of contamination.

The contaminated batches of turkey meat are traced back and detent under restrictions, until the results of Salmonella serotyping is communicated and depending on the serotype of Salmonella the different measures are applied.

If the sample of turkey meat is found positive for Salmonella Enteritidis and/or Salmonella Typhimurium the whole batch of turkey meat is declared unfit for human consumption and are denaturated.

If the sample of turkey meat is found positive for Salmonella spp., other than Salmonella Enteritidis and Salmonella Typhimurium, the turkey meat will admitted for human consumption only if it is undergone to an adequate heat treatment, under veterinary surveillance and if the results of the microbiological analysis of the heat treated turkey meat is found negative for Salmonella spp.

If the sample of turkey meat products is found positive for Salmonella spp. the whole batch of turkey meat products are declared unfit for human consumption and are denaturated.

Notification system in place

Laboratories have to notify the positive results to the regional and central authority and the regional authority will notify the food business operator.

Results of the investigation

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
E. Salmonella spp. in eggs and egg products

Monitoring system

Sampling strategy

According to the provisions of the Romanian National Surveillance Program approved by Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), the samples for monitoring and testing of Salmonella are compulsory taken by the official vets in the egg establishments as follows:
- samples of eggs for testing of Salmonella - once a quarter (trimester) at egg packing center (EPC);
- samples of eggs and finish products for testing of Salmonella - once a quarter (trimester) at the establishments producing liquid egg;
- samples of eggs and finish products for testing of Salmonella - once a quarter (trimester) at the egg processing establishments.

Frequency of the sampling

Eggs at egg packing centres (foodstuff based approach)
- Every 3 months

Eggs at retail
- Once a year and in case of consumer complaints, suspicions or food borne outbreaks.

Raw material for egg products (at production plant)
- Every 3 months

Egg products (at production plant and at retail)
- Egg products at production plant: Every 3 months; Egg products at retail: Once a year and in case of consumer complaints, suspicions or food borne outbreaks.

Type of specimen taken

Eggs at egg packing centres (foodstuff based approach)
- Surface of egg shells and mixture of white and yellow.

Eggs at retail
- Surface of egg shells and mixture of white and yolk.

Raw material for egg products (at production plant)
- Other: egg white, egg yolk and mixture of white and yolk.

Egg products (at production plant and at retail)
- Egg products: Other: egg white, egg yolk and mixture of white and yolk.

Methods of sampling (description of sampling techniques)

Eggs at retail

Raw material for egg products (at production plant)
Romania - 2013 Report on trends and sources of zoonoses

Egg products (at production plant and at retail)

Definition of positive finding
Eggs at egg packing centres (foodstuff based approach)

Eggs and egg products are considered to be positive when Salmonella spp. is isolated

Eggs at retail

Eggs and egg products are considered to be positive when Salmonella spp. is isolated

Raw material for egg products (at production plant)

Eggs and egg products are considered to be positive when Salmonella spp. is isolated

Egg products (at production plant and at retail)

Eggs and egg products are considered to be positive when Salmonella spp. is isolated

Diagnostic/analytical methods used
Eggs at egg packing centres (foodstuff based approach)

Bacteriological method: EN ISO 6579

Eggs at retail

Bacteriological method: EN ISO 6579

Raw material for egg products (at production plant)

Bacteriological method: EN ISO 6579

Egg products (at production plant and at retail)

Bacteriological method: EN ISO 6579

Preventive measures in place

Control program/mechanisms
The control program/strategies in place

The Romanian Surveillance Program is a national program, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), yearly updated and the susceptibility testing of Salmonella is a part of the program.

Measures in case of the positive findings
A positive laboratory finding of Salmonella spp. it is followed by a notification to RASFF to all levels (central, regional and local). Then all the food chain it is controlled in order to identify the source of contamination.

The contaminated batches of eggs and egg products are traced back and detent under restrictions, until the results of Salmonella serotyping is communicated and depending on the seotype of Salmonella the
If the sample of eggs and egg products is found positive for Salmonella Enteritidis and/or Salmonella Typhimurium, the whole batch of eggs and egg products is declared unfit for human consumption and are denaturated.

If the sample of eggs and egg products is found positive for Salmonella spp., other than Salmonella Enteritidis and Salmonella Typhimurium, the eggs and egg products will be admitted for human consumption only if it is undergone to an adequate heat treatment, under veterinary surveillance and if the results of the microbiological analysis of the heat treated eggs and egg products is found negative for Salmonella spp.

Notification system in place
Laboratories have to notify the positive results to the regional competent authority and the regional authority will notify the food business operator.

Results of the investigation

Relevance of the findings in animals to findings in foodstuffs and to human cases (as a source of infection)

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>104</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Processing plant - Surveillance</td>
<td>Selective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>36</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>94</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>14</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - cooked, ready-to - eat - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - Hospital or medical care facility - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>81</td>
<td>49</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>515</td>
<td>18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>88</td>
<td>10</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>320</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>68</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>52</td>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Conservation Facilities - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>29</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>36</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>178</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>122</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>59</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>96</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>729</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>111</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>64</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Conservation Facilities - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>34</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>143</td>
<td>35</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>99</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>126</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>38</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>55</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>44</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>73</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>75</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>31</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>36</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>31</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > neck skin</td>
<td>Batch</td>
<td>25 Gram</td>
<td>29</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>16</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - mechanically separated meat (MSM) - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>42</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - birds - meat preparation - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source and Product Description</td>
<td>S. 1,4,[5],12:i: - Salmonella spp., unspecified</td>
<td>S. Bredeney</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Grampian</td>
<td>S. Hadar</td>
<td>S. Infantis</td>
<td>S. Kentucky</td>
<td>S. Kortrijk</td>
<td>S. Kottbus</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
<td>------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - Hospital or medical care facility - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Product Description</td>
<td>S. 1,4,[5],12:i:</td>
<td>Salmonella spp., unspecified</td>
<td>S. Bredeney</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Grampian</td>
<td>S. Hadar</td>
<td>S. Infantis</td>
<td>S. Kentucky</td>
<td>S. Kortrijk</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Conservation Facilities - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Product Description</td>
<td>S. 1,4,[5],12:i:</td>
<td>Salmonella spp., unspecified</td>
<td>S. Bredeney</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Grampian</td>
<td>S. Hadar</td>
<td>S. Infantis</td>
<td>S. Kentucky</td>
<td>S. Kortrijk</td>
</tr>
<tr>
<td>---</td>
<td>-----------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>---------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>------------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Conservation Facilities - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>S. 1,[4],[5],12:i:</td>
<td>Salmonella spp., unspecified</td>
<td>S. Bredeney</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Grampian</td>
<td>S. Hadar</td>
<td>S. Infantis</td>
<td>S. Kentucky</td>
<td>S. Kortrijk</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>-----------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>----------</td>
<td>-------------</td>
<td>-------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>S. 1,4,[5],12:i:</td>
<td>Salmonella spp., unspecified</td>
<td>S. Bredeney</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Grampian</td>
<td>S. Hadar</td>
<td>S. Infantis</td>
<td>S. Kentucky</td>
<td>S. Kortrijk</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>-------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Catering - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>

S. 1,4,[5],12:i: - Salmonella spp., unspecified.
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Product Type</th>
<th>Surveillance Area</th>
<th>Surveillance Type</th>
<th>Salmonella spp.</th>
<th>S. Bredeney</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Grampian</th>
<th>S. Hadar</th>
<th>S. Infantis</th>
<th>S. Kentucky</th>
<th>S. Kortrijk</th>
<th>S. Kottbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Hospital or medical care facility</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Processing plant</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Retail</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Slaughterhouse</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - chilled - Slaughterhouse</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - chilled - Slaughterhouse</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - chilled - Slaughterhouse</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - chilled - Slaughterhouse</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Processing plant</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Retail</td>
<td>Surveillance</td>
<td></td>
<td>S. 1.4,[5],12:i:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Product Description</th>
<th>S. 1,4,[5],12:i: Salmonella spp., unspecified</th>
<th>S. Bredeney</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Grampian</th>
<th>S. Hadar</th>
<th>S. Infantis</th>
<th>S. Kentucky</th>
<th>S. Kortrijk</th>
<th>S. Kottbus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from turkey - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Meat from turkey - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - mechanically separated meat (MSM) - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Meat from turkey - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - birds - meat preparation - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Location</th>
<th>Surveillance Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Processing plant</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat</td>
<td>Processing plant</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat Retail</td>
<td>Retail</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked</td>
<td>Processing plant</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - Slaughterhouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - cooked, ready-to-eat</td>
<td>Retail</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - Hospital or medical care facility</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2

S. Virchow
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>S. Virchow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Conservation Facilities - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Processing plant - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Description</th>
<th>Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Conservation Facilities</td>
<td>Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Retail</td>
<td>Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - frozen - Retail</td>
<td>Surveillance</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation intended to be eaten</td>
<td>Surveillance</td>
</tr>
<tr>
<td>cooked - chilled - Cutting plant</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation intended to be eaten</td>
<td>Surveillance</td>
</tr>
<tr>
<td>cooked - chilled - Cutting plant</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation intended to be eaten</td>
<td>Surveillance</td>
</tr>
<tr>
<td>cooked - chilled - Processing plant</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat preparation intended to be eaten</td>
<td>Surveillance</td>
</tr>
<tr>
<td>cooked - chilled - Processing plant</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat</td>
<td>Catering</td>
</tr>
<tr>
<td>- Catering</td>
<td></td>
</tr>
</tbody>
</table>

S. Virchow
<table>
<thead>
<tr>
<th>Description</th>
<th>S. Virchow</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Surveillance</td>
<td>5</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Item</th>
<th>Salmonella</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Slaughterhouse - Surveillance</td>
<td>3</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Hospital or medical care facility - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meats</td>
<td>Surveillance</td>
</tr>
<tr>
<td>---</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Processing plant</td>
<td>S. Virchow</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Retail</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - offal - liver - chilled - Slaughterhouse</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - chilled</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - chilled</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - carcase - chilled</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - chilled</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - chilled</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Processing plant</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Retail</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - cooked, ready-to-eat</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in poultry meat and products thereof

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Surveillance Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled</td>
<td>Processing plant - Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled</td>
<td>Retail - Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - mechanically separated meat (MSM) - Processing plant</td>
<td>Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - mechanically separated meat (MSM) - Retail</td>
<td>Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - minced meat - intended to be eaten cooked - chilled</td>
<td>Processing plant - Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - minced meat - intended to be eaten cooked - chilled</td>
<td>Retail - Surveillance</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - birds - meat preparation</td>
<td>Processing plant - Surveillance</td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>29</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>55</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>102</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>378</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>56</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>214</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>203</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>49</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>72</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>175</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>178</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - unspecified - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>55</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>221</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>101</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>126</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>138</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>84</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>34</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>47</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>48</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>70</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>69</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheeses made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>30</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>41</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>42</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>Units tested</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>71</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>44</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>62</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Catering - Surveillance</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk, cows’ - raw milk - intended for direct human consumption - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows’ - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows’ - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, goats’ - pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, goats’ - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sam.</th>
<th>Salmonella spp., unspecified</th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Salmonella spp., unspecified</td>
<td>S. Farsta</td>
</tr>
<tr>
<td>--------------------</td>
<td>------------------------------</td>
<td>----------</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Source Description</th>
<th>S. 1.4,[5],12:i: Salmonella spp., unspecified</th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - fresh - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows’ milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</th>
<th>S. 1,4,[5],12:i: -</th>
<th></th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - unspecified - Processing plant - Surveillance</td>
<td>S. 1,4,[5],12:i: Salmonella spp., unspecified</td>
<td>S. Farsta</td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - Processing plant - Surveillance</td>
<td>S. 1.4,[5],12:i:</td>
<td>Salmonella spp., unspecified</td>
<td>S. Farsta</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th></th>
<th>S. 1,4,[5],12:i:</th>
<th>Salmonella spp., unspecified</th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. 1,4,[5],12:i: -	Salmonella spp., unspecified	S. Farsta
Cheeses, made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk		
Cheeses, made from mixed milk from cows, sheep and/or goats - hard - made from raw or low heat-treated milk		
Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk		
Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk		
Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk		

Romania - 2013 Report on trends and sources of zoonoses
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th>Product Description</th>
<th>S. 1,4,[5],12:i:</th>
<th>Salmonella spp., unspecified</th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>cheese, butter, made from pasteurised milk - retail - surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - catering</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - packing centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - processing plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - retail - surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Description</td>
<td>S. 1,4,[5],12:i:4</td>
<td>Salmonella spp., unspecified</td>
<td>S. Farsta</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>-------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th></th>
<th>S. 1,4,[5],12:i -</th>
<th>Salmonella spp., unspecified</th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in milk and dairy products

<table>
<thead>
<tr>
<th></th>
<th>S. 1.4,[5],12:i:</th>
<th>Salmonella spp., unspecified</th>
<th>S. Farsta</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk, goats' - pasteurised milk - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milk, goats' - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs - table eggs - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>106</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>157</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>73</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - raw material (liquid egg) for egg products - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molluscan shellfish - raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - dried dietary foods for special medical purposes intended for infants below 6 months - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>75</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - vegetable juice - unpasteurised - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products - desserts - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakery products - desserts - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>29</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products - desserts - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>668</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products - desserts - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>252</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products - desserts - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustaceans - unspecified - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustaceans - unspecified - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>57</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>25</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>32</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Catering - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>242</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>56</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1219</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > eggs</td>
<td>Batch</td>
<td>25 Gram</td>
<td>34</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Fishery products, unspecified - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - non-ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - non-ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>51</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Fruits and vegetables - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>108</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - vegetable juice - unpasteurised - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Millilitre</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live bivalve molluscs - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live bivalve molluscs - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molluscan shellfish - raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molluscan shellfish - shelled, shucked and cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - containing raw egg - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>80</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - containing raw egg - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>31</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - containing raw egg - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>60</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds, sprouted - ready-to-eat - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snails - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>261</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables - products - dried - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>31</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vegetables - products - dried - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Objective</th>
<th>S. 1,4,[5],12:i: -</th>
<th>Salmonella spp., unspecified</th>
<th>S. London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs - table eggs - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - raw material (liquid egg) for egg products - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molluscan shellfish - raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds, sprouted - ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - dried dietary foods for special medical purposes intended for infants below 6 months - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - vegetable juice - unpasteurised - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Type</td>
<td>Location</td>
<td>Surveillance Method</td>
<td>Salmonella spp.</td>
</tr>
<tr>
<td>-------------------</td>
<td>-----------------------------------</td>
<td>-------------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Eggs</td>
<td>Farm - Surveillance</td>
<td></td>
<td>S. London</td>
</tr>
<tr>
<td>Eggs</td>
<td>Packing centre - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products</td>
<td>Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Egg products</td>
<td>Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustaceans</td>
<td>Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crustaceans</td>
<td>Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products</td>
<td>Desserts - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products</td>
<td>Desserts - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bakery products</td>
<td>Desserts - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. 1,4,5,12,14
S. London
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Item</th>
<th>Salmonella spp., unspecified</th>
<th>S. London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eggs - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Packing centre - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eggs - table eggs - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - non-ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - non-ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th>S. 1,4,[5],12:i:</th>
<th>Salmonella spp., unspecified</th>
<th>S. London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fishery products, unspecified - non-ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - non-ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits - Packing centre - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other food

<table>
<thead>
<tr>
<th></th>
<th>Salmonella spp., unspecified</th>
<th>S. London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fruits - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fruits and vegetables - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Processing plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - fruit juice - unpasteurised - Retail - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Juice - vegetable juice - unpasteurised - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live bivalve molluscs - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Live bivalve molluscs - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Salmonella in other food

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Surveillance Site</th>
<th>Salmonella spp.</th>
<th>S. London</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molluscan shellfish - raw - Processing plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molluscan shellfish - shelled, shucked and cooked</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other processed food products and prepared dishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other processed food products and prepared dishes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds, sprouted - ready-to-eat - Packing centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seeds, sprouted - ready-to-eat - Packing centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Snails - Processing plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Packing centre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Processing plant</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Retail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spices and herbs - Retail</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vegetables - products - dried - Packing centre</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Salmonella spp., unspecified
S. London
Table Salmonella in other food

<table>
<thead>
<tr>
<th>Vegetables - products - dried - Processing plant - Surveillance</th>
<th>S. 1.4,[5],12:i:</th>
<th>Salmonella spp., unspecified</th>
<th>S. London</th>
</tr>
</thead>
</table>

Comments:

1) quail eggs
2) quail eggs
3) quail eggs
4) quail eggs
5) quail eggs
6) quail eggs
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>1188</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten raw - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>268</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>726</td>
<td>5</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>162</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D. Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>398</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from sheep - carcase - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>87</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - carcase - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Cutting plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>110</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Hospital or medical care facility - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>81</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>66</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>139</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1001</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten raw - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Catering - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Catering - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>39</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - raw and intended to be eaten raw - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>165</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from horse - carcase - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>530</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>78</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>599</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>63</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>216</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>121</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>54</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>106</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>51</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Chilled - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>17</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>15</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>60</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>359</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>41</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>18</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------------------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>126</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>111</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>29</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>596</td>
<td>13</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>227</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>588</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>46</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>168</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - offal - chilled - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - carcase - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > carcase swabs</td>
<td>Slaughter batch</td>
<td>400 Square centimetre</td>
<td>45</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>40</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>27</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - minced meat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from sheep - minced meat - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>80</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - land mammals - meat preparation - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - land mammals - meat products - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Catering - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>19</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Catering - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>158</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1049</td>
<td>19</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>140</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-----------------------------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>175</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>64</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Conservation Facilities - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>27</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>364</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>63</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>141</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>93</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>34</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>51</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>75</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>65</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for S. Enteritidis</th>
<th>Total units positive for S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>248</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>54</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>19</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>164</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1040</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>83</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------------</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>10 Gram</td>
<td>99</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>925</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>59</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>60</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>333</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>947</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other products of animal origin - gelatin and collagen - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten raw - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source of Salmonella</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td>S. 1,4,[5],12:i: -</td>
<td>S. Agona</td>
<td>S. Bovismorbificans</td>
<td>S. Brandenburg</td>
<td>S. Bredeney</td>
<td>S. Colindale</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Gloucester</td>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - carcase - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - carcase - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Hospital or medical care facility - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Source</td>
<td>S. 1,4,[5],12:i:</td>
<td>Salmonella spp., unspecified</td>
<td>S. Agona</td>
<td>S. Bovismorbificans</td>
<td>S. Brandenburg</td>
<td>S. Bredeney</td>
<td>S. Colindale</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Gloucester</td>
<td>S. Infantis</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>-------------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Packing centre</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Retail</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Slaughterhouse</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended</td>
<td></td>
</tr>
<tr>
<td>to be eaten raw - Retail</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended</td>
<td></td>
</tr>
<tr>
<td>to be eaten cooked - chilled - Catering</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended</td>
<td></td>
</tr>
<tr>
<td>to be eaten cooked - chilled - Catering -</td>
<td></td>
</tr>
<tr>
<td>Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation -</td>
<td></td>
</tr>
<tr>
<td>intended to be eaten cooked - chilled - Processing plant</td>
<td></td>
</tr>
<tr>
<td>- Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>S. 1,4,[5],12:i: -</th>
<th>Salomonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - raw and intended to be eaten raw - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Product Description</th>
<th>S. 1.4.[5],12:i: - Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - carcase - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from horse - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - carcase - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Processing plant - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>S. 1,4,[5],12:i - Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - fresh - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Meat from pig - fresh - chilled - Slaughterhouse - Surveillance | | | | | | | | | | 1
| Meat from pig - fresh - chilled - Slaughterhouse - Surveillance | | | | | | | | | | 1
| Meat from pig - meat preparation - intended to be eaten cooked - Cutting plant - Surveillance | | | | | | | | | | |
| Meat from pig - meat preparation - intended to be eaten cooked - Cutting plant - Surveillance | | | | | | | | | | |
| Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance | | | | | | | | | | |
| Meat from pig - meat preparation - intended to be eaten cooked - chilled - Catering - Surveillance | | | | | | | | | | |
| Meat from pig - meat preparation - intended to be eaten cooked - chilled - Packing centre - Surveillance | | | | | | | | | | |
| Meat from pig - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance | | | | | | | | | | 1
| Meat from pig - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance | | | | | | | | | | |

Romania - 2013 Report on trends and sources of zoonoses
<table>
<thead>
<tr>
<th>Description</th>
<th>S. 1.4,[5],12:i: Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Packing centre - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Description</th>
<th>S. 1,4,[5],12:i: S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Description</td>
<td>S. 1,4,[5],12:i:</td>
<td>S. Agona</td>
<td>S. Bovismorbificans</td>
<td>S. Brandenburg</td>
<td>S. Bredeney</td>
<td>S. Colindale</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Gloucester</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-----------</td>
<td>---------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>------------</td>
<td>--------</td>
<td>---------</td>
<td>----------------</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Description</th>
<th>S. 1,4,[5],12:i: - Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from sheep - minced meat - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - land mammals - meat preparation - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - land mammals - meat products - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>

- S. 1,4,[5],12:i: - unspecified
- S. Agona
- S. Bovismorbificans
- S. Brandenburg
- S. Bredeney
- S. Colindale
- S. Derby
- S. Farsta
- S. Gloucester
- S. Infantis
<table>
<thead>
<tr>
<th>Description</th>
<th>S. 1,4,[5],12:i: Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Conservation Facilities - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. 1,4,[5],12:i: -</td>
<td>Salmonella spp., unspecified</td>
<td>S. Agona</td>
<td>S. Bovisimorbificans</td>
<td>S. Brandenburg</td>
<td>S. Bredeney</td>
<td>S. Colindale</td>
<td>S. Derby</td>
<td>S. Farsta</td>
<td>S. Gloucester</td>
</tr>
<tr>
<td>-------------------</td>
<td>-------------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---------</td>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ma</td>
<td>eat - Processing plant</td>
<td>-</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Slaughterhouse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mea</td>
<td>t, mixed meat - meat products - raw and intended to be eaten raw - Processing plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Processing plant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Type</td>
<td>S. 1.4,[5],12:i -</td>
<td>Salmonella spp., unspecified</td>
<td>S. Agona</td>
<td>S. Bovismorbificans</td>
<td>S. Brandenburg</td>
<td>S. Bredeney</td>
<td>S. Colindale</td>
<td>S. Derby</td>
<td>S. Farsta</td>
</tr>
<tr>
<td>--</td>
<td>------------------</td>
<td>--------------------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>S. 1,4,[5],12:i:</th>
<th>Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Bovismorbificans</th>
<th>S. Brandenburg</th>
<th>S. Bredeney</th>
<th>S. Colindale</th>
<th>S. Derby</th>
<th>S. Farsta</th>
<th>S. Gloucester</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Hospital or medical care facility - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Packing centre - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Packing centre - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Retail - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten raw - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source Description</th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from sheep - fresh - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Hospital or medical care facility - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source Description</th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - fresh - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten raw - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Sample Type</th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - meat products - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - raw and intended to be eaten raw - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from horse - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from horse - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Meat from pig - carcase - chilled - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3 2</td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - chilled - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - fresh - chilled - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - chilled - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Source Description</th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - meat products - cooked ham - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked ham - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th></th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagris</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - unspecified, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>S. Kedougou</td>
<td>S. Kottbus</td>
<td>S. Livingstone</td>
<td>S. Meleagrisd</td>
<td>S. Muenster</td>
<td>S. Newlands</td>
<td>S. Newport</td>
<td>S. Rissen</td>
<td>S. Ruzizi</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - offal - chilled - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - carcase - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - minced meat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - minced meat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from sheep - offal - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th>Description</th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagris</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from wild game - land mammals - meat preparation - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from wild game - land mammals - meat products - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Catering</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Retail</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled</td>
<td>1</td>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conservation Facilities - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meleagris</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beijing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Newport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Newlands</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Newport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Ruzizi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Kedougou</td>
<td>S. Kottbus</td>
<td>S. Livingstone</td>
<td>S. Meleagridis</td>
<td>S. Muenster</td>
<td>S. Newlands</td>
<td>S. Newport</td>
<td>S. Rissen</td>
<td>S. Ruzizi</td>
</tr>
<tr>
<td>--------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Kedougou</td>
<td>S. Kottbus</td>
<td>S. Livingstone</td>
<td>S. Meleagridis</td>
<td>S. Muenster</td>
<td>S. Newlands</td>
<td>S. Newport</td>
<td>S. Rissen</td>
<td>S. Ruzizi</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - cooked, ready-to-eat - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw and intended to be eaten raw - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Kedougou</td>
<td>S. Kottbus</td>
<td>S. Livingstone</td>
<td>S. Meleagris</td>
<td>S. Muenster</td>
<td>S. Newlands</td>
<td>S. Newport</td>
<td>S. Rissen</td>
<td>S. Ruzizi</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-------------</td>
<td>------------</td>
<td>----------------</td>
<td>--------------</td>
<td>-------------</td>
<td>-------------</td>
<td>------------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Packaging centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Hospital or medical care facility - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in red meat and products thereof

<table>
<thead>
<tr>
<th></th>
<th>S. Kedougou</th>
<th>S. Kottbus</th>
<th>S. Livingstone</th>
<th>S. Meleagridis</th>
<th>S. Muenster</th>
<th>S. Newlands</th>
<th>S. Newport</th>
<th>S. Rissen</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other products of animal origin - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other products of animal origin - gelatin and collagen - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.1.4 Salmonella in animals

A. Salmonella spp. in Gallus Gallus - breeding flocks

Monitoring system

Sampling strategy
Breeding flocks (separate elite, grand parent and parent flocks when necessary)

Starting with 2007 in Romania was implemented the National Salmonella control programme in breeding flocks of Gallus gallus.
The sampling frame cover all adult breeding flocks comprising at least 250 birds.
Bases of sampling:
- sampling at the initiative of the operator
- official sampling.
Operator checks:
- day-old chicks,
- four-week-old birds,
- birds two weeks before moving to laying phase or laying unit and
- every second week during the laying period.
Official sampling include:
- within four weeks following moving to laying phase/laying unit,
- toward the end of the laying phase, not earlier than eight weeks before the end of production cycle and
- during the production, at any time sufficiently distant from sample referred above.

Frequency of the sampling
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Day-old chicks
Other: Every flock is sampled (sampling at the initiative of the operator)
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Rearing period
Other: When birds are 4 weeks old and 2 weeks before moving to laying phase/laying unit (sampling at the initiative of the operator)
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Production period
Every 2 weeks during the production period (sampling at the initiative of the operator)

Type of specimen taken
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Day-old chicks
Other: internal linings of delivery boxes, dead chicks, meconium, etc
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Rearing period
Environmental sample: boot swabs or composite faeces
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Production period
Environmental sample: boot swabs or composite faeces

Methods of sampling (description of sampling techniques)
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Day-old chicks
According to the National Control Programme. Samples comprising the following from each hatchery supplying the chicks: chick box liners (one liner per 500 chicks to maximum 10 liners) and all chicks dead
Breeding flocks (separate elite, grand parent and parent flocks when necessary): Rearing period

According to the requirements of the National Control Programme, mandatory sampling is required at 4 weeks old and then 2 weeks before moving to the laying phase or laying unit as follows:
- A minimum of 2 pairs of boot swabs or
- A composite faeces sample made up from individual 1g faeces samples selected at random from sites to represent the whole building/space available to the birds. The size of the sample required is determined by the number of birds in the building/flock.

Breeding flocks: Production period

According to the requirements of the National Control programme, mandatory sampling is required every 2 weeks during the laying/production period as follows:
- A minimum of 5 pairs of boot swabs or
- A composite faeces sample made up from individual 1g faeces samples selected at random from sites to represent the whole building/space available to the birds. The size of the sample required is determined by the number of birds in the building/flock.

In addition to the sampling above, 3 sets of Official Control Samples are collected from each breeding flock as follows:
- a) within 4 weeks of moving to the laying accommodation,
- b) in the middle of the lay, and
- c) within the last 8 weeks of production.

Other operator voluntary monitoring can include hatchery debris, fluff, boot swabs, dust samples etc.

Case definition

Breeding flocks (separate elite, grand parent and parent flocks when necessary): Day-old chicks

Samples taken by operators are sent to authorized laboratory for examination. Isolates are sent to the NRL for serotyping and phage typing and priority is given to any isolate culture result Group B or Group D.
A flock is an epidemiological unit.
Definition of a case:
A positive case is a flock, where positive result in laboratory tests for detection of Salmonella was confirmed by official sampling.

Breeding flocks (separate elite, grand parent and parent flocks when necessary): Rearing period

Samples taken by operators are sent to authorized laboratory for examination. Isolates sent to NRL for serotyping and phage typing (as priority if a Group B or Group D has been cultured).
A flock is an epidemiological unit.
Definition of a case:
A positive case is a flock, where positive result in laboratory tests for detection of Salmonella was confirmed by official sampling.

Breeding flocks (separate elite, grand parent and parent flocks when necessary): Production period

Samples taken by operators are sent to authorised laboratory for examination. Isolates sent to NRL for serotyping and phage typing as priority if a Group B or Group D has been cultured. Official samples taken are sent to a approved C.S.V.F.S.L or to National Reference Laboratory for culture.
A flock is an epidemiological unit.
Definition of a case:
A positive case is a flock, where positive result in laboratory tests for detection of Salmonella was confirmed by official sampling.

Diagnostic/analytical methods used

Breeding flocks (separate elite, grand parent and parent flocks when necessary): Day-old chicks

Breeding flocks (separate elite, grand parent and parent flocks when necessary): Rearing period

Breeding flocks (separate elite, grand parent and parent flocks when necessary): Production period

Vaccination policy
Breeding flocks (separate elite, grand parent and parent flocks when necessary)

Vaccination may only be used as a preventative measure; it is not an alternative to the requirements in Annex II C of Commission Regulation (EC) No 2160/2003 for the use of specific control methods in the framework of the National Programmes for the Control of Salmonella. There are no restrictions on the use of Salmonella vaccines which have a marketing authorization. The vaccination is not mandatory and the costs regarding purchase of vaccine doses and the vaccination are incurred by the business operators. Vaccination is performed in accordance with Regulation 1177/2006 and differentiation tests are available to distinguish vaccine strains used in live vaccines from field strains of Salmonella.

Control program/mechanisms
The control program/strategies in place
Breeding flocks (separate elite, grand parent and parent flocks when necessary)

Starting to 2007 obligatory National control programme for Salmonella is in place, according to Regulation 2160/ 2003 and Regulation 200/ 2010.

Recent actions taken to control the zoonoses
National control programme for 5 serotypes of Salmonella is in place, which cover the whole territory of Romania.

Measures in case of the positive findings or single cases
Breeding flocks (separate elite, grand parent and parent flocks when necessary)

If the sample taken by operator is positive, than an official sampling is performed to confirm or exclude initial results.
In case of positive result flock is destroyed (slaughtered or killed) as well as hatching eggs (destroyed or processed), litter.
Compensation to the owners is paid.

Notification system in place
On the basis of National Control Programme 5 serotypes in breeding flocks are under control.

National evaluation of the recent situation, the trends and sources of infection
B. Salmonella spp. in Gallus Gallus - broiler flocks

Monitoring system

Sampling strategy

Broiler flocks

The main objective of Romania National Control programme for the reduction of Salmonella Enteritidis and Salmonella Typhimurium and in broilers flocks of Gallus gallus is a reduction of the maximum percentage of positive flocks to 1 % or less. In broiler flocks all isolation of Salmonella must be reported to the Competent authority.

In Romania holdings of broiler flocks where S. Enteritidis and S. Typhimurium have been isolated are given advice on Salmonella control and a visit to carry out an epidemiological enquiry as appropriate. The National Control Programme for Salmonella in broiler flocks of Gallus gallus was put in place in 01 January 2009.

Starting with 01 January 2009 the National Control Programme for Salmonella in broilers was held in all holdings of broiler flocks consisting of at least 500 poultry of Gallus gallus. Broilers holdings which have between 500 and 5,000 of birds were not the subject of official testing, but they perform tests on the initiative of operators (self-control) within 3 weeks prior to depopulation and sending the birds abattoir.

Frequency of the sampling

Broiler flocks: Before slaughter at farm

Within 3 weeks prior to moving to the abattoir/depopulation

Type of specimen taken

Broiler flocks: Before slaughter at farm

Boot swabs

Broiler flocks: At slaughter (flock based approach)

Neck skin

Methods of sampling (description of sampling techniques)

Broiler flocks: Before slaughter at farm

Operators were required to implement the sampling programme in the Annex to EC Regulation 200/2012 (self-control sampling).

Two pairs of boot sock/swabs were taken by the operator within the period of three weeks before the birds are due for slaughter. The samples were taken in sufficient time for the laboratory results to be known before the birds are transported to the slaughter house. It is important to know the Salmonella status of the flock before the first birds are slaughtered. Samples were submitted to a laboratory authorized by the Competent Authority and which applies quality assurance systems that conform to the requirements of the current EN/ISO standard.

Official control: Each year at least 10% of holdings with more than 5,000 birds were selected and at least one flock on the holding were sampled by Animal Health, or other authorized agent, acting on behalf of the Competent Authority, who took an ‘official sample’. In addition, attention was given to flocks where there have been previously positive Salmonella findings in the samples taken by the operators. Particular attention was given to holdings where S. Enteritidis or S. Typhimurium has been isolated from samples.

When an official sample was taken it may replace the sample required to be taken by the operator.

In accordance with Regulation (EC) No. 200/2012 Annex point 1 (c) the operator of a broiler holding may make an application to the Competent Authority for a derogation not to sample all flocks on the holding. The Competent Authority will assess the application for derogation against the criteria listed in the Annex. The Competent Authority may approve the derogation if satisfied.
Sampling protocol.
For each flock
At least two pairs of boot/sock swabs shall be taken. All boot/sock swabs must be pooled into one sample. For free range broiler flocks, samples shall only be collected in the area inside the house. Before using the boot/sock swabs, their surface shall be moistened with deionised water, or sterile water or any other diluents approved by the national reference laboratory referred to in Article 11 of Regulation (EC) No 2160/2003. The use of farm water containing antimicrobials or additional disinfectants shall be prohibited. The recommended way to moisten boot swabs shall be to pour the liquid inside before putting them on. It shall be ensured that all sections in a house are represented in the sampling in a proportionate way and that at least 100 steps are taken with each pair of boot swabs. Each pair should cover about 50% of the area of the house. On completion of sampling the boot/sock swabs shall be carefully removed so as not to dislodge adherent material. Boot swabs may be inverted to retain material. They shall be placed in a bag or pot and labelled to identify the flock sampled, and the date the samples were taken.

Broiler flocks: At slaughter (flock based approach)
According to the provisions of the Order of President on National Sanitary Veterinary and Food Safety Authority no.34/2006, transposing into Romanian legislation the Directive 2003/99/EC, all the Salmonella spp. strains isolated in foodstuffs derived from products of animal origin were compulsory tested for the antimicrobial resistance.

Diagnostic/analytical methods used
Broiler flocks: Before slaughter at farm
Bacteriological method: ISO 6579:2002

Vaccination policy
Broiler flocks
Live Salmonella vaccines are not used in the framework of national control programme where the manufacturer does not provide an appropriate method to distinguish bacteriological wild-type strains of salmonella from vaccine strains.
Although vaccines against Salmonella are not currently used in broilers.

Other preventive measures than vaccination in place
Broiler flocks
According to the Romanian program of surveillance, prevention and animal disease control, of the diseases transmissible from animals to humans, animal protection and environment protection* and program for surveillance and control in food safety field approved every year by N.S.V.F.S.A. President Order, feeding stuffs intended for poultry nutrition are checked in view to avoid the contamination with Salmonella spp. Also, in conformity with the same legislation the feed stuffs are checked in view to detect the use of antibiotics.
Residues examination is performed according to the Romanian annual plan for examination for residues in live animals and animal origin products. For broiler, hens, turkeys, other poultry a sample consists on one or more animals depending on the requirements of the analytical methods. For each category of poultry considered, the minimum number of samples to be taken each year must be at least equal to one per 200 tones of annual production, with a minimum of 100 samples for each group of substances if the annual production of the category of birds considered is over 5 000 tones.
Control program/mechanisms

The control program/strategies in place

Broiler flocks

According to the provisions of N.S.V.F.S.A. President Order 147/2006, Regulation 2160/2003/EC, the following measures are to be adopted in order to prevent the dissemination of Salmonella enteritidis, Salmonella typhimurium, into commercial holdings. Animals from infected flocks belonging to commercial holdings are to be kept isolated and special conditions apply for removal of these animals. No bird may leave the house concerned unless the competent authority has authorized the slaughter or/and destruction under supervision of slaughter in a slaughterhouse designated by the competent authority. All the birds in the house must be slaughtered in accordance with the provisions of the REGULATION (EC) No. 853/2004 laying down specific hygiene rules for food of animal origin in order to reduce as much as possible the risk of spreading Salmonella.

Measures in case of the positive findings or single cases

Broiler flocks: Before slaughter at farm

In case of suspicion or confirmation of Salmonella enteritidis or Salmonella typhimurium the NRL shall notify immediately the N.S.V.F.S. and local C.S.V.F.S.D..

In case of suspicion of infection the local C.S.V.F.S.D. and the relevant authorities:

- prohibited the movement of broilers
- take additional samples for conformation of infection

When the broilers are confirmed for the presence of Salmonella enteritidis or Salmonella typhimurium:

1. Fresh meat from broilers may be placed on the market on the condition that it meets the requirement of absence of Salmonella in 25 grams from the meat.
2. The requirement laid down in point 1 does not apply to fresh poultry meat destined for heat treatment or another treatment to eliminate salmonella in accordance with Community legislation on food hygiene.
3. The criterion laid down in point 1 does not apply to fresh poultry meat destined for industrial heat treatment or another treatment to eliminate salmonella in accordance with Community legislation on food hygiene

When a broiler flock of Gallus gallus is suspected of being infected with Salmonella Enteritidis or Salmonella Typhimurium the flock will be investigated. The flock is suspected of being infected when S. Enteritidis or S. Typhimurium is isolated from a sample of faeces, or boot swabs, carried out privately or as required by either the operator or the Competent Authority as detailed in the Annex to Regulation (EC) No 646/2007. Tissue/organs may be taken from birds as part of the investigation of clinical disease by the veterinarian; these cases will be discussed and additional follow up investigation carried out as appropriate, along with advice on Salmonella control.

Competent Authority will notify the operator to clean and disinfect the building from which the infected flock originated. After cleaning and disinfecting of the building the operator may be required to take swabs from a number of sites in the building and submit them to an approved laboratory in view to be tested for Salmonella in order to check the efficiency of the hygiene measures taken. In cases where S. Enteritidis or S. Typhimurium was isolated the cleaning and disinfection may be checked by the Competent Authority or its agent.

If the results of post-cleaning and disinfection monitoring of Salmonella are positive for S. Enteritidis or S. Typhimurium, the next crop (cycle) will be monitored under supervision of the Competent Authority or its agent. If Salmonella is isolated in this subsequent crop of birds the holding will be placed under official control; re-stocking of the house will be permitted only if the supervised post-cleaning and disinfection samples from the house are negative.
For the purposes of establishing the progress towards the target if S. Enteritidis or S. Typhimurium is isolated from either an operator sample or an official sample the flock is classed as positive. A flock positive for a specific serotype will be recorded only once for that serotype. Operators with a flock which is positive for S. Enteritidis or S. Typhimurium will be contacted by the Competent Authority for advice on how to reduce or eliminate the Salmonella. Advice on the control of Salmonella in broilers will be available from government experts on Salmonella control. Advice may include recommendations on management, cleaning and disinfection, pest control, biosecurity, monitoring, and the potential use of other aids in the control of Salmonella.

Notification system in place

A positive laboratory finding of Salmonella ssp in food stuff derived from poultry is followed by a notification by RASFF to all levels (central, regional and local). Then the all food chain is controlled in order to identify the origin of the contamination, if it is possible. The contaminated products are traced back and detent under restrictions, till the results of salmonella serotyping come, and depending of the type of the Salmonella we apply different measures (general measures: effective cleaning and disinfection of the premises and equipment are carried out and monitoring too).
C. Salmonella spp. in Gallus Gallus - flocks of laying hens

Monitoring system

Sampling strategy

Laying hens flocks

Starting with 2008 in Romania was implemented the National Salmonella control programme in laying hens flocks of Gallus gallus.

Frequency of the sampling

Laying hens: Day-old chicks

Other: No official sampling; only samples taken by operators (self control) can consist in:
(a) One chick box liner, up to a maximum of 10, for every 500 chicks delivered from each hatchery. Samples taken on the day of arrival.
(b) The carcasses of all chicks, up to a maximum of 60, from each hatchery which are dead on arrival.

Laying hens: Rearing period

Other: Other: No official sampling; only samples taken by the operators (self control)

Laying hens: Production period

Monitoring by operators shall take place according to Regulation (EC) No 517/2011 Annex Point 2:
Monitoring in Laying Flocks every 15 weeks starting when the birds are 22 – 26 weeks of age.

Official samples:
One sample will be taken under the control of the Competent Authority for Regulation 2160/2003 from one layer flock on each holding with more than 1000 birds during the period of production of eggs for human consumption as specified in 2.1 of Annex to Commission Regulation (EC) No 517/2011.

Laying hens: Before slaughter at farm

Other: no official samples

Laying hens: At slaughter

Other: no official samples

Eggs at packing centre (flock based approach)

Every 3 months

Type of specimen taken

Laying hens: Day-old chicks

Other:
Samples taken by the operators can consist in:
(a) One chick box liner, up to a maximum of 10, for every 500 chicks delivered from each hatchery. Samples taken on the day of arrival.
(b) The carcasses of all chicks, up to a maximum of 60, from each hatchery which are dead on arrival.

Laying hens: Rearing period

Other: can consist in: a minimum 2 pairs of boot swabs per house, or composite faeces sample taken according to the Council Regulation (EC) No 517/2011

Laying hens: Production period

Samples taken by the operators and samples taken by the Official samples consist in boot swabs/faeces,
Eggs at packing centre (flock based approach)

Methods of sampling (description of sampling techniques)

Laying hens: Day-old chicks

Samples taken by operators are sent to authorized and approved laboratory for examination. Isolates are sent to the NRL for serotyping and priority is given to any isolate culture result Group B or Group D.

Laying hens: Rearing period

Samples taken by operators are sent to authorized and approved laboratory for examination. Isolates are sent to the NRL for serotyping and phage typing and priority is given to any isolate culture result Group B or Group D.

Case definition

Laying hens: Day-old chicks

Samples taken by operators are sent to authorized laboratory for examination. Isolates are sent to the NRL for serotyping and phage typing and priority is given to any isolate culture result Group B or Group D.

A flock is an epidemiological unit.

Definition of a case:

A positive case is a flock, where positive result in laboratory tests for detection of Salmonella was confirmed by official sampling.

Laying hens: Rearing period

Samples taken by operators are sent to authorized laboratory for examination. Isolates are sent to the NRL for serotyping and phage typing and priority is given to any isolate culture result Group B or Group D.

A flock is an epidemiological unit.

Definition of a case:

A positive case is a flock, where positive result in laboratory tests for detection of Salmonella was confirmed by official sampling.

Eggs at packing centre (flock based approach)

Definition of a positive finding

There are 2 situations:
- for the matrix which are found in Regulation 2005/2073, c=0, absence in 25 grams;
- for the matrix which were not found in Regulation 2005/2073, but there were in The National Surveillance Programme no 4/31.01.2008, foodstuff is considered to be positive when Salmonella spp is detected.

Diagnostic/analytical methods used

Laying hens: Day-old chicks

Laying hens: Rearing period

Laying hens: Production period

Eggs at packing centre (flock based approach)

Other:
Vaccination policy

Laying hens flocks

Live Salmonella vaccines are not used in the framework of national control programme where the manufacturer does not provide an appropriate method to distinguish bacteriological wild-type strains of salmonella from vaccine strains. A large proportion of the commercial layer flocks are vaccinated with a Salmonella vaccine.

Control program/mechanisms

The control program/strategies in place

Laying hens flocks

Specific requirements concerning flocks of laying hens

1. Eggs shall not be used for direct human consumption as table eggs unless they originate from a commercial flock of laying hens subject to Salmonella national control programme established and is not under official restriction.

2. Eggs originating from flocks with unknown health status, that are suspected of being infected or that are infected with Salmonella serotypes for which a target for reduction has been set or which were identified as the source of infection in a specific human food-borne outbreak, may be used for human consumption only if they are treated in a manner that guarantees the destruction of all Salmonella serotypes with public health significance in accordance with Community legislation on food hygiene.

Eggs originating from flocks with unknown health status, that are suspected of being infected or that are infected with Salmonella serotypes for which a target for reduction has been set or which were identified as the source of infection in a specific human food-borne outbreak, shall be:

(a) considered as Class B eggs as defined in Article 2(4) of Commission Regulation (EC) No 557/2007 laying down detailed rules for implementing Council Regulation (EC) No 1028/2006 on marketing standards for eggs (1);

(b) marked with the indication referred to in Article 10 of Commission Regulation (EC) No 557/2007 which clearly distinguishes them from Class A eggs prior to being placed on the market;

(c) prohibited access to packaging centers unless the competent authority is satisfied with the measures to prevent possible cross-contamination of eggs from other flocks.

3. When birds from infected flocks are slaughtered or destroyed, steps are taken to reduce the risk of spreading zoonoses as soon as possible. Slaughtering shall be carried out in accordance with Community legislation on food hygiene. Products derived from such birds may be placed on the market for human consumption in accordance with Community legislation on food hygiene. If they are not destined for human consumption, this products must be used or disposed of in accordance with Regulation (EC) No 1774/2002.

4. In order to exclude false-positive initial results, the competent authority may lift the restrictions laid down in point 2 of this Part:

(a) when the flock of layers is not the source of infection for humans by the consumption of eggs or egg products as a result of the epidemiological investigation of food-borne outbreaks in accordance with Article 8 of Directive 2003/99/EC; and

(b) where the flock is subjected to a Salmonella national control programme and Salmonella serotypes which a target for reduction has been set, is not confirmed by the following sampling protocol carried out by the competent authority:

(i) the technical specifications referred to in Article 5 of Commission Decision 2004/665/EC (seven samples); however, a sub-sample of 25 grams must be collected of each faecal material and dust sample for analysis; all samples must be analyzed separately;

or

(ii) bacteriological investigation of the caecal and oviducts of 300 birds;

or

(iii) bacteriological investigation of the shell and the content of 4 000 eggs of each flock in pools of maxi-
In addition to the sampling in point (b), the competent authority shall verify the absence of the use of antimicrobial, potentially affecting the result of the analysis of the sampling.

Additional information
Starting to 2008 obligatory National control programme for Salmonella is in place, according to Regulation 2160/2003 and Regulation 1003/2005.
D. Salmonella spp. in bovine animals

Monitoring system

Sampling strategy
There is no official monitoring system on farm level. Investigations are initiated by the owners of the animals.

Frequency of the sampling

Animals at farm
Other: voluntary samples taken by veterinarian for diagnostic purposes.

Other: voluntary samples taken by veterinarian for diagnostic purposes.

Type of specimen taken

Animals at farm
Other: Faeces and various organs.

Methods of sampling (description of sampling techniques)

Animals at farm
Voluntary samples usually taken by a veterinarian for diagnostic purposes.

Case definition

Animals at farm
Detection of Salmonella spp. from sample taken from the animal, group of animals or associated with their environment.

Diagnostic/analytical methods used

Animals at farm
Other: Various bacteriological methods, including method described in Annex D of ISO 6579:2002.
E. Salmonella spp. in pigs

Monitoring system

Sampling strategy
Breeding herds
There is no official monitoring system on farm level. Investigations are initiated by the owners of the animals.
Multiplying herds
See Breeding herds.
Fattening herds
See Breeding herds.

Frequency of the sampling
Breeding herds
Other: voluntary samples taken by veterinarian for diagnostic purposes.
Multiplying herds
Other: see Breeding herds.
Fattening herds at farm
Other: see Breeding herds.

Type of specimen taken
Breeding herds
Other: Faeces and various organs.
Multiplying herds
Other: see Breeding herds.
Fattening herds at farm
Other: see Breeding herds.

Methods of sampling (description of sampling techniques)
Breeding herds
Voluntary samples usually taken by a veterinarian for diagnostic purposes.
Multiplying herds
see Breeding herds.
Fattening herds at farm
see Breeding herds.

Case definition
Breeding herds
Detection of Salmonella spp. from sample taken from the animal, group of animals or associated with their environment.
Multiplying herds
see Breeding herds.
Romania - 2013 Report on trends and sources of zoonoses

Fattening herds at farm
 see Breeding herds.

Diagnostic/analytical methods used

Breeding herds
 Other: Various bacteriological methods, including method described in Annex D of ISO 6579:2002.

Multiplying herds
 Other: see Breeding herds.

Fattening herds at farm
 Other: see Breeding herds.
Romania - 2013 Report on trends and sources of zoonoses

F. Salmonella spp. in turkey - breeding flocks and meat production flocks

Monitoring system

Sampling strategy

Breeding flocks (separate elite, grand parent and parent flocks when necessary)

In 2012 in Romania there were not any turkey breeding flocks.

Meat production flocks

The main objective of Romania National Control programme for the reduction of Salmonella Enteritidis and Salmonella Typhimurium and in turkey rearing for meat flocks is a reduction of the maximum percentage of positive flocks to 1% or less. In turkey rearing for meat flocks all isolation of Salmonella must be reported to the Competent authority.

In Romania holdings of turkey rearing for meat flocks where S. Enteritidis and S. Typhimurium have been isolated are given advice on Salmonella control and a visit to carry out an epidemiological inquiry as appropriate.

The National Control Programme for Salmonella in turkey flocks was put in place in 01 January 2010. Starting with 01 January 2010 the National Control Programme for Salmonella in turkey was held in all holdings of turkeys flocks consisting of at least 500 poultry of. Turkey holdings which have between 500 and 5,000 of birds were not the subject of official testing, but they perform tests on the initiative of operators (self-control) within 3 weeks prior to depopulation and sending the birds abattoir.

Frequency of the sampling

Meat production flocks: Before slaughter at farm

Every flock is sampled

Type of specimen taken

Meat production flocks: Before slaughter at farm

Socks/ boot swabs

Methods of sampling (description of sampling techniques)

Meat production flocks: Before slaughter at farm

Operators were required to implement the sampling programme in the Annex to EC Regulation 1190/2012 (self-control sampling).

Two pairs of boot sock/swabs were taken by the operator within the period of three weeks before the birds are due for slaughter. The samples were taken in sufficient time for the laboratory results to be known before the birds are transported to the slaughter house. It is important to know the Salmonella status of the flock before the first birds are slaughtered. Samples were submitted to a laboratory authorized by the Competent Authority and which applies quality assurance systems that conform to the requirements of the current EN/ISO standard.

Official control: Each year at least 10% of holdings with more than 5,000 birds were selected and at least one flock on the holding were sampled by Animal Health, or other authorized agent, acting on behalf of the Competent Authority, who took an ‘official sample’. In addition, attention was given to flocks where there have been previously positive Salmonella findings in the samples taken by the operators. Particular attention was given to holdings where S. Enteritidis or S. Typhimurium has been isolated from samples. When an official sample was taken it may replace the sample required to be taken by the operator.

Sampling protocol.

For each flock*

At least two pairs of boot/sock swabs shall be taken. All boot/sock swabs must be pooled into one sample.
For free range broiler flocks, samples shall only be collected in the area inside the house. Before using the boot/sock swabs, their surface shall be moistened with deionised water, or sterile water or any other diluent approved by the national reference laboratory referred to in Article 11 of Regulation (EC) No 2160/2003. The use of farm water containing antimicrobials or additional disinfectants shall be prohibited. The recommended way to moisten boot swabs shall be to pour the liquid inside before putting them on. It shall be ensured that all sections in a house are represented in the sampling in a proportionate way and that at least 100 steps are taken with each pair of boot swabs. Each pair should cover about 50% of the area of the house.

On completion of sampling the boot/sock swabs shall be carefully removed so as not to dislodge adherent material. Boot swabs may be inverted to retain material. They shall be placed in a bag or pot and labelled to identify the flock sampled, and the date the samples were taken.

Diagnostic/analytical methods used
Meat production flocks: Before slaughter at farm
Bacteriological method: ISO 6579:2002

Vaccination policy
Meat production flocks
Live Salmonella vaccines are not used in the framework of national control programme where the manufacturer does not provide an appropriate method to distinguish bacteriological wild-type strains of salmonella from vaccine strains.
Although vaccines against Salmonella are not currently used in turkeys.

Other preventive measures than vaccination in place
Meat production flocks
According to the Romanian program of surveillance, prevention and animal disease control, of the diseases transmissible from animals to humans, animal protection and environment protection and program for surveillance and control in food safety field approved every year by N.S.V.F.S.A. President Order, feeding stuffs intended for poultry nutrition are checked in view to avoid the contamination with Salmonella spp. Also, in conformity with the same legislation the feed stuffs are checked in view to detect the use of antibiotics.
Residues examination is performed according to the Romanian annual plan for examination for residues in live animals and animal origin products. For broiler, hens, turkeys, other poultry a sample consists on one or more animals depending on the requirements of the analytical methods.
For each category of poultry considered, the minimum number of samples to be taken each year must be at least equal to one per 200 tones of annual production, with a minimum of 100 samples for each group of substances if the annual production of the category of birds considered is over 5 000 tones.

Control program/mechanisms
The control program/strategies in place
Meat production flocks
According to the provisions of N.S.V.F.S.A. President Order 147/2006, Regulation 2160/2003/EC, the following measures are to be adopted in order to prevent the dissemination of Salmonella enteritidis, Salmonella typhimurium, into commercial holdings. Animals from infected flocks belonging to commercial holdings are to be kept isolated and special conditions apply for removal of these animals. No bird may leave the house concerned unless the competent authority has authorized the slaughter or/and destruction under supervision of slaughter in a slaughterhouse designated by the competent authority. All the birds in the house must be slaughtered in accordance with the provisions of the REGULATION (EC) No. 853/2004 laying down specific hygiene rules for food of animal origin in order to reduce as much as
Romania - 2013 Report on trends and sources of zoonoses

possible the risk of spreading Salmonella.

Measures in case of the positive findings or single cases

In case of suspicion or confirmation of Salmonella enteritidis or Salmonella typhimurium the NRL shall notify immediately the N.S.V.F.S. and local C.S.V.F.S.D.

In case of suspicion of infection the local C.S.V.F.S.D. and the relevant authorities:
- prohibited the movement of broilers
- take additional samples for conformation of infection

When the turkeys are confirmed for the presence of Salmonella enteritidis or Salmonella typhimurium:

1. Fresh meat from turkeys may be placed on the market on the condition that it meets the requirement of absence of Salmonella in 25 grams from the meat.
2. The requirement laid down in point 1 does not apply to fresh poultry meat destined for heat treatment or another treatment to eliminate salmonella in accordance with Community legislation on food hygiene.
3. The criterion laid down in point 1 does not apply to fresh poultry meat destined for industrial heat treatment or another treatment to eliminate salmonella in accordance with Community legislation on food hygiene

When a turkey flock is suspected of being infected with Salmonella Enteritidis or Salmonella Typhimurium the flock will be investigated. The flock is suspected of being infected when S. Enteritidis or S. Typhimurium is isolated from a sample of faeces, or boot swabs, carried out privately or as required by either the operator or the Competent Authority as detailed in the Annex to Regulation (EC) No 1190/2012. Tissue/organs may be taken from birds as part of the investigation of clinical disease by the veterinarian; these cases will be discussed and additional follow up investigation carried out as appropriate, along with advice on Salmonella control.

Competent Authority will notify the operator to clean and disinfect the building from which the infected flock originated. After cleaning and disinfecting of the building the operator may be required to take swabs from a number of sites in the building and submit them to an approved laboratory in view to be tested for Salmonella in order to check the efficiency of the hygiene measures taken. In cases where S. Enteritidis or S. Typhimurium was isolated the cleaning and disinfection may be checked by the Competent Authority or its agent.

If the results of post-cleaning and disinfection monitoring of Salmonella are positive for S. Enteritidis or S. Typhimurium, the next crop (cycle) will be monitored under supervision of the Competent Authority or its agent. If Salmonella is isolated in this subsequent crop of birds the holding will be placed under official control; re-stocking of the house will be permitted only if the supervised post-cleaning and disinfection samples from the house are negative.

For the purposes of establishing the progress towards the target if S. Enteritidis or S. Typhimurium is isolated from either an operator sample or an official sample the flock is classed as positive. A flock positive for a specific serotype will be recorded only once for that serotype.

Operators with a flock which is positive for S. Enteritidis or S. Typhimurium will be contacted by the Competent Authority for advice on how to reduce or eliminate the Salmonella. Advice on the control of Salmonella in turkeys will be available from government experts on Salmonella control. Advice may include recommendations on management, cleaning and disinfection, pest control, biosecurity, monitoring, and the potential use of other aids in the control of Salmonella.

Notification system in place

A positive laboratory finding of Salmonella ssp in food stuff derived from poultry is followed by a notification by RASFF to all levels (central, regional and local). Then the all food chain is controlled in order to identify the origin of the contamination, if it is possible. The contaminated products are traced back and detent under restrictions, until the results of salmonella serotyping come, and depending of the type of the Salmonella we apply different measures (general measures: effective cleaning and disinfection of the
premises and equipment are carried out and monitoring too).
Table Salmonella in breeding flocks of Gallus gallus

<table>
<thead>
<tr>
<th>No of flocks under control programme</th>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Target Verification</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - breeding flocks, unspecified - adult - Farm - Control and eradication programmes</td>
<td>401</td>
<td>IDAH+CSVFSD</td>
<td>Census</td>
<td>Official and industry sampling</td>
<td>Environmental sample > boot swabs and dust</td>
<td>Domestic</td>
<td>yes</td>
<td>herd/flock</td>
<td>10023</td>
<td>26</td>
</tr>
</tbody>
</table>

S. Hadar | S. Infantis | S. Typhimurium | S. Virchow | S. 1,4,[5],12:i:- | Salmonella spp., unspecified | S. Agona | S. Kentucky | S. Kottbus | S. Liverpool | S. Newport

| Gallus gallus (fowl) - breeding flocks, unspecified - adult - Farm - Control and eradication programmes | | | | | | | | | | |
| Gallus gallus (fowl) - breeding flocks, unspecified - adult - Farm - Control and eradication programmes | 6 | 2 | 12 | 2 | 1 | 2 | 1 |

S. Senftenberg | S. Tennessee

| Gallus gallus (fowl) - breeding flocks, unspecified - adult - Farm - Control and eradication programmes | | | | | | | | | | |
| Gallus gallus (fowl) - breeding flocks, unspecified - adult - Farm - Control and eradication programmes | 6 | 2 | | | | | | | | |
Table Salmonella in other birds

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
<th>S. 1,4,[5],12:i-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea fowl - meat production flocks - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pheasants - pet animals - Veterinary clinics - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quails - laying hens - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Industry sampling</td>
<td>animal sample > faeces</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quails - laying hens - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of information</th>
<th>S. Gallinarum biovar Gallinarum</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Guinea fowl - meat production flocks - Veterinary clinics - Clinical investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pheasants - pet animals - Veterinary clinics - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quails - laying hens - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quails - laying hens - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Salmonella in other animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
<th>S. 1,4,[5],12:i-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats - pet animals - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - calves (under 1 year) - Farm - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Industry sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - farmed - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Industry sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Industry sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats - milk goats - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats - milk goats - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample</td>
<td>Domestic Animal</td>
<td>14</td>
<td>14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
<th>S. 1,4,[5],12:i:-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigs - fattening pigs - unspecified - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>10</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sample unit</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
<th>S. 1,4,[5],12:i:-</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Salmonella spp., unspecified
- S. Abortusovis
- S. Agona
- S. Chester
- S. Dublin
- S. Infantis
- S. Montevideo

- Cats - pet animals - Veterinary clinics - Clinical investigations
- Cattle (bovine animals) - calves (under 1 year) - Farm - Clinical investigations
- Dogs - pet animals - Veterinary clinics - Clinical investigations
- Foxes - farmed - Farm - Surveillance
- Goats - animals over 1 year - Farm - Surveillance
- Goats - animals over 1 year - Farm - Surveillance
- Goats - milk goats - Farm - Surveillance
<table>
<thead>
<tr>
<th>Animal Type</th>
<th>Count</th>
<th>S. Abortusovis</th>
<th>S. Agona</th>
<th>S. Chester</th>
<th>S. Dublin</th>
<th>S. Infantis</th>
<th>S. Montevideo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goats - milk goats - Veterinary clinics - Clinical investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Farm - Surveillance</td>
<td>13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Salmonella in other animals
Table Salmonella in other animals

<table>
<thead>
<tr>
<th>Salmonella spp., unspecified</th>
<th>S. Abortusovis</th>
<th>S. Agona</th>
<th>S. Chester</th>
<th>S. Dublin</th>
<th>S. Infantis</th>
<th>S. Montevideo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other poultry

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Target Verification</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Domestic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes

| No of flocks under control programme | IDAH+CSVF SD | Census | Official and industry sampling | Environmental sample > boot swabs and dust | Domestic | yes | herd/flock | 4596 | 112 | 37 |

Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes

| No of flocks under control programme | IDAH+CSVF SD | Census | Official and industry sampling | Environmental sample > boot swabs | Domestic | yes | herd/flock | 7784 | 1087 | 35 |

Ducks - breeding flocks, unspecified - Farm - Surveillance

| No of flocks under control programme | IDA-H | Objective sampling | Industry sampling | Environmental sample > organ/tissue | Domestic | Animal | 2 | 2 |

Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes

| No of flocks under control programme | IDAH+CSVF SD | Census | Official and industry sampling | Environmental sample > boot swabs | Domestic | yes | herd/flock | 4596 | 112 | 9 |

Turkeys - meat production flocks - before slaughter - Farm - Control and eradication programmes

| No of flocks under control programme | IDAH+CSVF SD | Census | Official and industry sampling | Environmental sample > boot swabs | Domestic | yes | herd/flock | 154 | 3 |

Specific Salmonella serotypes

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>S. 1,4,[5],12:i-</th>
<th>Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Albany</th>
<th>S. Amsterdam</th>
<th>S. Blockley</th>
<th>S. Bovismorbificans</th>
<th>S. Bredeney</th>
<th>S. Corvallis</th>
<th>S. Derby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td>6</td>
<td>7</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>13</td>
<td>103</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>17</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ducks - breeding flocks, unspecified - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td>1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) For sampling strategy and target verification, please refer to the original document.
Table Salmonella in other poultry

<table>
<thead>
<tr>
<th></th>
<th>S. Typhimurium</th>
<th>S. 1,4,[5],12:i -</th>
<th>Salmonella spp., unspecified</th>
<th>S. Agona</th>
<th>S. Albany</th>
<th>S. Amsterdam</th>
<th>S. Blockley</th>
<th>S. Bovismorbificans</th>
<th>S. Bredeney</th>
<th>S. Corvallis</th>
<th>S. Derby</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkeys - meat production flocks - before slaughter</td>
<td></td>
</tr>
<tr>
<td>- Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td>1)</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter</td>
<td></td>
</tr>
<tr>
<td>- Farm - Control and eradication programmes</td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td>Ducks - breeding flocks, unspecified - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>Turkeys - meat production flocks - before slaughter</td>
<td></td>
</tr>
<tr>
<td>- Farm - Control and eradication programmes</td>
<td>2)</td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>Ducks - breeding flocks, unspecified - Farm - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>S. Orion</th>
<th>S. Rissen</th>
<th>S. Senftenberg</th>
<th>S. Taksony</th>
<th>S. Tennessee</th>
<th>S. Thompson</th>
<th>S. Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other poultry

<table>
<thead>
<tr>
<th></th>
<th>S. Orion</th>
<th>S. Rissen</th>
<th>S. Senftenberg</th>
<th>S. Taksony</th>
<th>S. Tennessee</th>
<th>S. Thompson</th>
<th>S. Uganda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>8</td>
<td>3</td>
<td>39</td>
<td>11</td>
<td>85</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>Ducks - breeding flocks, unspecified - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - laying hens - adult - Farm - Control and eradication programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Turkeys - meat production flocks - before slaughter - Farm - Control and eradication programmes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

1) confirmatory on 300 cecums according with Reg. CE 2160/2003

2) 2 serovars found in the same sample
2.1.5 Salmonella in feedingstuffs

Table Salmonella in compound feedingstuffs

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound feedingstuffs for cattle - process control - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for cattle - final product - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>60</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - process control - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - final product - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>33</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - process control - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - process control - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for cattle - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in compound feedingstuffs

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound feedingstuffs for cattle - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>22</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for cattle - process control - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for fish - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for fish - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>39</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - process control - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>49</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - process control - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>28</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - process control - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in compound feedingstuffs

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>14</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - process control - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - process control - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>99</td>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>33</td>
<td>3</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - final product - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>150</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - final product - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>201</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------</td>
<td>---------</td>
<td>----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - final product - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - process control - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for rabbits - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for rabbits - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **S. 1,4,[5],12:i:** Salmonella spp., unspecified
- **S. Djugu**
- **S. Hadar**
- **S. Senftenberg**

Compound feedingstuffs for cattle - process control - Feed mill - Surveillance

Compound feedingstuffs for cattle - final product - Feed mill - Surveillance

Compound feedingstuffs for pigs - final product - Feed mill - Surveillance

Compound feedingstuffs for poultry - breeders - process control - Feed mill - Surveillance

Compound feedingstuffs for poultry - breeders - final product - Feed mill - Surveillance

Compound feedingstuffs for poultry - laying hens - process control - Feed mill - Surveillance
Table Salmonella in compound feedingstuffs

<table>
<thead>
<tr>
<th>Energy source</th>
<th>S. 1,4,[5],12:i: -</th>
<th>Salmonella spp., unspecified</th>
<th>S. Djugu</th>
<th>S. Hadar</th>
<th>S. Senftenberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - final product - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - process control - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for cattle - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for cattle - final product - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for cattle - process control - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for fish - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for fish - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Packing centre - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - final product - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Product Type</td>
<td>Sample Type</td>
<td>Location</td>
<td>S. 1,4,[5],12:i:</td>
<td>S. Djugu</td>
<td>S. Hadar</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>----------</td>
<td>----------------</td>
<td>----------</td>
<td>----------</td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - process control - Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for pigs - process control - Processing plant</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - final product - Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - process control - Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - breeders - process control - Processing plant</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Feed mill</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - final product - Processing plant</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - process control - Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - broilers - process control - Processing plant</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens - Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in compound feedingstuffs

<table>
<thead>
<tr>
<th>Source Description</th>
<th>S. 1,4,[5],12:i -</th>
<th>Salmonella spp., unspecified</th>
<th>S. Djugu</th>
<th>S. Hadar</th>
<th>S. Senftenberg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compound feedingstuffs for poultry - laying hens -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final product - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final product - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>final product - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for poultry - laying hens -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>process control - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for rabbits - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Compound feedingstuffs for rabbits - Feed mill -</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in feed material of animal origin

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed material of land animal origin - dairy products - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - poultry offal meal - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>127</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - blood meal - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>45</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - animal fat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>56</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - blood meal - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - bone meal - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>74</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - dairy products - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - dairy products - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - dairy products - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in feed material of animal origin

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed material of land animal origin - feather meal - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>29</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - poultry offal meal - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>39</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Packing centre - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in feed material of animal origin

<table>
<thead>
<tr>
<th>Feed material of land animal origin</th>
<th>Salmonella spp., unspecified</th>
<th>S. Goldcoast</th>
<th>S. Liverpool</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed material of land animal origin - dairy products - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - poultry offal meal - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td>10</td>
</tr>
<tr>
<td>Feed material of land animal origin - blood meal - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of marine animal origin - fish meal - Feed mill - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - Feed mill - Surveillance</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - animal fat - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - blood meal - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - bone meal - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - dairy products - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - dairy products - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - dairy products - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - feather meal - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in feed material of animal origin

| Feed material of land animal origin - poultry offal meal - Processing plant - Surveillance | Salmonella spp., unspecified | S. Goldcoast | S. Liverpool |
| Feed material of marine animal origin - fish meal - Farm - Surveillance |
| Feed material of marine animal origin - fish meal - Farm - Surveillance |
| Feed material of marine animal origin - fish meal - Feed mill - Surveillance |
| Feed material of marine animal origin - fish meal - Packing centre - Surveillance |
| Feed material of marine animal origin - fish meal - Packing centre - Surveillance |
| Feed material of marine animal origin - fish meal - Processing plant - Surveillance |
| Feed material of marine animal origin - fish meal - Processing plant - Surveillance |
| Feed material of marine animal origin - fish meal - Retail - Surveillance |
| Feed material of marine animal origin - fish meal - Retail - Surveillance |
Table Salmonella in other feed matter

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Salmonella</th>
<th>S. Enteritidis</th>
<th>S. Typhimurium</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed material of cereal grain origin - barley derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - maize derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>80</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - other oil seeds derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - barley derived - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - barley derived - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - barley derived - Feed mill - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - barley derived - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - maize derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>21</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - maize derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - maize derived - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>33</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - maize derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - other oil seeds derived - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>27</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>46</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>17</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for Salmonella</td>
<td>S. Enteritidis</td>
<td>S. Typhimurium</td>
</tr>
<tr>
<td>---</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-------------------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet food - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet food - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet food - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>33</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet food - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pet food - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premixtures - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premixtures - Feed mill - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Premixtures - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>feed sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other feed matter

Feed material of cereal grain origin - barley derived - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - wheat derived - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - maize derived - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of oil seed or fruit origin - soya (bean) derived - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of oil seed or fruit origin - sunflower seed derived - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of oil seed or fruit origin - other oil seeds derived - Feed mill - Surveillance	Salmonella spp., unspecified
Other feed material - forages and roughages - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - barley derived - Farm - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - barley derived - Farm - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - barley derived - Feed mill - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - barley derived - Processing plant - Surveillance	Salmonella spp., unspecified
Feed material of cereal grain origin - maize derived - Farm - Surveillance	Salmonella spp., unspecified
Table Salmonella in other feed matter

<table>
<thead>
<tr>
<th>Feed material of cereal grain origin - maize derived - Farm - Surveillance</th>
<th>Salmonella spp., unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Feed material of cereal grain origin - maize derived - Feed mill - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - maize derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Feed mill - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of cereal grain origin - wheat derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - other oil seeds derived - Packing centre - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Feed mill - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Packing centre - Surveillance</td>
<td>Salmonella spp., unspecified</td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - soya (bean) derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Feed mill - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Feed material of oil seed or fruit origin - sunflower seed derived - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Other feed material - forages and roughages - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pet food - Farm - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
Table Salmonella in other feed matter

<table>
<thead>
<tr>
<th>Source</th>
<th>Salmonella spp., unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pet food - Feed mill - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pet food - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pet food - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pet food - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Premixtures - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Premixtures - Feed mill - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Premixtures - Processing plant - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>
2.1.6 Antimicrobial resistance in Salmonella isolates

A. Antimicrobial resistance in Salmonella in cattle

Sampling strategy used in monitoring
 Type of specimen taken
 In cattle all of the isolates were derived from samples taken for diagnostic purposes.

Methods of sampling (description of sampling techniques)
 Voluntary sampling.

Procedures for the selection of isolates for antimicrobial testing
 All isolates are tested.

Methods used for collecting data
 Isolates were collected from regional laboratories (County Sanitary Veterinary and Food Safety Directorate – CSVFSD) at Institute for Diagnosis and Animal Health (IDAH) and serotyped in the NRL Salmonella. Antimicrobial resistance testing is performed in the NRL.

Laboratory methodology used for identification of the microbial isolates

Laboratory used for detection for resistance
 Antimicrobials included in monitoring
 Susceptibility to tetracyclines, amphenicols, betalactams, quinolones, aminoglycosides and sulfonamides is studied, using broth microdilution method, according to ISO 20776-1:2006.

Cut-off values used in testing
 The breakpoints used in testing are those recommended by the CLSI (M100, M31) and EURL-AR.

Control program/mechanisms
 The control program/strategies in place
 Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012, published in Romanian Official Journal.

Results of the investigation
 2009 - 3 strains of Salmonella were tested for antimicrobial resistance.
 2010 - one strain of Salmonella was tested for antimicrobial resistance.
 2011 - there was no strain isolated.
 2012 - there was no strain isolated.
 2013 - one strain of Salmonella was tested for antimicrobial resistance.
B. Antimicrobial resistance in Salmonella in pigs

Sampling strategy used in monitoring
Type of specimen taken
In pigs all of the isolates were derived from samples taken for diagnostic purposes.

Methods of sampling (description of sampling techniques)
Voluntary sampling.

Procedures for the selection of isolates for antimicrobial testing
All isolates are tested.

Methods used for collecting data
Isolates were collected from regional laboratories (County Sanitary Veterinary and Food Safety Directorate – CSVFSD) at Institute for Diagnosis and Animal Health and serotyped in the NRL Salmonella. Antimicrobial resistance testing is performed in the NRL.

Laboratory methodology used for identification of the microbial isolates

Laboratory used for detection for resistance
Antimicrobials included in monitoring
Susceptibility to tetracyclines, amphenicols, betalactams, quinolones, aminoglycosides and sulfonamides is studied, using broth microdilution method, according to ISO 20776-1:2006.

Cut-off values used in testing
The breakpoints used in testing are those recommended by the CLSI (M100, M31) and EURL-AR.

Control program/mechanisms
The control program/strategies in place
Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012, published in Romanian Official Journal.

Results of the investigation
2009 - There were tested 141 strains of Salmonella for antimicrobial resistance.
2010 - 129 strains of Salmonella were tested for antimicrobial resistance.
2011 - 41 strains of Salmonella were tested for antimicrobial resistance.
2012 - 9 strains of Salmonella were tested for antimicrobial resistance.
2013 - 14 strains of Salmonella were tested for antimicrobial resistance.
C. Antimicrobial resistance in Salmonella in poultry

Sampling strategy used in monitoring

Frequency of the sampling

Type of specimen taken

In poultry most of the isolates were derived from samples taken for monitoring purposes on farms. See Salmonella spp. in Gallus gallus (breeding flocks, broiler flocks and flocks of laying hens also) and turkey.

Methods of sampling (description of sampling techniques)

See Salmonella spp. in Gallus gallus (breeding flocks, broiler flocks and flocks of laying hens also) and turkey.

Procedures for the selection of isolates for antimicrobial testing

All isolates are tested.

Methods used for collecting data

Isolates were collected from regional laboratories (County Sanitary Veterinary and Food Safety Directorate – CSVFSD) at Institute for Diagnosis and Animal Health and serotyped in the NRL Salmonella. Antimicrobial resistance testing is performed in the NRL.

Laboratory methodology used for identification of the microbial isolates

Laboratory used for detection for resistance

Antimicrobials included in monitoring

Susceptibility to tetracyclines, amphenicols, betalactams, quinolones, aminoglycosides and sulfonamides is studied, using broth microdilution method, according to ISO 20776-1:2006.

Cut-off values used in testing

The breakpoints used in testing are those recommended by the CLSI (M100, M31) and EURL-AR.

Control program/mechanisms

The control program/strategies in place

Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012, published in Romanian Official Journal.

Results of the investigation

2009 - There were tested 538 strains of Salmonella for antimicrobial resistance.
2010 - There were tested 673 strains of Salmonella for antimicrobial resistance.
2011 - There were tested 1023 strains of Salmonella for antimicrobial resistance.
2012 - There were tested 985 strains of Salmonella for antimicrobial resistance.
2013 - There were tested 1244 strains of Salmonella for antimicrobial resistance.
D. Antimicrobial resistance in Salmonella in foodstuff derived from cattle

Sampling strategy used in monitoring

Frequency of the sampling

Methods of sampling (description of sampling techniques)

According to the provisions of the Order of President of National Sanitary Veterinary and Food Safety Authority no.34/2006, transposing into Romanian legislation the Directive 2003/99/EC, all the Salmonella spp. strains isolated in foodstuffs derived from products of animal origin were compulsory tested for the antimicrobial resistance.

Methods used for collecting data

Isolates from regional laboratories (Sanitary Veterinary and for Food Safety Laboratories) were collected and serotyped at the Institute of Hygiene and Veterinary Public Health. Antimicrobial resistance data is collected in Institute of Hygiene and Veterinary Public Health.

Laboratory methodology used for identification of the microbial isolates

Bacteriological method: EN ISO 6579

Laboratory used for detection for resistance

Antimicrobials included in monitoring

The method used for detection of the microbial resistance is broth microdilution; testing and quality control were performed according to CLSI (Clinical and Laboratory Standards Institute) documents and standards.

Antimicrobials used were: Chloramphenicol, Tetracycline, Ciprofloxacin, Nalidixic acid, Trimethoprim, Streptomycin, Gentamicin, Cefotaxim, Sulfamethoxazol and Ampicillin.

Cut-off values used in testing

The breakpoints used are those listed in CLSI

Control program/mechanisms

The control program/strategies in place

The Romanian Surveillance Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), yearly updated.

Measures in case of the positive findings or single cases

A positive laboratory finding of Salmonella spp. is followed by a notification by RASFF to all levels (central, regional and local). Then the all food chain is controlled in order to identify the origin of the contamination, if it is possible. The contaminated products are traced back and reserved under restrictions, until the results of serotyping are ready and depending of the type of the Salmonella different measures are applied (general measures: effective cleaning and disinfection of the premises and equipment are carried out and monitoring too).

Notification system in place

Laboratory has to notify the positive result to the regional and central authority and the regional authority notify the food business operator.
Sampling strategy used in monitoring

Methods of sampling (description of sampling techniques)

According to the provisions of the Order of President of National Sanitary Veterinary and Food Safety Authority no.34/2006, transposing into Romanian legislation the Directive 2003/99/EC, all the Salmonella spp. strains isolated in foodstuffs derived from products of animal origin were compulsory tested for the antimicrobial resistance.

Methods used for collecting data

Isolates from regional laboratories (Sanitary Veterinary and for Food Safety Laboratories) are collected and serotyped at the Institute of Hygiene and Veterinary Public Health. Antimicrobial resistance data is collected in Institute of Hygiene and Veterinary Public Health.

Laboratory methodology used for identification of the microbial isolates

Bacteriological method: EN ISO 6579

Laboratory used for detection for resistance

Antimicrobials included in monitoring

The method used for detection of the microbial resistance is broth microdilution; testing and quality control were performed according to CLSI (Clinical and Laboratory Standards Institute) documents and standards.

Antimicrobials used were: Chloramphenicol, Tetracycline, Ciprofloxacin, Nalidixic acid, Trimethoprim, Streptomycin, Gentamicin, Cefotaxim, Sulfamethoxazol and Ampicillin.

Cut-off values used in testing

The breakpoints used are those listed in CLSI

Control program/mechanisms

The control program стрategies in place

The Romanian Surveillance Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), yearly updated.

Measures in case of the positive findings or single cases

A positive laboratory finding of Salmonella spp. is followed by a notification by RASFF to all levels (central, regional and local). Then the all food chain is controlled in order to identify the origin of the contamination, if it is possible. The contaminated products are traced back and reserved under restrictions, until the results of serotyping are ready and depending of the type of the Salmonella different measures are applied (general measures : effective cleaning and disinfection of the premises and equipment are carried out and monitoring too).

Notification system in place

Laboratory has to notify the positive result to the regional and central authority and the regional authority notify the food business operator.
Sampling strategy used in monitoring

Methods of sampling (description of sampling techniques)

According to the provisions of the Order of President of National Sanitary Veterinary and Food Safety Authority no.34/2006, transposing into Romanian legislation the Directive 2003/99/EC, all the Salmonella spp. strains isolated in foodstuffs derived from products of animal origin were compulsory tested for the antimicrobial resistance.

Methods used for collecting data

Isolates from regional laboratories (Sanitary Veterinary and for Food Safety Laboratories) are collected and serotyped at the Institute of Hygiene and Veterinary Public Health. Antimicrobial resistance data is collected in Institute of Hygiene and Veterinary Public Health.

Laboratory methodology used for identification of the microbial isolates

Bacteriological method: EN ISO 6579

Laboratory used for detection for resistance

Antimicrobials included in monitoring

The method used for detection of the microbial resistance is broth microdilution; testing and quality control were performed according to CLSI (Clinical and Laboratory Standards Institute) documents and standards.

Antimicrobials used were: Chloramphenicol, Tetracycline, Ciprofloxacin, Nalidixic acid, Trimethoprim, Streptomycin, Gentamicin, Cefotaxim, Sulfamethoxazol and Ampicilin.

Cut-off values used in testing

The breakpoints used are those listed in CLSI

Control program/mechanisms

The control program/strategies in place

The Romanian Surveillance Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 (also the Order was applicable for 2013), yearly updated.

Measures in case of the positive findings or single cases

A positive laboratory finding of Salmonella spp. is followed by a notification by RASFF to all levels (central, regional and local). Then the all food chain is controlled in order to identify the origin of the contamination, if it is possible. The contaminated products are traced back and reserved under restrictions, until the results of serotyping are ready and depending of the type of the Salmonella different measures are applied (general measures : effective cleaning and disinfection of the premises and equipment are carried out and monitoring too).

Notification system in place

Laboratory has to notify the positive result to the regional and central authority and the regional authority notify the food business operator.
Table Antimicrobial susceptibility testing of S. Chester in Goats - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Chester</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
Aminoglycosides - Streptomycin	16	2	2																							
Polymyxins - Colistin	2	1	0																							

<table>
<thead>
<tr>
<th>S. Chester</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th></th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Newport in Turkeys - fattening flocks - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table: Antimicrobial Susceptibility Testing of S. Newport in Turkeys - Fattening Flocks - Farm - Domestic - Control and Eradication Programmes

Objective sampling - Industry sampling - Animal sample - Faeces - Quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Turks in fattening flocks - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Abortusovis in Sheep - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - foetus/stillbirth - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Abortusovis</td>
<td>(isolates out of a monitoring program, yes/no) Number of isolates available in the laboratory</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>Sheep - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>S. Abortusovis</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>highest</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Agona in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>Number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Agona</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>89</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>89</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>89</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>89</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>89</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>89</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>89</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>89</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>89</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>89</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>89</td>
</tr>
</tbody>
</table>

Note: The table presents the number of isolates with a concentration of inhibition equal to or less than the specified concentration (µg/ml). The cut-off values are given for each antibiotic, and the number of isolates is shown for each concentration level.
Table Antimicrobial susceptibility testing of S. Agona in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Agona</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Agona in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td>6</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>12</td>
<td>0</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>12</td>
<td>0</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>9</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>12</td>
<td>0</td>
<td></td>
<td>4</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>12</td>
<td>0</td>
<td></td>
<td>2</td>
<td>9</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>12</td>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>12</td>
<td>0</td>
<td></td>
<td>2</td>
<td>8</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>12</td>
<td>0</td>
<td></td>
<td>2</td>
<td>2</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>12</td>
<td>0</td>
<td></td>
<td>4</td>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>12</td>
<td>1</td>
<td></td>
<td>2</td>
<td>9</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>12</td>
<td>1</td>
<td></td>
<td>11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>12</td>
<td>3</td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>12</td>
<td>0</td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>12</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Agona in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Agona* in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Agona in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>S. Kottbus</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Isolates out of a monitoring program (yes/no)
Number of isolates available in the laboratory
Table Antimicrobial susceptibility testing of S. Kottbus in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>0.25</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value (µg/ml)</td>
</tr>
<tr>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kottbus in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Kottbus</td>
<td></td>
</tr>
<tr>
<td>Anitmicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Liverpool in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no) Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of *S. Liverpool* in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Thompson in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

| Antimicrobials | Cut-off value | N | n <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|------------------------------------|---------------|---|-----------|---------|-------|-------|-------|------|------|------|------|-----|----|----|----|----|----|----|----|----|----|-----|-------|-------|
| Aminoglycosides - Gentamicin | 2 | 10| 0 | | 7 | 3 | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Kanamycin | 64 | 10| 0 | | 4 | 4 | 2 | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 10| 8 | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 10| 4 | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Florfenicol | 16 | 10| 1 | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 10| 3 | | 2 | 2 | 1 | 2 | 1 | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 10| 1 | | 4 | 5 | 1 | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 10| 1 | | | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 10| 1 | | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 10| 2 | | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 10| 3 | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Ceftazidime | 2 | 10| 1 | | | | | | | | | | | | | | | | | | | | | |
| Polymyxins - Colistin | 2 | 10| 1 | | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulframethoxazole | 256 | 10| 9 | | | | | | | | | | | | | | | | | | | | | |
Table Antimicrobial susceptibility testing of *S. Thompson* in *Gallus gallus* (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Thompson in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial Susceptibility Testing of S. Senftenberg in Gallus gallus (fowl) - Broilers - Before Slaughter - Farm - Domestic - Control and Eradication Programmes - Objective Sampling - Industry Sampling - Animal Sample - Faeces - Quantitative Data [Dilution Method]

<p>	Antimicrobials:	Cut-off value	N	n <=0.002	<=0.004	<=0.008	<=0.015	<=0.016	<=0.03	<=0.06	<=0.12	<=0.25	<=0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096
Aminoglycosides - Gentamicin	2	36	9			1	8	7	11	6	1	2														
Aminoglycosides - Kanamycin	64	36	1																							
Aminoglycosides - Streptomycin	16	36	18																							
Amphenicols - Chloramphenicol	16	36	8																							
Amphenicols - Florfenicol	16	36	7																							
Cephalosporins - Cefotaxime	0.5	36	6																							
Fluoroquinolones - Ciprofloxacin	0.06	36	23					1	3	9	15	2	6													
Penicillins - Ampicillin	8	36	10																							
Quinolones - Nalidixic acid	16	36	7																							
Tetracyclines - Tetracycline	8	36	6																							
Trimethoprim	2	36	3																							
Cephalosporins - Ceftazidime	2	36	7																							
Polymyxins - Colistin	2	36	10																							
Sulfonamides - Sulfamethoxazole	256	36	17																							
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>S. Senftenberg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td></td>
<td><=0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of S. Enteritidis in Gallus gallus (fowl) - Broilers - Before Slaughter

- **Farm**: Domestic
- **Control and Eradication Programmes**: Objective Sampling - Industry Sampling - Animal Sample - Faeces - Quantitative Data [Dilution Method]

Table Antimicrobial Susceptibility Testing

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), Number of Isolates with a Concentration of Inhibition Equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - Broilers - Before Slaughter - Farm - Control and Eradication Programmes</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Enteritidis in Dogs - Farm - Domestic - Clinical investigations - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dogs - Farm - Clinical Investigations</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
</tbody>
</table>

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >=4096 |
|---|---------------|-----|-----|---------|---------|-------|-------|-------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-------|
| Aminoglycosides - Gentamicin | 2 | 1 | 0 | 1 | 1 | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Kanamycin | 64 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Florfenicol | 16 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofoxacin | 0.06 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefazidime | 2 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Polymyxins - Colistin | 2 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
Table Antimicrobial susceptibility testing of S. Enteritidis in Dogs - Farm - Domestic - Clinical investigations - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Dogs - Farm - Clinical investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolated out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - broilers - Farm - Domestic - Control and eradication programmes

Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 2 0 1 1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64 2 0 2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 2 0 1 1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 0 2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16 2 0 2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 2 0 1 1</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 2 2 2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 2 0 2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 2 2 2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 2 0 2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 2 0 2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2 2 0 1 1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 2 0 2</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Enteritidis* in *Gallus gallus* (fowl) - broilers - Farm - Domestic - Control and eradication programmes
- Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Enteritidis</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>Number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>11</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>11</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>11</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Enteritidis* in *Gallus gallus* (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Enteritidis</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of *S. Enteritidis* in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
<th>1296</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Enteritidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>20</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>20</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>20</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>20</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>20</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>20</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>20</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Lowest</td>
<td>Highest</td>
</tr>
<tr>
<td>--</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamefoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gallinarum biovar Gallinarum in Guinea fowl - Farm - Domestic - Surveillance - Objective sampling
- Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Gallinarum biovar Gallinarum</th>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gallinarum biovar Gallinarum in Guinea fowl - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Gallinarum biovar Gallinarum</th>
<th>Guinea fowl - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Gallinarum* biovar *Gallinarum* in Gallus gallus (fowl) - laying hens - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Gallinarum biovar Gallinarum</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Gallus gallus (fowl) - laying hens - Farm - Surveillance</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Gallinarum biovar Gallinarum</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>S. Livingstone</td>
</tr>
<tr>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Livingstone in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Livingstone in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>S. Livingstone</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Livingstone in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Susceptibility</th>
<th>Farm 1</th>
<th>Farm 2</th>
<th>Farm 3</th>
<th>Farm 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycoside</td>
<td>Susceptible</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Penicillin</td>
<td>Susceptible</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Ceftriaxone</td>
<td>Susceptible</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>Susceptible</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Mbandaka in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Mbandaka in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Mbandaka</td>
<td>1296</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Albany in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - eggshells - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096				
Aminoglycosides - Gentamicin	2	1	0																									-	
Aminoglycosides - Kanamycin	64	1	0																										
Aminoglycosides - Streptomycin	16	1	0																										
Amphenicols - Chloramphenicol	16	1	0																										
Amphenicols - Florfenicol	16	1	0																										
Cephalosporins - Cefotaxime	0.5	1	0																										
Fluoroquinolones - Ciprofloxacin	0.06	1	0																										
Penicillins - Ampicillin	8	1	0																										
Quinolones - Nalidixic acid	16	1	0																										
Tetracyclines - Tetracycline	8	1	0																										
Trimethoprim	2	1	0																										
Cephalosporins - Ceftazidime	2	1	0																										
Polymyxins - Colistin	2	1	0																										
Sulfonamides - Sulfamethoxazole	256	1	0																										

Romania - 2013 Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of S. Albany in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - eggshells - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobial Category</th>
<th>Antimicrobial</th>
<th>S. Albany Isolates</th>
<th>S. Albany Isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isolates</td>
<td>Isolates</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1296</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Antimicrobial</th>
<th>Lower Limit (MIC)</th>
<th>Upper Limit (MIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins</td>
<td>Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>S. Kentucky</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 2 2 2 1 6 11 52</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64 2 33 26 9 6 2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 66 3 7 15 6 45</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 2 17 21 34 1 1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16 1 4 26 40 5 1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 11 30 16 19 6 3 2</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 76 76 1 75</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 76 75 1 75</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 76 76 1 75</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 76 3 2 1 70</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 76 47 14 4 1 3 5 2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2 76 8 22 30 7 8 1</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 21 55 21</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 76 70 3 2 1 70</td>
<td></td>
</tr>
</tbody>
</table>

Cut-off values

- **<=0.002**
- **<=0.004**
- **0.015**
- **0.016**
- **0.03**
- **0.06**
- **0.12**
- **0.25**
- **0.5**
- **1**
- **2**
- **4**
- **8**
- **16**
- **32**
- **64**
- **128**
- **256**
- **512**
- **1024**
- **2048**
- **>4096**

Notes

- Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
- Isolates out of a monitoring program (yes/no)
- Number of isolates available in the laboratory
- Antimicrobials:
 - Aminoglycosides - Gentamicin
 - Aminoglycosides - Kanamycin
 - Aminoglycosides - Streptomycin
 - Amphenicols - Chloramphenicol
 - Amphenicols - Florfenicol
 - Cephalosporins - Cefotaxime
 - Fluoroquinolones - Ciprofloxacin
 - Penicillins - Ampicillin
 - Quinolones - Nalidixic acid
 - Tetracyclines - Tetracycline
 - Trimethoprim
 - Cephalosporins - Cefazidime
 - Polymyxins - Colistin
 - Sulfonamides - Sulfamethoxazole

Romania - 2013

Report on trends and sources of zoonoses
Antimicrobial Susceptibility Testing of S. Kentucky in Gallus Gallus (fowl) - Broilers - Before Slaughter - Farm - Domestic - Control and Eradication Programmes

Objective Sampling - Industry Sampling - Animal Sample - Faeces - Quantitative Data [Dilution Method]

Table: Antimicrobial Susceptibility Testing of S. Kentucky in Gallus Gallus (fowl) - Broilers - Before Slaughter - Farm - Control and Eradication Programmes

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no) - Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n <=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096		
Aminoglycosides - Gentamicin	2	2	2																								
Aminoglycosides - Kanamycin	64	2	1																								
Aminoglycosides - Streptomycin	16	2	2																								
Amphenicols - Chloramphenicol	16	2	1																								
Amphenicols - Florfenicol	16	2	0																								
Cephalosporins - Cefotaxime	0.5	2	0																								
Fluoroquinolones - Ciprofloxacin	0.06	2	2																								
Penicillins - Ampicillin	8	2	2																								
Quinolones - Nalidixic acid	16	2	2																								
Tetracyclines - Tetracycline	8	2	2																								
Trimethoprim	2	2	0																								
Cephalosporins - Ceftazidime	2	2	0																								
Polymyxins - Colistin	2	2	0																								
Sulfonamides - Sulamethoxazole	256	2	2																								
Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Kentucky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</td>
<td>1296</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobial Type</th>
<th>Isolates lowest</th>
<th>Isolates highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Blockley in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Blockley in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Blockley</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Bredeney in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

S. Bredeney

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>1296</th>
</tr>
</thead>
</table>

Antimicrobials:

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	2	9	1	6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	
Aminoglycosides - Kanamycin	64	9	2	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Aminoglycosides - Streptomycin	16	9	2	3	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Amphenicols - Chloramphenicol	16	9	0	3	2	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Amphenicols - Florfenicol	16	9	1	2	5	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Cephalosporins - Cefotaxime	0.5	9	0	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Fluoroquinolones - Ciprofloxacin	0.06	9	4	1	4	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Penicillins - Ampicillin	8	9	2	2	2	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Quinolones - Nalidix acid	16	9	1	6	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Tetracyclines - Tetracycline	8	9	2	4	3	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Trimethoprim	2	9	0	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
Cephalosporins - Ceftazidime	2	9	0	8	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
Polymyxins - Colistin	2	9	2	7	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Sulfonamides - Sulfamethoxazole	256	9	2	3	4	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Bredeney in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Bredeney</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Bredeney in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096				
Aminoglycosides - Gentamicin	2	3	1																											2
Aminoglycosides - Kanamycin	64	3	0																											3
Aminoglycosides - Streptomycin	16	3	1																											1
Amphenicols - Chloramphenicol	16	3	1																											1
Amphenicols - Florfenicol	16	3	0																											2
Cephalosporins - Cefotaxime	0.5	3	1																											1
Fluoroquinolones - Ciprofloxacin	0.06	3	1	2																										1
Penicillins - Ampicillin	8	3	1																											1
Quinolones - Nalidixic acid	16	3	1																											1
Tetracyclines - Tetracycline	8	3	1																											1
Trimethoprim	2	3	1																											1
Cephalosporins - Ceftazidime	2	3	1																											1
Polymyxins - Colistin	2	3	1																											2
Sulfonamides - Sulfamethoxazole	256	3	1																											2
Table Antimicrobial susceptibility testing of S. Bredeney in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table: Antimicrobial Susceptibility Testing of S. Rissen in Gallus gallus (fowl) - Broilers - Before Slaughter

- **Farm**: Domestic
- **Control and Eradication Programmes**: Objective Sampling - Industry Sampling - Animal Sample - Faeces - Quantitative Data [Dilution Method]

Antimicrobial Susceptibility Testing

| Antimicrobials | Cut-off Value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|----------------------------|--------------|----|----|---------|---------|-------|-------|-------|-------|-------|-------|-------|-------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Aminoglycosides - Gentamicin | 2 | 3 | 0 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Kanamycin | 64 | 3 | 0 | 2 | | | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 3 | 1 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 3 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Florfenicol | 16 | 3 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 3 | 0 | 2 | | | | | | | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 3 | 0 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 3 | 3 | | | | | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 3 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 3 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 3 | 2 | | | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Ceftazidime | 2 | 3 | 0 | 1 | 1 | 1 | | | | | | | | | | | | | | | | | | | | |
| Polymyxins - Colistin | 2 | 3 | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 3 | 2 | | | | | | | | | | | | | | | | | | | | | | | |

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Rissen in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Taksony in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th><=0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Taksony in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Antimicrobial susceptibility testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lowest highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of S. Tennessee in Gallus Gallus (fowl) - Broilers - Before Slaughter - Farm - Control and Eradication Programmes

Objective Sampling - Industry Sampling - Animal Sample - Faeces - Quantitative Data [Dilution Method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus Gallus (fowl) - Broilers - Before Slaughter - Farm - Control and Eradication Programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td>S. Tennessee</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no):</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 69 28</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64 69 4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 69 64</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 69 7</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16 69 5</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 69 12</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 69 10</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 69 12</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 69 12</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 69 14</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 69 7</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2 69 11</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 69 22</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 69 35</td>
</tr>
</tbody>
</table>

Table

Cut-off value	N	n <=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096	
Aminoglycosides - Gentamicin	2	69	28	2	3	8	28	19	5	2	2														
Aminoglycosides - Kanamycin	64	69	4																						
Aminoglycosides - Streptomycin	16	69	64																						
Amphenicols - Chloramphenicol	16	69	7																						
Amphenicols - Florfenicol	16	69	5																						
Cephalosporins - Cefotaxime	0.5	69	12																						
Fluoroquinolones - Ciprofloxacin	0.06	69	10																						
Penicillins - Ampicillin	8	69	12																						
Quinolones - Nalidixic acid	16	69	12																						
Tetracyclines - Tetracycline	8	69	14																						
Trimethoprim	2	69	7																						
Cephalosporins - Cefazidime	2	69	11																						
Polymyxins - Colistin	2	69	22																						
Sulfonamides - Sulfamethoxazole	256	69	35																						
Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Tennessee</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacyn</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>=4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
<td>64</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.5</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.06</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>8</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

S. Tennessee

Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes
Table: Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>No</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobial Class</th>
<th>Concentration (MIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Peptidins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Uganda in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<p>| Antimicrobials | Cutoff value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|-----------------------------|--------------|----|----|---------|---------|-------|-------|-------|
| Aminoglycosides - Gentamicin| 2 | 6 | 2 | 1 | 3 | 2 | | |
| Aminoglycosides - Kanamycin | 64 | 6 | 0 | | | | | |
| Aminoglycosides - Streptomycin| 16 | 6 | 6 | | | | | |
| Amphenicols - Chloramphenicol| 16 | 6 | 0 | | | | | |
| Amphenicols - Florfenicol | 16 | 6 | 6 | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 6 | 0 | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 6 | 2 | | | | | |
| Penicillins - Ampicillin | 8 | 6 | 6 | | | | | |
| Quinolones - Nalidixic acid | 16 | 6 | 2 | | | | | |
| Tetracyclines - Tetracycline| 8 | 6 | 6 | | | | | |
| Trimethoprim | 2 | 6 | 0 | | | | | |
| Cephalosporins - Ceftazidime| 2 | 6 | 0 | | | | | |
| Polymyxins - Colistin | 2 | 6 | 0 | | | | | |
| Sulfonamides - Sulfamethoxazole| 256 | 6 | 3 | | | | | |</p>
<table>
<thead>
<tr>
<th>S. Uganda</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Uganda in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates available in the laboratory
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Glostrup in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Glostrup</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobial	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	2	2	0						0.02	0.04	0.08	0.15	0.16	0.3	0.6	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096
Aminoglycosides - Kanamycin	64	2	0						0.02	0.04	0.08	0.15	0.16	0.3	0.6	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096
Aminoglycosides - Streptomycin	16	2	0																									
Amphenicols - Chloramphenicol	16	2	0																									
Amphenicols - Florfenicol	16	2	0																									
Cephalosporins - Cefotaxime	0.5	2	0																									
Fluoroquinolones - Ciprofloxacin	0.06	2	0																									
Penicillins - Ampicillin	8	2	0																									
Quinolones - Nalidixic acid	16	2	0																									
Tetracyclines - Tetracycline	8	2	0																									
Trimethoprim	2	2	0																									
Cephalosporins - Ceftazidime	2	2	0																									
Polymyxins - Colistin	2	2	0																									
Sulfonamides - Sulfamethoxazole	256	2	0																									

Note: The table above details the antimicrobial susceptibility testing of S. Glostrup in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes. The testing involves various antimicrobials and their concentration levels, with the number of isolates that fall below certain cut-off values. The table is structured to show the concentration levels (µg/ml) for each antimicrobial, followed by the number of isolates that fall below each concentration level.
Table Antimicrobial susceptibility testing of S. Glostrup in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Hadar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>S. Hadar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Gallus gallus (fowl) - broilers - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Hadar</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Gallus gallus (fowl) - broilers - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

| Antimicrobials: | S. Infantis | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|----------------|-------------|--------------|---|---|---------|---------|-------|-------|-------|------|------|------|------|-----|----|----|---|---|---|---|---|---|---|---|---|----|
| Aminoglycosides - Gentamicin | 2 | 71 | 8 |
| Aminoglycosides - Kanamycin | 64 | 71 | 2 |
| Aminoglycosides - Streptomycin | 16 | 71 | 45 |
| Amphenicols - Chloramphenicol | 16 | 71 | 9 |
| Amphenicols - Florfenicol | 16 | 71 | 7 |
| Cephalosporins - Cefotaxime | 0.5 | 71 | 2 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 71 | 71 |
| Penicillins - Ampicillin | 8 | 71 | 10 |
| Quinolones - Nalidixic acid | 16 | 71 | 70 |
| Tetracyclines - Tetracycline | 8 | 71 | 56 |
| Trimethoprim | 2 | 71 | 16 |
| Cephalosporins - Ceftazidime | 2 | 71 | 3 |
| Polymyxins - Colistin | 2 | 71 | 12 |
| Sulfonamides - Sulfaethoxazole | 256 | 71 | 54 |

Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Infantis in Pheasants - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Infantis in Pheasants - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Pheasants - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - Farm - Domestic - Control and eradication programmes -
Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>N n <=0.002 <=0.004 0.008 0.015 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
</tr>
<tr>
<td>2</td>
<td>8 0</td>
</tr>
<tr>
<td>64</td>
<td>8 0</td>
</tr>
<tr>
<td>16</td>
<td>8 8</td>
</tr>
<tr>
<td>16</td>
<td>8 0</td>
</tr>
<tr>
<td>16</td>
<td>8 0</td>
</tr>
<tr>
<td>0.5</td>
<td>8 0</td>
</tr>
<tr>
<td>0.06</td>
<td>8 8</td>
</tr>
<tr>
<td>8</td>
<td>8 1</td>
</tr>
<tr>
<td>16</td>
<td>8 8</td>
</tr>
<tr>
<td>8</td>
<td>8 8</td>
</tr>
<tr>
<td>2</td>
<td>8 2</td>
</tr>
<tr>
<td>2</td>
<td>8 0</td>
</tr>
<tr>
<td>2</td>
<td>8 6</td>
</tr>
<tr>
<td>256</td>
<td>8 8</td>
</tr>
</tbody>
</table>

Amino glycosides - Gentamicin: 2\%, 8% 0% 5\%, 3%

Amino glycosides - Kanamycin: 64\%, 8% 0% 8%

Amino glycosides - Streptomycin: 16\%, 8% 8\%, 7\%, 1%

Amphenicols - Chloramphenicol: 16\%, 8% 8\%, 5\%, 3%

Amphenicols - Florfenicol: 16\%, 8% 8\%, 5\%, 3%

Cephalosporins - Cefotaxime: 0.5\%, 8% 0% 1\%, 5\%, 2%

Fluoroquinolones - Ciprofloxacin: 0.06\%, 8% 8\%, 6\%, 2%

Penicillins - Ampicillin: 8\%, 8% 0% 5\%, 1\%, 1\%, 1%

Quinolones - Nalidixic acid: 16\%, 8% 8\%, 8%

Tetracyclines - Tetracycline: 8\%, 8% 8\%, 8%

Trimethoprim: 2\%, 8% 0% 5\%, 1\%, 2%

Cephalosporins - Ceftazidime: 2\%, 8% 0% 5\%, 1\%, 2%

Polymyxins - Colistin: 2\%, 8% 6\%, 2\%, 6\%

Sulfonamides - Sulfamethoxazole: 256\%, 8% 8\%, 8%
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table 1: Antimicrobial susceptibility testing of S. Infantis in Quails - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>1296</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Cut-off value</td>
<td></td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>n</td>
<td></td>
</tr>
<tr>
<td><=0.002</td>
<td></td>
</tr>
<tr>
<td><=0.004</td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>>4096</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

- Aminoglycosides - Gentamicin: 2 isolates, 1 inhibitory concentration
- Aminoglycosides - Kanamycin: 64 isolates, 0 inhibitory concentration
- Aminoglycosides - Streptomycin: 16 isolates, 1 inhibitory concentration
- Amphenicols - Chloramphenicol: 16 isolates, 0 inhibitory concentration
- Amphenicols - Florfenicol: 16 isolates, 1 inhibitory concentration
- Cephalosporins - Cefotaxime: 0.5 isolates, 1 inhibitory concentration
- Fluoroquinolones - Ciprofloxacin: 0.06 isolates, 1 inhibitory concentration
- Penicillins - Ampicillin: 8 isolates, 1 inhibitory concentration
- Quinolones - Nalidixic acid: 16 isolates, 1 inhibitory concentration
- Tetracyclines - Tetracycline: 8 isolates, 1 inhibitory concentration
- Trimethoprim: 2 isolates, 1 inhibitory concentration
- Cephalosporins - Ceftazidime: 2 isolates, 1 inhibitory concentration
- Polymyxins - Colistin: 2 isolates, 1 inhibitory concentration
- Sulfonamides - Sulfadimethoxazole: 256 isolates, 1 inhibitory concentration
Table Antimicrobial susceptibility testing of *S. Infantis* in Quails - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Quails - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>4</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Trimethoprin</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>3</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>10</td>
<td>1</td>
<td></td>
<td></td>
<td>9</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>10</td>
<td>8</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Turkeys - fattening flocks - Farm - Domestic - Control and eradication programmes -
Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Infantis</th>
<th>Turkeys - fattening flocks - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
</tr>
</tbody>
</table>
Table: Antimicrobial Susceptibility Testing of S. Infantis in Turkeys - Fattening Flocks - Farm - Domestic - Control and Eradication Programmes - Objective Sampling - Official Sampling - Animal Sample - Faeces - Quantitative Data [Dilution Method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a Monitoring Program (Yes/No)</th>
<th>Number of Isolates Available in the Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetraacyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulphamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>N</td>
<td><=0.002</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Trimeprprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polymysins - Colistin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfoxethazole</td>
<td>256</td>
<td>2</td>
</tr>
<tr>
<td>S. Montevideo</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>yes</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>yes</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>yes</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>yes</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>yes</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>yes</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>yes</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>yes</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>yes</td>
<td>8</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Montevideo in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
| Table Antimicrobial susceptibility testing of S. Montevideo in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method] |
Table Antimicrobial susceptibility testing of S. Dublin in Foxes - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Collistin</td>
<td>2</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Dublin in Foxes - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Foxes - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>S. Dublin</td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>(lowest)</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Dublin in Goats - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>S. Dublin</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Dublin in Goats - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Dublin</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Foxes - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096	Foxes - Farm - Surveillance	
-------------------------------------	---------------	-----	-----	---------	---------	-------	-------	-------	------	------	------	------	------	-----	----	----	----	----	----	-----	-----	-----	-----	-----	-----			
Aminoglycosides - Gentamicin		2	6	0																								1296
Aminoglycosides - Kanamycin		64	6	0																								
Aminoglycosides - Streptomycin		16	6	0																								
Amphenicols - Chloramphenicol		16	6	0																								
Amphenicols - Florfenicol		16	6	0																								
Cephalosporins - Cefotaxime		0.5	6	0					5	1																		
Fluoroquinolones - Ciprofloxacin		0.06	6	0					3	3																		
Penicillins - Ampicillin		8	6	0					3	3																		
Quinolones - Nalidixic acid		16	6	0																								
Tetracyclines - Tetracycline		8	6	0																								
Trimethoprim		2	6	0																								
Cephalosporins - Ceftazidime		2	6	0																								
Polymyxins - Colistin		2	6	6																								
Sulfonamides - Sulfamethoxazole		256	6	0																								
Table Antimicrobial susceptibility testing of S. Typhimurium in Foxes - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Foxes - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

- **Aminoglycosides - Gentamicin**: 0.25 32
- **Aminoglycosides - Kanamycin**: 4 128
- **Aminoglycosides - Streptomycin**: 2 128
- **Amphenicols - Chloramphenicol**: 2 64
- **Amphenicols - Florfenicol**: 2 64
- **Cephalosporins - Cefotaxime**: 0.06 4
- **Fluoroquinolones - Ciprofloxacin**: 0.008 8
- **Penicillins - Ampicillin**: 0.5 32
- **Quinolones - Nalidixic acid**: 4 64
- **Tetracyclines - Tetracycline**: 1 64
- **Trimethoprim**: 0.5 32
- **Cephalosporins - Ceftazidime**: 0.25 16
- **Polymyxins - Colistin**: 2 4
- **Sulfonamides - Sulfamethoxazole**: 8 1024
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>10</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>10</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>10</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of *S. Typhimurium* in *Gallus gallus* (fowl) - broilers - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Quails - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>Quails - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

- **Aminoglycosides - Gentamicin**
 - Low: 0.25
 - High: 32

- **Aminoglycosides - Kanamycin**
 - Low: 4
 - High: 128

- **Aminoglycosides - Streptomycin**
 - Low: 2
 - High: 128

- **Amphenicols - Chloramphenicol**
 - Low: 2
 - High: 64

- **Amphenicols - Florfenicol**
 - Low: 2
 - High: 64

- **Cephalosporins - Cefotaxime**
 - Low: 0.06
 - High: 4

- **Fluoroquinolones - Ciprofloxacin**
 - Low: 0.008
 - High: 8

- **Penicillins - Ampicillin**
 - Low: 0.5
 - High: 32

- **Quinolones - Nalidixic acid**
 - Low: 4
 - High: 64

- **Tetracyclines - Tetracycline**
 - Low: 1
 - High: 64

- **Trimethoprim**
 - Low: 0.5
 - High: 32

- **Cephalosporins - Ceftazidime**
 - Low: 0.25
 - High: 16

- **Polymyxins - Colistin**
 - Low: 2
 - High: 4

- **Sulfonamides - Sulfamethoxazole**
 - Low: 8
 - High: 1024
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
<td>n <=0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>12</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>12</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>12</td>
<td>3</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Enteritidis</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table 1: Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Enteritidis in Goats - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - foetus/stillbirth - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxsins - Colstcin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Goats - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - foetus/stillbirth - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Enteritidis</th>
<th>Antimicrobials:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of S. Enteritidis in Cats - Farm - Domestic - Clinical investigations - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Table

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|---------------------------------|---------------|----|----|---------|---------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Aminoglycosides - Gentamicin | 2 | 1 | 0 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Kanamycin | 64 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Florfenicol | 16 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin| 0.06 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidix acid | 16 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Ceftazidime | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Polymyxins - Colistin | 2 | 1 | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | |

Cats - Farm - Clinical investigations

<table>
<thead>
<tr>
<th>Cats - Farm - Clinical investigations</th>
<th>1296</th>
</tr>
</thead>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cats · Farm · Clinical investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Enteritidis* in *Gallus gallus* (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td>YES</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N n <=0.002 <=0.004 0.008 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 9 0</td>
<td>6 3</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 9 9</td>
<td>9</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 9 9</td>
<td>9</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2 9 0</td>
<td>9</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 9 9</td>
<td>9</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 9 0</td>
<td>5 4</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Enteritidis</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Amoxicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Galiema in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value (µg/ml)</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Galiema in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Lower</th>
<th>Higher</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.08</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gallinarum biovar Gallinarum in Gallus gallus (fowl) - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>8</td>
<td>8</td>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>256</td>
<td>8</td>
<td>0</td>
<td></td>
<td>1</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>S. Gallinarum biovar Gallinarum</td>
<td>Gallus gallus (fowl) - Farm - Surveillance</td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1296</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Livingstone in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes

Number of isolates available in the laboratory: 1296

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Livingstone in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Livingstone</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobial susceptibility testing of S. Livingstone in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Mbandaka in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftriaxime</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>256</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Mbandaka in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Mbandaka in Gallus gallus (fowl) - broilers - before slaughter</td>
<td>Farm</td>
<td>Domestic</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Albany in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Kanamycin</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Florfenicol</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Ceftazidime</td>
</tr>
<tr>
<td></td>
<td>Polymyxins - Colistin</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfaethoxazole</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Albany* in *Gallus gallus* (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
<tr>
<td>S. Albany</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td></td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>S. Amsterdam</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefazolin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulamethoxazole</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>256</td>
<td>3</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Amsterdam in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Amsterdam in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>1296</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td><=0.002</td>
<td></td>
</tr>
<tr>
<td></td>
<td><=0.004</td>
<td></td>
</tr>
<tr>
<td></td>
<td><=0.015</td>
<td></td>
</tr>
<tr>
<td></td>
<td><=0.016</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>32</td>
<td></td>
</tr>
<tr>
<td></td>
<td>64</td>
<td></td>
</tr>
<tr>
<td></td>
<td>128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>512</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2048</td>
<td></td>
</tr>
<tr>
<td></td>
<td>>4096</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cotrimoxazole - Trimethoprim</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>17</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td></td>
<td>9</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>14</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobial Type</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Number of isolates available in the laboratory</td>
<td>Cut-off value (µg/ml)</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>----------------------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Kentucky in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to S. Kentucky
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>S. Kentucky</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Blockley in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Blockley</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration of inhibition equal to (µg/ml)</td>
</tr>
<tr>
<td></td>
<td><=0.002 <=0.004 0.008 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 1 0 1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64 1 1 1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 1 1 1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 1 0 1</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16 1 0 1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 1 0 1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 1 1 1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 1 0 1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 1 1 1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 1 1 1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 1 0 1</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2 1 0 1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 1 1 1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 1 0 1</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Blockley in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no) Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Blockley</td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>4 64</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of *S. Bovismorbificans* in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N n <=0.002 <=0.004 0.008 0.015 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 1 1</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Flufenicol</td>
<td>16 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 1 1</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Ceftriaxone</td>
<td>2 1 0</td>
<td>1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 1 1</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 1 1</td>
<td>1</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>-------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>S. Bovismorbificans</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobial susceptibility testing of S. Bovismorbificans in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Bovismorbificans in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of *S. Bredeney* in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>8</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Bredeney in Gallus galus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus galus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfanethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Bredeney in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml)</th>
<th>Number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1296</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Bredeney</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td><=0.002</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
<td><=0.004</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0.015</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0.016</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0.12</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0.25</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>>4096</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td></td>
<td>2</td>
</tr>
</tbody>
</table>
Table 1. Antimicrobial susceptibility testing of S. Bredeney in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Chester in Goats - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - foetus/stillbirth - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cutoff value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
</tr>
</tbody>
</table>

S. Chester

Isolates out of a monitoring program (yes/no):
Number of isolates available in the laboratory: 1296
Table Antimicrobial susceptibility testing of S. Chester in Goats - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - foetus/stillbirth - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Chester</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of S. Newport in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Table: Antimicrobial susceptibility testing of S. Newport in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Newport in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
<tr>
<td>S. Newport</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Newport in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 1: Antimicrobial susceptibility testing of S. Newport in Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Newport in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Abortusovis in Sheep - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - foetus/stillbirth - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Sheep - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096								
Aminoglycosides - Gentamicin	2	28	0																															
Aminoglycosides - Kanamycin	64	28	0																															
Aminoglycosides - Streptomycin	16	28	4																															
Amphenicols - Chloramphenicol	16	28	0																															
Amphenicols - Florfenicol	16	28	0																															
Cephalosporins - Cefotaxime	0.5	28	1																															
Fluoroquinolones - Ciprofloxacin	0.06	28	5																															
Penicillins - Ampicillin	8	28	0																															
Quinolones - Nalidixic acid	16	28	5																															
Tetracyclines - Tetracycline	8	28	3																															
Trimethoprim	2	28	2																															
Cephalosporins - Ceftazidime	2	28	0																															
Polymyxins - Colistin	2	28	8																															
Sulfonamides - Sulfamethoxazole	256	28	3																															

Notes:
- Isolates out of a monitoring program (yes/no)
- Number of isolates available in the laboratory
- Cut-off values and concentrations (µg/ml) for each antimicrobial.
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Abortusovis</th>
<th>Sheep - Farm - Surveillance</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td><=0.002</td>
<td><=0.004</td>
<td>0.008</td>
</tr>
<tr>
<td>-----------------</td>
<td>--------------</td>
<td>----------</td>
<td>----------</td>
<td>-------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>14</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>14</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>14</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>14</td>
<td>0</td>
<td>9</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>14</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>14</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>14</td>
<td>6</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nadifloxacin</td>
<td>16</td>
<td>14</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>14</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>14</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>14</td>
<td>5</td>
<td>7</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>14</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>14</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>lower</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Agona in Goats - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Goats - Farm - Surveillance</th>
<th>1296</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>S. Agona</td>
<td></td>
<td>n</td>
</tr>
<tr>
<td></td>
<td></td>
<td><=0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Agona in Goats - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Goats - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>N</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</td>
<td>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of S. Kottbus in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	4096	
Aminoglycosides - Gentamicin	0.016	64	6	0		6																					
Aminoglycosides - Kanamycin	0.015	16	6	0		2	1	3																			
Aminoglycosides - Streptomycin	0.016	16	6	0		3	2	1																			
Amphenicols - Chloramphenicol	0.03	16	6	0		3	3																				
Amphenicols - Florfenicol	0.016	16	6	0		3	3																				
Cephalosporins - Cefotaxime	0.008	16	6	0		3	3																				
Fluoroquinolones - Ciprofloxacin	0.06	8	6	4		2	2	2																			
Penicillins - Ampicillin	0.016	16	6	3		3	3																				
Quinolones - Nalidixic acid	0.06	8	6	1		5		1																			
Tetracyclines - Tetracycline	0.008	2	6	0		6																					
Trimethoprim	0.015	2	6	0		3		3																			
Cephalosporins - Ceftazidime	0.008	2	6	0		3	3																				
Polymyxins - Colistin	0.03	2	6	0		6																					
Sulfonamides - Sulfamethoxazole	0.016	256	6	1		5		1																			

Table: Antimicrobial susceptibility testing of S. Kottbus in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Kottbus</td>
<td></td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kottbus in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kottbus in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Kottbus</td>
<td>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Kottbus in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Liverpool in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>55</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>55</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>55</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>55</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>55</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>55</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>55</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>55</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>55</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>55</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>55</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>55</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>55</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

S. Liverpool: Isolates out of a monitoring program (yes/no)
Number of isolates available in the laboratory

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Liverpool</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Liverpool in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Liverpool</th>
<th>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>S. Liverpool</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Liverpool in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Liverpool in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th></th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Liverpool</td>
</tr>
</tbody>
</table>

	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
Aminoglycosides - Gentamicin	2	3	0	1	2																						
Aminoglycosides - Kanamycin	64	3	0			1	2																				
Aminoglycosides - Streptomycin	16	3	0			1	2																				
Amphenicols - Chloramphenicol	16	3	3																								
Amphenicols - Florfenicol	16	3	3																								
Cephalosporins - Cefotaxime	0.5	3	0																								
Fluoroquinolones - Ciprofloxacin	0.06	3	3			2	1																				
Penicillins - Ampicillin	8	3	3																								
Quinolones - Nalidixic acid	16	3	0																								
Tetracyclines - Tetracycline	8	3	0																								
Trimethoprim	2	3	0																								
Cephalosporins - Ceftazidime	2	3	0			3																					
Polymyxins - Colistin	2	3	0			3																					
Sulfonamides - Sulfamethoxazole	256	3	3																								
Table Antimicrobial susceptibility testing of *S. Liverpool* in *Gallus gallus* (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Orion in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Orion</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>1296</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td></td>
<td>7</td>
</tr>
<tr>
<td>0.5</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>0.06</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>16</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>256</td>
<td>8</td>
<td>3</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Orion in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
<tr>
<td>S. Orion</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Thompson in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Thompson</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Thompson</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Thompson in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials: Isolates out of a monitoring program (yes/no)</th>
<th>Antimicrobials: Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of S. Thompson in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]
Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin											2	3														1		
Aminoglycosides - Kanamycin	64	6	0																								6	
Aminoglycosides - Streptomycin	16	6	0									1	4	1													1	
Amphenicols - Chloramphenicol	16	6	0									1	1	3	1												1	
Amphenicols - Florfenicol	16	6	0									2	1	3													1	
Cephalosporins - Cefotaxime	0.5	6	0									1	1	4													4	
Fluoroquinolones - Ciprofloxacin	0.06	6	1									1	4													1		
Penicillins - Ampicillin	8	6	1									1	2	2	1												1	
Quinolones - Nalidixic acid	16	6	0									2	2	2													4	
Tetracyclines - Tetracycline	8	6	0									2	1	3													3	
Trimethoprim	2	6	0																									6
Cephalosporins - Ceftazidime	2	6	0									1	3	1	1												1	
Polymyxins - Colistin	2	6	0																									6
Sulfonamides - Sulfamethoxazole	256	6	0										1	2	1	1	1											1

Note: The table above shows the concentration (µg/ml) of isolates with a concentration of inhibition equal to the cut-off values for each antimicrobial. The data is based on isolates out of a monitoring program and the number of isolates available in the laboratory.
Table Antimicrobial susceptibility testing of S. Senftenberg in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Senftenberg* in *Gallus gallus* (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Taksony in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

| Antimicrobials | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | ≥4096 |
|---|---------------|-----|-----|---------|---------|-------|-------|-------|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Aminoglycosides - Gentamicin | 2 | 7 | 0 | 4 | 2 | 1 | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Kanamycin | 64 | 7 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 7 | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 7 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Florfenicol | 16 | 7 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 7 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 7 | 7 | 6 | 1 | | | | | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 7 | 2 | | | | | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 7 | 6 | | | | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 7 | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 7 | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Ceftazidime | 2 | 7 | 1 | | | | | | | | | | | | | | | | | | | | | | | |
| Polymyxins - Colistin | 2 | 7 | 0 | | | | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 7 | 2 | | | | | | | | | | | | | | | | | | | | | | | |
Table Antimicrobial susceptibility testing of S. Taksony in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxicin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Taksony* in Gallus gallus (fowl) - broilers - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Taksony</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Cutoff value</td>
<td>N</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antimicrobials:</td>
<td>Cutoff value</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Flufenicol</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>11</td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]
Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Table Antimicrobial susceptibility testing of S. Tennessee in Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<p>| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|--|---------------|-----|----|---------|---------|-------|-------|-------|------|------|------|------|-----|----|----|----|----|----|----|----|----|----|----|----|-----|
| Aminoglycosides - Gentamicin | 2 | 1 | 0 | | | | | | | | | | | 1 | | | | | | | | | | | |
| Aminoglycosides - Kanamycin | 64 | 1 | 0 | | | | | | | | | | | 1 | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 1 | 0 | | | | | | | | | | | | 1 | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 1 | 0 | | | | | | | | | | | | | 1 | | | | | | | | | | |
| Amphenicols - Florfenicol | 16 | 1 | 0 | | | | | | | | | | | | | | 1 | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 1 | 0 | | | | | | | | | | | | | | 1 | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 1 | 0 | | | | | | | | | | | | | | | 1 | | | | | | | | |
| Penicillins - Ampicillin | 8 | 1 | 0 | | | | | | | | | | | | | | | | 1 | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 1 | 0 | | | | | | | | | | | | | | | | | 1 | | | | | | |
| Tetracyclines - Tetracycline | 8 | 1 | 0 | | | | | | | | | | | | | | | | | | 1 | | | | | |
| Trimethoprim | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | | 1 | | | |
| Cephalosporins - Ceftazidime | 2 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | 1 | |
| Polymyxins - Colistin | 2 | 1 | 1 | | | | | | | | | | | | | | | | | | | | | | | 1 | |
| Sulfonamides - Sulfamethoxazole | 256 | 1 | 0 | | | | | | | | | | | | | | | | | | | | | | | 1 | |</p>
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Tennessee</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Minimal inhibitory concentration (MIC)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>0.25, 32</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>4, 128</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>2, 128</td>
</tr>
<tr>
<td>Amphenicols</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>2, 64</td>
</tr>
<tr>
<td>Florfenicol</td>
<td>0.06, 4</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.006, 4</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.008, 8</td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>0.5, 32</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>4, 64</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>1, 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5, 32</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.25, 16</td>
</tr>
<tr>
<td>Polymyxins</td>
<td></td>
</tr>
<tr>
<td>Colistin</td>
<td>2, 4</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td></td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>8, 1024</td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of S. Uganda in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>6</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>6</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>6</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>6</td>
<td>5</td>
<td>1</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>6</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>6</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>>4096</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Uganda in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>S. Uganda</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulphamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Glostrup in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|-----------------|--------------|----|---|---------|---------|------|------|------|------|------|------|------|-----|---|---|---|---|----|----|----|----|-----|-----|-----|-----|-----|-----|
| Aminoglycosides - Gentamicin | 2 | 3 | 0 | 1 | 2 |
| Aminoglycosides - Kanamycin | 64 | 3 | 1 | 2 |
| Aminoglycosides - Streptomycin | 16 | 3 | 0 | 3 |
| Amphenicols - Chloramphenicol | 16 | 3 | 1 | 2 |
| Amphenicols - Florfenicol | 16 | 3 | 1 | 2 |
| Cephalosporins - Cefotaxime | 0.5 | 3 | 0 | 3 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 3 | 0 | 2 | 1 |
| Penicillins - Ampicillin | 8 | 3 | 0 | 3 |
| Quinolones - Nalidixic acid | 16 | 3 | 0 | 3 |
| Tetracyclines - Tetracycline | 8 | 3 | 0 | 3 |
| Trimethoprim | 2 | 3 | 0 | 3 |
| Cephalosporins - Ceftazidime | 2 | 3 | 0 | 3 |
| Polymyxins - Colistin | 2 | 3 | 0 | 3 |
| Sulfonamides - Sulfamethoxazole | 256 | 3 | 0 | 2 | 1 |
Table Antimicrobial susceptibility testing of S. Glostrup in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Liverpool in Feed material of land animal origin - poultry offal meal - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Feas material of land animal origin - poultry offal meal - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Liverpool

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Feed material of land animal origin - poultry offal meal - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Liverpool in Feed material of land animal origin - poultry offal meal - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Liverpool</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feed material of land animal origin - poultry offal meal - Processing plant - Surveillance</td>
<td>Unknown</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:

<p>	Antimicrobials	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096
Aminoglycosides - Gentamicin	2	2	0	1	1																						
Aminoglycosides - Kanamycin	64	2	0	2																							
Aminoglycosides - Streptomycin	16	2	2	2																							
Amphenicols - Chloramphenicol	16	2	0	2																							
Amphenicols - Florfenicol	16	2	0	2																							
Cephalosporins - Cefotaxime	0.5	2	0	2																							
Fluoroquinolones - Ciprofloxacin	0.06	2	2																								
Penicillins - Ampicillin	8	2	2																								
Quinolones - Nalidixic acid	16	2	2																								
Tetracyclines - Tetracycline	8	2	2																								
Trimethoprim	2	2	0																								
Cephalosporins - Ceftazidime	2	2	0	1	1																						
Polymyxins - Colistin	2	2	0																								
Sulfonamides - Sulfamethoxazole	256	2	2																								
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Hadar</td>
<td></td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

- **Aminoglycosides - Gentamicin**
 - Lowest: 0.25
 - Highest: 32

- **Aminoglycosides - Kanamycin**
 - Lowest: 4
 - Highest: 128

- **Aminoglycosides - Streptomycin**
 - Lowest: 2
 - Highest: 128

- **Amphenicols - Chloramphenicol**
 - Lowest: 2
 - Highest: 64

- **Amphenicols - Florfenicol**
 - Lowest: 0.06
 - Highest: 4

- **Cephalosporins - Cefotaxime**
 - Lowest: 0.008
 - Highest: 8

- **Fluoroquinolones - Ciprofloxacin**
 - Lowest: 0.5
 - Highest: 32

- **Penicillins - Ampicillin**
 - Lowest: 0.5
 - Highest: 32

- **Quinolones - Nalidixic acid**
 - Lowest: 4
 - Highest: 64

- **Tetracyclines - Tetracycline**
 - Lowest: 1
 - Highest: 64

- **Trimethoprim**
 - Lowest: 0.5
 - Highest: 32

- **Cephalosporins - Ceftazidime**
 - Lowest: 0.25
 - Highest: 16

- **Polymyxins - Colistine**
 - Lowest: 2
 - Highest: 4

- **Sulfonamides - Sulframethoxazole**
 - Lowest: 8
 - Highest: 1024
Table Antimicrobial susceptibility testing of S. Senftenberg in Compound feedingstuffs for poultry - laying hens - Farm - Domestic - Surveillance - Objective sampling - HACCP and own checks - feed sample - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Compound feedingstuffs for poultry - laying hens - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Senftenberg

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Compound feedingstuffs for poultry - laying hens - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Compound feedingstuffs for poultry - laying hens - Farm - Domestic - Surveillance - Objective sampling - HACCP and own checks - feed sample - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Senftenberg</td>
<td>unknown</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of S. Goldcoast in Feed material of land animal origin - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096											
Aminoglycosides - Gentamicin	2	3	0																								2	1									
Aminoglycosides - Streptomycin	16	3	2																											1	1	1					
Amphenicols - Chloramphenicol	16	3	0																																1	2	
Cephalosporins - Cefotaxime	0.5	3	0																																2	1	
Fluoroquinolones - Ciprofloxacin	0.06	3	0																																1	1	1
Penicillins - Ampicillin	8	3	1																																1	1	1
Quinolones - Nalidixic acid	16	3	0																																3		
Tetracyclines - Tetracycline	8	3	1																																2	1	
Trimethoprim	2	3	0																																3		
Sulfonamides - Sulfamethoxazole	256	3	1																																1	1	1

Table Antimicrobial susceptibility testing of S. Goldcoast in Feed material of land animal origin - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Goldcoast</th>
<th>Feed material of land animal origin - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Feed material of land animal origin - Processing plant - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>S. Goldcoast</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes

- Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
</tbody>
</table>

Cut-off value

Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	≥4096		
Aminoglycosides - Gentamicin	2	2	0																								
Aminoglycosides - Kanamycin	64	2	0																								
Aminoglycosides - Streptomycin	16	2	1																								
Amphenicols - Chloramphenicol	16	2	0																								
Amphenicols - Florfenicol	16	2	0																								
Cephalosporins - Cefotaxime	0.5	2	0																								
Fluoroquinolones - Ciprofloxacin	0.06	2	1																								
Penicillins - Ampicillin	8	2	1																								
Quinolones - Nalidixic acid	16	2	1																								
Tetracyclines - Tetracycline	8	2	1																								
Trimethoprim	2	2	0																								
Cephalosporins - Ceftazidime	2	2	0																								
Polymyxins - Colistin	2	2	0																								
Sulfonamides - Sulfamethoxazole	256	2	0																								
Table Antimicrobial susceptibility testing of *S. Hadar* in *Gallus gallus* (fowl) - laying hens - Farm - Domestic - Control and eradication programmes

- Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfaethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Compound feedingstuffs for poultry - laying hens - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 <=0.002 <=0.004 0.008 0.015 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 2 0</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 2 0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 2 0</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 2 0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 2 0</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 2 0</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 2 0</td>
</tr>
</tbody>
</table>

S. Hadar

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Compound feedingstuffs for poultry - laying hens - Processing plant - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>lowest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Infantis</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>423</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>423</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>423</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>423</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>423</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>423</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>423</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>423</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>423</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>423</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>423</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>423</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>423</td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>256</td>
<td>423</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>S. Infantis</td>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Infantis* in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Compound feedingstuffs for poultry - laying hens - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Compound feedingstuffs for poultry - laying hens - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>n</td>
<td><=0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

S. Typhimurium

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Typhimurium in Compound feedingstuffs for poultry - laying hens - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Compound feedingstuffs for poultry - laying hens - Processing plant - Surveillance - Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>Compound feedingstuffs for poultry - laying hens - Processing plant - Surveillance - Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Typhimurium</td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
<td><=0.002</td>
<td><=0.004</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Djugu in Compound feedingstuffs for poultry - laying hens - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - feed sample - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Djugu</th>
<th>Compound feedingstuffs for poultry - laying hens - Processing plant - Surveillance</th>
<th>unknown</th>
</tr>
</thead>
</table>

<p>	Antimicrobials:	Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Aminoglycosides - Gentamicin	0.25	32
Aminoglycosides - Streptomycin	2	128
<table>
<thead>
<tr>
<th>S. Djugu</th>
<th>Compound feedingstuffs for poultry - laying hens - Processing plant - Surveillance - Objective sampling - HACCP and own checks - feed sample - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Infantis* in *Gallus gallus* (fowl) - breeding flocks, unspecified - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Gallus gallus (fowl) - breeding flocks, unspecified - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>S. Infantis</td>
<td>1296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Compound feedingstuffs for pigs - Farm - Surveillance</td>
</tr>
<tr>
<td>---------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Hadar in Compound feedingstuffs for pigs - Farm - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Hadar</th>
<th>Compound feedingstuffs for pigs - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
</tbody>
</table>

Aminoglycosides - Gentamicin | 0.25 | 32 |
Aminoglycosides - Streptomycin | 2 | 128 |
Amphenicols - Chloramphenicol | 2 | 64 |
Table Antimicrobial susceptibility testing of S. Hadar in Compound feedingstuffs for pigs - Farm - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Compound feedingstuffs for pigs - Farm - Surveillance - objective sampling - Official sampling - feed sample - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>

Antimicrobials:
- Cefotaxime
- Ciprofloxacin
- Ampicillin
- Nalidixic acid
- Tetracycline
- Trimethoprim
- Sulfamethoxazole
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - broilers - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>Gallus gallus (fowl) - broilers - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Gallus gallus (fowl) - broilers - Farm - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]</td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Compound feedingstuffs for pigs - Farm - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Compound feedingstuffs for pigs - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 2 0 2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 2 0 2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 0 2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 2 0 2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 2 2 2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 2 2 2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 2 2 2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 2 2 2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 2 2 2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 2 2 2</td>
</tr>
</tbody>
</table>

S. Typhimurium

<table>
<thead>
<tr>
<th>Antibiotics:</th>
<th>Compound feedingstuffs for pigs - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Compound feedingstuffs for pigs - Farm - Domestic - Surveillance - Objective sampling - Official sampling - feed sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Compound feedingstuffs for pigs - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Infantis* in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

S. Infantis

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
Aminoglycosides - Gentamicin	2	4	0																								
Aminoglycosides - Kanamycin	64	4	0																								
Aminoglycosides - Streptomycin	16	4	3																								
Amphenicols - Chloramphenicol	16	4	0																								
Amphenicols - Florfenicol	16	4	0																								
Cephalosporins - Cefotaxime	0.5	4	0																								
Fluoroquinolones - Ciprofloxacin	0.06	4	4																								
Penicillins - Ampicillin	8	4	0																								
Quinolones - Nalidixic acid	16	4	4																								
Tetracyclines - Tetracycline	8	4	3																								
Trimethoprim	2	4	0																								
Cephalosporins - Ceftazidime	2	4	1																								
Polymyxins - Colistin	2	4	0																								
Sulfonamides - Sulfamethoxazole	256	4	3																								
Table Antimicrobial susceptibility testing of S. Infantis in Gallus gallus (fowl) - laying hens - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Gallus gallus (fowl) - laying hens - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Amoxicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulphamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Turkeys - fattening flocks - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Number of isolates</th>
</tr>
</thead>
<tbody>
<tr>
<td><=0.002</td>
<td>1</td>
</tr>
<tr>
<td><=0.004</td>
<td></td>
</tr>
<tr>
<td>0.008</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>>4096</td>
<td></td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of S. Infantis in Turkeys - fattening flocks - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Turkeys - fattening flocks - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Isolates</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Montevideo* in *Gallus gallus* (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftoxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Montevideo in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Montevideo</th>
<th>Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Montevideo* in *Gallus gallus* (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Dublin</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacine</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cattle (bovine animals) - Farm - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no) Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Dublin</td>
<td>1296</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of S. Typhimurium in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Ceftriaxime</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulphonamide</td>
<td>256</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolates available in the laboratory</td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antimicrobial susceptibility testing of S. Typhimurium in Gallus gallus (fowl) - broilers - before slaughter - Farm - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]</td>
<td></td>
</tr>
<tr>
<td>Polypeptides - Colistin</td>
<td>0.25</td>
<td>8</td>
</tr>
<tr>
<td>Cephalosporins - Cefaclor</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aramicarbons - Chloramphenicol</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Amyglicosides - Gentamicin</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Aramicarbons - Kanamycin</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Aramicarbons - Streptomycin</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Fluoroquinolones - ofloxacin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Polymyxins - Colostrin</td>
<td>1024</td>
<td>4</td>
</tr>
<tr>
<td>Aramicarbons - Purtanides</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Aramicarbons - Sulfadiazine</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>8</td>
<td>128</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Aramicarbons - Gentamicin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Penicillins - Amoxicillin</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Aramicarbons - Kanamycin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>1024</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Aramicarbons - Gentamicin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>1024</td>
<td>4</td>
</tr>
<tr>
<td>Aramicarbons - Gentamicin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>1024</td>
<td>4</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Gallus gallus (fowl) - broilers - before slaughter - Farm - Domestic - Control and eradication programmes - Objective sampling - Industry sampling - animal sample - faeces - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Typhimurium in Ducks - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value (µg/ml)</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Ducks - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Ducks - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Gallus gallus (fowl) - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftoxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Typhimurium in Gallus gallus (fowl) - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>Gallus gallus (fowl) - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>1296</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Lowest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Florfenicol</td>
<td>0.06</td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.008</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.5</td>
</tr>
<tr>
<td>Ampicillin</td>
<td>4</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Highest</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>1024</td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

S. Enteritidis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Antimicrobial</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Cheeses made from cows' milk - unspecified - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cheeses made from cows' milk - unspecified - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>16</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Enteritidis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cheeses made from cows' milk - unspecified - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cheeses made from cows' milk - unspecified - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Concentration (µg/ml)</th>
<th>Number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.002</td>
<td></td>
</tr>
<tr>
<td>0.004</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.016</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.06</td>
<td></td>
</tr>
<tr>
<td>0.12</td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td></td>
</tr>
<tr>
<td>128</td>
<td></td>
</tr>
<tr>
<td>256</td>
<td></td>
</tr>
<tr>
<td>512</td>
<td></td>
</tr>
<tr>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>2048</td>
<td></td>
</tr>
<tr>
<td>>2048</td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>Number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Enteritidis</th>
<th>Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Enteritidis in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
Antimicrobial Susceptibility Testing of S. Enteritidis in Meat from Broilers (Gallus gallus) - Fresh - Frozen - Retail - Domestic - Surveillance - Suspect Sampling - Official Sampling - Food Sample - Meat - Quantitative Data [Dilution Method]

S. Enteritidis

Antimicrobials:	Cut-off value	N	n	<=0.0002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.15	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	2	23	0			16	6	1																					
Aminoglycosides - Streptomycin	16	23	2			5	13	2	1	2																			
Amphenicols - Chloramphenicol	16	23	0																										
Cephalosporins - Cefotaxime	0.5	23	0					2	19	2																			
Fluoroquinolones - Ciprofloxacin	0.06	23	23				6	15	2																				
Penicillins - Ampicillin	8	23	2						2	18	1	2																	
Quinolones - Nalidixic acid	16	23	23						2	18	1	2																	
Tetracyclines - Tetracycline	8	23	3																										
Trimethoprim	2	23	1																										
Sulfonamides - Sulfamethoxazole	256	23	2																										

Notes:
- **Meat from broilers (Gallus gallus):** Fresh - Frozen - Retail - Official - Surveillance - Suspect Sampling.
- **Antimicrobials:**
 - Aminoglycosides - Gentamicin
 - Aminoglycosides - Streptomycin
- **Number of isolates available in the laboratory:**
 - Unknown
- **Concentration (µg/ml), number of isolates with a concentration of inhibition equal to:**
 - Unknown

427
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance - unknown

Number of isolates available in the laboratory
Table Antimicrobial susceptibility testing of S. Farsta in Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|----------------|--------------|---|---|---------|---------|------|------|------|------|------|------|------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aminoglycosides - Gentamicin | 2 | 1 | 0 | 1 |
| Aminoglycosides - Streptomycin | 16 | 1 | 1 | 1 |
| Amphenicols - Chloramphenicol | 16 | 1 | 0 | 1 |
| Cephalosporins - Cefotaxime | 0.5 | 1 | 0 | 1 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 1 | 0 | 1 |
| Penicillins - Ampicillin | 8 | 1 | 1 | 1 |
| Quinolones - Nalidixic acid | 16 | 1 | 0 | 1 |
| Tetracyclines - Tetracycline | 8 | 1 | 1 | 1 |
| Trimethoprim | 2 | 1 | 0 | 1 |
| Sulfonamides - Sulfamethoxazole | 256 | 1 | 1 | 1 |

S. Farsta

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

- Aminoglycosides - Gentamicin

<table>
<thead>
<tr>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
</tr>
</tbody>
</table>

429
Table Antimicrobial susceptibility testing of *S. Farsta* in Meat, mixed meat - meat products - raw but intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Farsta</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Cut-off value</td>
<td>n</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Farsta in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
Table: Antimicrobial susceptibility testing of S. Farsta in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Farsta</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gloucester in Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

S. Gloucester

Isolates out of a monitoring program (yes/no)

Number of isolates available in the laboratory

unknown

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>S. Gloucester</td>
<td>Meats from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance - Objective sampling - official sample - meat - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (years)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim - Trimethoprim</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Nalidixic acid - Chloramphenicol</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Tetracycline - Tetracycline</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Ciprofloxacin - Chloramphenicol</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.006</td>
<td>4</td>
</tr>
<tr>
<td>Fluoquinolones - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>0.5</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim - Trimethoprim</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Nalidixic acid - Chloramphenicol</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Tetracycline - Tetracycline</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Ciprofloxacin - Chloramphenicol</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>0.006</td>
<td>4</td>
</tr>
<tr>
<td>Fluoquinolones - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>1</td>
<td>64</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gloucester in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 3 0 2 1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 3 3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 3 0 3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 3 0 1 2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 3 0 3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 3 3 3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 3 0 3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 3 3 3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 3 0 3</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 3 3</td>
</tr>
</tbody>
</table>

S. Gloucester

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kortrijk in Meat from broilers (Gallus gallus) - fresh - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	<=0.015	<=0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
Aminoglycosides - Gentamicin	2	3	0																							
Aminoglycosides - Streptomycin	16	3	0	1	2	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Amphenicols - Chloramphenicol	16	3	0																							
Cephalosporins - Cefotaxime	0.5	3	0	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Fluoroquinolones - Ciprofloxacin	0.06	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Penicillins - Ampicillin	8	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	3	
Quinolones - Nalidixic acid	16	3	0																							
Tetracyclines - Tetracycline	8	3	0																							
Trimethoprim	2	3	0																							
Sulfonamides - Sulfamethoxazole	256	3	0																							

S. Kortrijk

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Kortrijk in Meat from broilers (Gallus gallus) - fresh - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. London in Eggs - table eggs - Packing centre - Domestic - Surveillance - Objective sampling - HACCP and own checks - animal sample - eggs - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Eggs - table eggs - Packing centre - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
<td><=0.002</td>
<td><=0.004</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

S. London

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Eggs - table eggs - Packing centre - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. London in Eggs - table eggs - Packing centre - Domestic - Surveillance - Objective sampling - HACCP and own checks - animal sample - eggs - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Eggs - table eggs - Packing centre - Surveillance</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Meat from broilers (Gallus gallus) - carcass - Slaughterhouse - Domestic - Surveillance

- Suspect sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

S. Kentucky			

Antimicrobials:

- Aminoglycosides - Gentamicin
 - Concentration: 0.25
 - Number of isolates with a concentration of inhibition: 32

- Aminoglycosides - Streptomycin
 - Concentration: 2
 - Number of isolates with a concentration of inhibition: 128
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meas from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Kentucky

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meas from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>S. Kentucky</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Bovismorbificans in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - carcase swabs - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to unknown.

S. Bovismorbificans

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 2 0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 2 0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 2 0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 2 1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 2 0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 2 0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 2 0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 2 0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 2 0</td>
<td></td>
</tr>
</tbody>
</table>

S. Bovismorbificans

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Meat from pig - carcase - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>highest</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Bovismorbificans in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - carcase swabs - quantitative data [Dilution method]
Antimicrobial susceptibility testing of S. Bredeney in Meat from broilers (Gallus gallus) - Hospital or medical care facility - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096				
Aminoglycosides - Gentamicin	2	5	0	1	3	1																								
Aminoglycosides - Streptomycin	16	5	1			4	1																							
Amphenicols - Chloramphenicol	16	5	0			1	4																							
Cephalosporins - Cefotaxime	0.5	5	0			5																								
Fluoroquinolones - Ciprofloxacin	0.06	5	0	2	3																									
Penicillins - Ampicillin	8	5	1			3	1	1																						
Quinolones - Nalidixic acid	16	5	0																											
Tetracyclines - Tetracycline	8	5	0			1	4																							
Trimethoprim	2	5	1			4	1																							
Sulfonamides - Sulfamethoxazole	256	5	1			3	1	1																						

S. Bredeney

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>S. Bredeney</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Bredeney in Meat from broilers (Gallus gallus) - Hospital or medical care facility - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Bredeney in Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Norfloxacin</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Bredeney in Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>S. Bredeney</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Newport in Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	2	4	0	4																								
Aminoglycosides - Streptomycin	16	4	4																									
Amphenicols - Chloramphenicol	16	4	4																									
Cephalosporins - Cefotaxime	0.5	4	4																									
Fluoroquinolones - Ciprofloxacin	0.06	4	0	4																								
Penicillins - Ampicillin	8	4	4																									
Quinolones - Nalidixic acid	16	4	0																									
Tetracyclines - Tetracycline	8	4	4																									
Trimethoprim	2	4	4																									
Sulfonamides - Sulfamethoxazole	256	4	4																									

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Newport in Meat from bovine animals - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Newport</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Newport in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	S. Newport	Isolates out of a monitoring program (yes/no)	Number of isolates available in the laboratory	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096				
Aminoglycosides - Gentamicin	2	1	0																														
Aminoglycosides - Streptomycin	16	1	0																														
Amphenicols - Chloramphenicol	16	1	0																														
Cephalosporins - Cefotaxime	0.5	1	0																														
Fluoroquinolones - Ciprofloxacin	0.06	1	0																														
Penicillins - Ampicillin	8	1	0																														
Quinolones - Nalidixic acid	16	1	0																														
Tetracyclines - Tetracycline	8	1	0																														
Trimethoprim	2	1	0																														
Sulfonamides - Sulfamethoxazole	256	1	0																														
Table Antimicrobial susceptibility testing of S. Newport in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
<td><0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Agona in Meat from pig - fresh - chilled - Catering - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Meas from pig - fresh - chilled - Catering - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>S. Agona</td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kottbus in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to unknown.
Table Antimicrobial susceptibility testing of S. Kottbus in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>S. Kottbus</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

<p>| | highest | | 32 |
| | | | 128 |
| | | | 64 |
| | | | 4 |
| | | | 8 |
| | | | 32 |
| | | | 64 |
| | | | 32 |
| | | | 1024 |</p>
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Muenster</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Muenster in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Colindale in Meat from pig - meat preparation - intended to be eaten cooked - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluorquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to unknown.
<table>
<thead>
<tr>
<th>S. Colindale</th>
<th>Meant from pig - meat preparation - intended to be eaten cooked - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of S. Derby in Meat from Pig Carcase - Slaughterhouse - Surveillance - Official Sampling - Food Sample - Carcase Swabs - Quantitative Data [Dilution Method]

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >=4096 |
|----------------|--------------|----|----|---------|---------|-------|-------|-----|------|------|------|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aminoglycosides - Gentamicin | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Aminoglycosides - Streptomycin | 16 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Amphenicols - Chloramphenicol | 16 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Cephalosporins - Cefotaxime | 0.5 | 2 | 0 | 1 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 2 | 0 | 1 |
| Penicillins - Ampicillin | 8 | 2 | 0 | 1 |
| Quinolones - Nalidixic acid | 16 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Tetracyclines - Tetracycline | 8 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Trimethoprim | 2 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| Sulfonamides - Sulfamethoxazole | 256 | 2 | 0 | 2 | 2 | 0 | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

Antimicrobial Susceptibility Testing of S. Derby in Meat from Pig Carcase - Slaughterhouse - Surveillance - Official Sampling - Food Sample - Carcase Swabs - Quantitative Data [Dilution Method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meas from pig - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meat from turkey - fresh - chilled - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Derby

Isolates out of a monitoring program (yes/no) | unknown
Number of isolates available in the laboratory | unknown

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>---</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Isolates out of a monitoring program (yes/no) unknown
Number of isolates available in the laboratory unknown
Table: Antimicrobial susceptibility testing of S. Derby in Meat from pig - fresh - chilled - Cutting plant - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td><=0.002</td>
<td>0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>0</td>
<td><=0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>0</td>
<td>0.008</td>
<td>0.008</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0.015</td>
<td>0.015</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0.016</td>
<td>0.016</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0.03</td>
<td>0.03</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>0</td>
<td>0.06</td>
<td>0.06</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0.25</td>
<td>0.25</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0.5</td>
<td>0.5</td>
</tr>
</tbody>
</table>

Antimicrobials:

- Aminoglycosides - Gentamicin
- Aminoglycosides - Streptomycin
- Amphenicols - Chloramphenicol
- Cephalosporins - Cefotaxime
- Fluoroquinolones - Ciprofloxacin
- Penicillins - Ampicillin
- Quinolones - Nalidixic acid
- Tetracyclines - Tetracycline
- Trimethoprim
- Sulfonamides - Sulfamethoxazole
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - minced meat - intended to be eaten cooked - frozen - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Antimicrobials	Cut-off value	N	n	<=0.002	<=0.004	<=0.01	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	4096			
Aminoglycosides - Gentamicin		2	3	0																									
Aminoglycosides - Streptomycin		16	3	0									2	1															
Amphenicols - Chloramphenicol		16	3	0									3																
Cephalosporins - Cefotaxime	0.5	3	0										3																
Fluoroquinolones - Ciprofloxacin	0.06	3	0										3																
Penicillins - Ampicillin	8	3	0										2	1															
Quinolones - Nalidixic acid	16	3	0										3																
Tetracyclines - Tetracycline	8	3	0										3																
Trimethoprim	2	3	0										3																
Sulfonamides - Sulfamethoxazole	256	3	0										3																

Note: The table shows the concentration (µg/ml) of isolates with a concentration of inhibition equal to various concentrations of the antibiotics tested.
Antimicrobial Susceptibility Testing of S. Derby

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

S. Derby

Meat from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Derby</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from bovine animals - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<p>| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 | unknown |
|----------------|---------------|---|---|---------|---------|------|------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|
| Aminoglycosides - Gentamicin | 2 | 2 | 0 | 2 |
| Aminoglycosides - Streptomycin | 16 | 2 | 2 |
| Amphenicols - Chloramphenicol | 16 | 2 | 0 |
| Cephalosporins - Cefotaxime | 0.5 | 2 | 0 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 2 | 0 | 1 | 1 |
| Penicillins - Ampicillin | 8 | 2 | 2 |
| Quinolones - Nalidixic acid | 16 | 2 | 0 |
| Tetracyclines - Tetracycline | 8 | 2 | 2 |
| Trimethoprim | 2 | 2 | 2 |
| Sulfonamides - Sulfamethoxazole | 256 | 2 | 2 |</p>
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meat from turkey - carcase - chilled - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. Derby

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>32</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicol - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meats from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meant from turkey - meat preparation - intended to be eaten cooked - chilled - Cutting plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Conservation Facilities - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
---	---------------	-----	-----	---------	---------	-------	-------	-------	------	------	------	------	-----	------	------	------	------	------	------	------	------	------	------	------			
Aminoglycosides - Gentamicin	2	3	0	2	1																						
Aminoglycosides - Streptomycin	16	3	3																								
Amphenicols - Chloramphenicol	16	3	0																								
Cephalosporins - Cefotaxime	0.5	3	0																								
Fluorquinolones - Ciprofloxacin	0.06	3	0	1	2																						
Penicillins - Ampicillin	8	3	1						1	1	1	1															
Quinolones - Nalidixic acid	16	3	0																								
Tetracyclines - Tetracycline	8	3	3																								
Trimethoprim	2	3	2																								
Sulfonamides - Sulfa methoxazole	256	3	3																								

Notes
- **Cut-off values** indicate the concentration of inhibition equal to or greater than the specified value.
- **N** represents the number of isolates available in the laboratory.
- **n** indicates the number of isolates out of a monitoring program (yes/no).
- **Unknown** indicates cases where the concentration could not be determined.

Quantitative Data
- **Concentration (µg/ml)**: The values range from 0.0002 to 4096 µg/ml.
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Derby in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Conservation Facilities - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Rissen</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 2 0</td>
<td>1 1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 2 0</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 0</td>
<td>1 1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 2 0</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 2 2</td>
<td>1 1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 2 0</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 2 2</td>
<td>1 1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 2 0</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 2 0</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 2 0</td>
<td>1 1</td>
</tr>
</tbody>
</table>

S. Rissen

- Isolates out of a monitoring program (yes/no): unknown
- Number of isolates available in the laboratory: unknown

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>---------------------------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Table: Antimicrobial susceptibility testing of S. Rissen in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meats from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Rissen</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>3</td>
<td>3</td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>16</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulphamethoxazole</td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table above represents the susceptibility testing results of S. Rissen in meat from pig minced meat intended to be eaten cooked and chilled, sampled from a domestic processing plant and subjected to official surveillance with objective sampling methods. The data is quantified through dilution methods, indicating resistance levels at various concentration thresholds.
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>S. Rissen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>yes</td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Antimicrobials:

- Aminoglycosides - Gentamicin
- Aminoglycosides - Streptomycin
- Amphenicols - Chloramphenicol
- Cephalosporins - Cefotaxime
- Fluoroquinolones - Ciprofloxacin
- Penicillins - Ampicillin
- Quinolones - Nalidixic acid
- Tetracyclines - Tetracycline
- Trimethoprim
- Sulfonamides - Sulfamethoxazole
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Rissen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Rissen in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|----------------|--------------|---|---|---------|---------|-------|-------|-------|-------|-------|-------|-------|-----|----|--|--|--|--|--|--|--|--|--|--|--|--|---|
| Aminoglycosides - Gentamicin | 2 | 2 | 0 | 2 |
| Aminoglycosides - Streptomycin | 16 | 2 | 0 | 2 |
| Amphenicols - Chloramphenicol | 16 | 2 | 0 | 2 |
| Cephalosporins - Cefotaxime | 0.5 | 2 | 0 | 2 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 2 | 0 | 2 |
| Penicillins - Ampicillin | 8 | 2 | 2 | 2 |
| Quinolones - Nadiflox acid | 16 | 2 | 0 | 2 |
| Tetracyclines - Tetracycline | 8 | 2 | 2 | 2 |
| Trimethoprim | 2 | 2 | 2 | 2 |
| Sulfonamides - Sulframethoxazole | 256 | 2 | 2 | 2 |

S. Rissen

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>S. Rissen</td>
<td>Tetracyclines - Tetracycline</td>
<td>128</td>
</tr>
<tr>
<td>---------------</td>
<td>------------</td>
<td>-----------------------------</td>
<td>-----</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ciprofloxacin - Fluoroquinolones</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Chloramphenicol - Amphenicols</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Streptomycin - Aminoglycosides</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Ampicillin - Penicillins</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfamethoxazole - Sulfonamides</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nalidixic acid - Quinolones</td>
<td>64</td>
</tr>
<tr>
<td>Mean</td>
<td>8</td>
<td>128</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Table: Antimicrobial susceptibility testing of S. Rissen in Meat, mixed meat, meat preparation - intended to be eaten cooked - frozen - Retail - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
S. Ruzizi

Isolates out of a monitoring program (yes/no)

Number of isolates available in the laboratory

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Meats, mixed meat - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance - Official sampling - food sample - meat - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 - 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 - 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 - 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 - 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 - 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 - 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 - 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 - 1024</td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of S. Ruzizi in Meat from Pig - Meat Preparation - Intended to be Eaten Cooked - Chilled - Retail - Surveillance

Table Antimicrobial Susceptibility Testing of S. Ruzizi in Meat from Pig - Meat Preparation - Intended to be Eaten Cooked - Chilled - Retail - Surveillance - Official Sampling - Food Sample - Meat - Quantitative Data [Dilution Method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates Out of a Monitoring Program (Yes/No)</th>
<th>Number of Isolates Available in the Laboratory</th>
<th>Concentration (µg/ml), Number of Isolates with a Concentration of Inhibition Equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><=0.002 <=0.004 0.008 0.015 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>1 1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>1 1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>3</td>
<td>3</td>
<td>3 3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>3</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>3 3</td>
</tr>
</tbody>
</table>

Antimicrobial Susceptibility Testing of S. Ruzizi in Meat from Pig - Meat Preparation - Intended to be Eaten Cooked - Chilled - Retail - Surveillance

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates Out of a Monitoring Program (Yes/No)</th>
<th>Number of Isolates Available in the Laboratory</th>
<th>Concentration (µg/ml), Number of Isolates with a Concentration of Inhibition Equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td><=0.002 <=0.004 0.008 0.015 0.016 0.03 0.06 0.12 0.25 0.5 1 2 4 8 16 32 64 128 256 512 1024 2048 >4096</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0 0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>3</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Summary

The table above provides the antimicrobial susceptibility testing results for S. Ruzizi in meat from pig - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance. The testing was conducted using the dilution method, and the results are presented in terms of concentration (µg/ml) and the number of isolates with inhibition. The study includes various antimicrobials such as aminoglycosides, penicillins, quinolones, and sulfonamides, each with specific concentration ranges and the corresponding number of isolates showing inhibition.
Table Antimicrobial susceptibility testing of S. Ruzizi in Meat from pig - meat preparation - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Virchow in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>=4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>5</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

S. Virchow

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>no</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Virchow</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
<td>n <=0.002</td>
</tr>
<tr>
<td>----------------</td>
<td>------------</td>
<td>---</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>5</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Virchow in Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>=4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
</tr>
</tbody>
</table>

S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td>32</td>
</tr>
</tbody>
</table>

Note: The table above provides a detailed overview of the antimicrobial susceptibility testing of S. Infantis in meat from broilers (Gallus gallus) in Romania for the year 2013. The data includes the cut-off values, the number of isolates (N), and the concentration levels for various antimicrobials. The table also indicates the number of isolates with resistance at each concentration level.
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **N**: Number of isolates available in the laboratory
- **n**: Antimicrobials: Isolates out of a monitoring program (yes/no)

S. Infantis

Meat from broilers (Gallus gallus) - fresh - chilled - Retail - Surveillance

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>256</td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Tetracyclines - Erythromycin</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Lincosamides - Clindamycin</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>2</td>
</tr>
<tr>
<td>Macrolides - Clarithromycin</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Macrolides - Tetracycline</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>64</td>
<td>1024</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Tetracyclines - Erythromycin</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Lincosamides - Clindamycin</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>2</td>
</tr>
<tr>
<td>Macrolides - Clarithromycin</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Macrolides - Tetracycline</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>64</td>
<td>1024</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Tetracyclines - Erythromycin</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>Lincosamides - Clindamycin</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>2</td>
</tr>
<tr>
<td>Macrolides - Clarithromycin</td>
<td>64</td>
<td>8</td>
</tr>
<tr>
<td>Macrolides - Tetracycline</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>64</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>--</td>
<td>--------------</td>
<td>----</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulframethoxazole</td>
<td>256</td>
<td>3</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>S. Infantis</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>256</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>0.5</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>3</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.25</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>32</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>256</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>unknown</td>
<td>3</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 yes</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 yes</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 yes</td>
<td>4 yes</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 yes</td>
<td>8 yes</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 yes</td>
<td>32 yes</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 yes</td>
<td>64 yes</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 yes</td>
<td>64 yes</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 yes</td>
<td>32 yes</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 yes</td>
<td>1024 yes</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	≥4096					
Aminoglycosides - Gentamicin	2	1	0			1														1											
Aminoglycosides - Streptomycin	16	1	1																					1							
Amphenicols - Chloramphenicol	16	1	0																						1						
Cephalosporins - Cefotaxime	0.5	1	0																					1							
Fluoroquinolones - Ciprofloxacin	0.06	1	1																					1							
Penicillins - Ampicillin	8	1	0																						1						
Quinolones - Nalidixic acid	16	1	1																						1						
Tetracyclines - Tetracycline	8	1	1																							1					
Trimethoprim	2	1	1																						1						
Sulfonamides - Sulfamethoxazole	256	1	1																								1				

Isolates out of a monitoring program (yes/no)

- Aminoglycosides - Gentamicin: Yes
- Aminoglycosides - Streptomycin: Yes
- Amphenicols - Chloramphenicol: Yes
- Cephalosporins - Cefotaxime: Yes
- Fluoroquinolones - Ciprofloxacin: Yes
- Penicillins - Ampicillin: Yes
- Quinolones - Nalidixic acid: Yes
- Tetracyclines - Tetracycline: Yes
- Trimethoprim: Yes
- Sulfonamides - Sulfamethoxazole: Yes

Number of isolates available in the laboratory

- Unknown
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Infantis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - liver - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Meant from broilers (Gallus gallus) - offal - liver - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - liver - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 16 0 8 7 1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 16 14 2 10 4</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 16 1 3 7 5 1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 16 0 11 3 2</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 16 14 2 3 6 5</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 16 2 3 6 5 2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 16 14 2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 16 14 2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 16 0 15 1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 16 14 2</td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Meats from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096				
Aminoglycosides - Gentamicin	2	16	0	8	7	1																							
Aminoglycosides - Streptomycin	16	16	14	2	10	4																							
Amphenicols - Chloramphenicol	16	16	1	3	7	5	1																						
Cephalosporins - Cefotaxime	0.5	16	0	11	3	2																							
Fluoroquinolones - Ciprofloxacin	0.06	16	14	2	3	6	5																						
Penicillins - Ampicillin	8	16	2	3	6	5	2																						
Quinolones - Nalidixic acid	16	16	14	2																									
Tetracyclines - Tetracycline	8	16	14	2																									
Trimethoprim	2	16	0	15	1																								
Sulfonamides - Sulfamethoxazole	256	16	14	2																									

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Meats from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides: Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides: Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols: Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins: Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones: Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins: Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones: Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines: Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides: Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Isolates out of a monitoring program (yes/no)
Number of isolates available in the laboratory

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Meats from broilers (Gallus gallus) - mechanically separated meat (MSM) - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>isolate</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value N</td>
<td>n</td>
<td><=0.002</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Amphicins - Chloramphenicol</td>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>6</td>
<td>6</td>
</tr>
</tbody>
</table>

513 Romania - 2013 Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>highest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096	
Aminoglycosides - Gentamicin	2	7	0	0																							
Aminoglycosides - Streptomycin	16	7	0			6																					
Amphenicols - Chloramphenicol	16	7	0																								
Cephalosporins - Cefotaxime	0.5	7	0			7																					
Fluoroquinolones - Ciproflxoxacin	0.06	7	0																								
Penicillins - Ampicillin	8	7	0			6																					
Quinolones - Nalidixic acid	16	7	0																								
Tetracyclines - Tetracycline	8	7	1				6																				
Trimethoprim	2	7	0																								
Sulfonamides - Sulfamethoxazole	256	7	0																								
Table Antimicrobial susceptibility testing of S. Infantis in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meats, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant</td>
<td>Surveillance</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>10</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>10</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>10</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>10</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>10</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>10</td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses

S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance - Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

| Antimicrobials: | Cut-off value | N | n | <=0.004 | <=0.008 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >=4096 |
|-------------------------------------|---------------|---|---|--------|--------|-------|-------|-------|------|------|------|------|-----|----|---|---|---|---|----|----|----|----|-----|-----|-----|-----|-----|-----|
| Aminoglycosides - Gentamicin | 0.5 | 3 | 0 | | | 0.5 | 0.8 | 1.2 | 2.5 | 5.0 | 10.0 | 20.0 | 40.0 | 80.0 | 160 | 320 | 640 | 1280 | 2560 | 5120 | 10240 | 20480 | >=4096 | unknown |
| Aminoglycosides - Streptomycin | 16 | 3 | 3 | | | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384| 32768| 65536| 131072| 262144| 524288| 1048576| | unknown |
| Amphenicols - Chloramphenicol | 16 | 3 | 0 | | | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384| 32768| 65536| 131072| 262144| 524288| 1048576| | unknown |
| Cephalosporins - Cefotaxime | 0.06 | 3 | 3 | | | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 5120 | 1048576| | unknown |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 3 | 3 | | | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 5120 | 1048576| | unknown |
| Penicillins - Ampicillin | 8 | 3 | 3 | | | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384| 32768| 65536| 131072| 262144| 524288| 1048576| | unknown |
| Quinolones - Nalidixic acid | 16 | 3 | 3 | | | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384| 32768| 65536| 131072| 262144| 524288| 1048576| | unknown |
| Tetracyclines - Tetracycline | 8 | 3 | 3 | | | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384| 32768| 65536| 131072| 262144| 524288| 1048576| | unknown |
| Trimethoprim | 2 | 3 | 0 | | | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 5120 | 1048576| | unknown |
| Sulfonamides - Sulfamethoxazole | 256 | 3 | 3 | | | 256 | 512 | 1024 | 2048 | 4096 | 8192 | 16384| 32768| 65536| 131072| 262144| 524288| 1048576| | unknown |
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Meat from broilers (Gallus gallus) - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Brandenburg in Meat from pig - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

S. Brandenburg

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of Isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Brandenburg in Meat from pig - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>unknown</td>
<td>unknown</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>unknown</td>
<td>unknown</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>unknown</td>
<td>unknown</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>unknown</td>
<td>unknown</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>unknown</td>
<td>unknown</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>unknown</td>
<td>unknown</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>unknown</td>
<td>unknown</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>unknown</td>
<td>unknown</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Antimicrobial Susceptibility Testing of *S. Brandenburg* in Meat from Pig - Meat Products - Processing Plant - Surveillance

Isolates out of a Monitoring Program (Yes/No)

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off Value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off Value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Brandenburg in Meat from pig - meat products - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Meleagridis in Meat from pig - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	16	2	2	0						1	1	2																
Aminoglycosides - Streptomycin	16	2	2	0																								
Amphenicols - Chloramphenicol	16	2	2	0																								
Cephalosporins - Cefotaxime	0.06	2	0																									
Fluoroquinolones - Ciprofloxacin	0.5	2	2	0																								
Penicillins - Ampicillin	8	2	2	0																								
Quinolones - Nalidixic acid	16	2	2	0																								
Tetracyclines - Tetracycline	8	2	2	0																								
Trimethoprim	2	2	2	0																								
Sulfonamides - Sulfamethoxazole	256	2	2	0																								

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Meleagridis</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|--------------------------------------|---------------|----|----|---------|---------|-------|-------|-------|------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Aminoglycosides - Gentamicin | 2 | 2 | 0 | | | 1 | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 2 | 0 | | | | 2 | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 2 | 0 | | | | | 2 | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 2 | 0 | | | | | | | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 2 | 0 | | | | | 2 | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 2 | 2 | | | | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 2 | 0 | | | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 2 | 0 | | | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 2 | 0 | | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 2 | 0 | | | | | | | | | | | | | | | | | | | | | | |

Antimicrobials:

- Aminoglycosides - Gentamicin
- Aminoglycosides - Streptomycin

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Meat from pig - carcase - Slaughterhouse - Surveillance

S. Typhimurium

Isolates out of a monitoring program (yes/no)

Number of isolates available in the laboratory

Antimicrobials:

- Aminoglycosides - Gentamicin: 0.25 - 32
- Aminoglycosides - Streptomycin: 2 - 128
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meat from pig - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

S. Typhimurium

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

S. Typhimurium

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td></td>
<td>128</td>
</tr>
<tr>
<td>S. Typhimurium</td>
<td>Meat from pig - fresh - chilled - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>yes</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>yes</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>yes</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>yes</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>yes</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>yes</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>yes</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>yes</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - meat products - raw but intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

S. Typhimurium

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - meat products - raw but intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>Meat from pig - meat products - raw but intended to be eaten cooked - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unkown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - meat products - meat specialties - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>Meat from pig - meat products - meat specialties - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Typhimurium

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - meat products - meat specialties - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.006</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meas from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
</tr>
<tr>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td>unknown</td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Enteritidis

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Antimicrobials:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance

Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

- Aminoglycosides - Gentamicin
- Aminoglycosides - Streptomycin
- Amphenicols - Chloramphenicol
- Cephalosporins - Cefotaxime
- Fluoroquinolones - Ciprofloxacin
- Penicillins - Ampicillin
- Quinolones - Nalidixic acid
- Tetracyclines - Tetracycline
- Trimethoprim
- Sulfonamides - Sulfamethoxazole

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

S. Enteritidis

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Meats from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Enteritidis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Cutoff value</td>
<td>N</td>
<td>n</td>
<td><=0.002</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------</td>
<td>----</td>
<td>----</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - offal - liver - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - offal - liver - frozen - Retail - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Enteritidis</th>
<th>Meats from broilers (Gallus gallus) - offal - liver - frozen - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
</tr>
<tr>
<td>Amphenecols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial Susceptibility Testing of S. Enteritidis in Meat from Broilers (Gallus Gallus) - Fresh - Processing Plant - Domestic - Surveillance - Selective Sampling - Official Sampling - Food Sample - Meat - Quantitative Data [Dilution Method]

Concentration (µg/ml), Number of Isolates with a Concentration of Inhibition Equal To

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

S. Enteritidis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a Monitoring Program (yes/no)</th>
<th>Number of Isolates Available in the Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - Processing plant - Domestic - Surveillance - Selective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meant from broilers (Gallus gallus) - fresh - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Surveillance

Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Enteritidis</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
<td>unknown</td>
<td>Aminoglycosides - Gentamicin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unknown</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unknown</td>
<td>Aminoglycosides - Streptomycin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>unknown</td>
<td>2</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>--------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Enteritidis in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Farsta in Cheeses made from sheep's milk - Unknown - Domestic - Surveillance - Objective sampling - Official sampling - food sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cheeses made from sheep's milk - Unknown - Surveillance</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 5 0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 5 5</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 5 0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 5 0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 5 0</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 5 5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 5 0</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 5 5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 5 0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 5 5</td>
</tr>
</tbody>
</table>

S. Farsta

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Farsta in Cheeses made from sheep's milk - Unknown - Domestic - Surveillance - Objective sampling - Official sampling - food sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cheeses made from sheep’s milk - Unknown - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Farsta in Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Kept isolates	N	n	0.0002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096			
S. Farsta																													
Isolates out of a monitoring program (yes/no)																													
Number of isolates available in the laboratory																													
Antimicrobials:																													
Aminoglycosides - Gentamicin	2	1	0																										
Aminoglycosides - Streptomycin	16	1	0																										
Amphenicols - Chloramphenicol	16	1	0																										
Cephalosporins - Cefotaxime	0.5	1	0																										
Fluoroquinolones - Ciprofloxacin	0.06	1	0																										
Penicillins - Ampicillin	8	1	1																										
Quinolones - Nalidixic acid	16	1	0																										
Tetracyclines - Tetracycline	8	1	0																										
Trimethoprim	2	1	0																										
Sulfonamides - Sulfamethoxazole	256	1	0																										

S. Farsta

| Isolates out of a monitoring program (yes/no) | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
| Number of isolates available in the laboratory | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |

Antimicrobials:

<p>| Aminoglycosides - Gentamicin | 0.25 | 32 |</p>
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Farsta</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>yes</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>yes</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>no</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>yes</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>yes</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>yes</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>yes</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gloucester in Meat, mixed meat - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Gloucester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials:</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gloucester in Meat, mixed meat - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Gloucester in Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Isolates out of a monitoring program (yes/no)

Number of isolates available in the laboratory

Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance

unknown

Antimicrobials:
Table Antimicrobial susceptibility testing of S. Gloucester in Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Meant from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacid</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>S. Grampian</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meant from turkey - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Grampian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Grampian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Grampian</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Grampian in Meat from turkey - minced meat - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Meat from turkey - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>S. Grampian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Livingstone in Meat from pig - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Total number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Livingstone in Meat from pig - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Livingstone</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kentucky in Meat from broilers (Gallus gallus) - fresh - Slaughterhouse - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

S. Kentucky

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td>S. Kentucky</td>
<td></td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Bovismorbificans in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (μg/ml), number of isolates with a concentration of inhibition equal to unknown.
Table Antimicrobial susceptibility testing of *S. Bovismorbificans* in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Bredeney in Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
</tr>
</tbody>
</table>

S. Bredeney

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td><=0.002</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td><=0.004</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>0.008</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.015</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.03</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>0.12</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Notes:

- **Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Surveillance**
- **Antimicrobials:**
 - Isolates out of a monitoring program (yes/no)
 - Number of isolates available in the laboratory
<table>
<thead>
<tr>
<th>S. Bredeney</th>
<th>Meat from pig - minced meat - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cefalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Newport in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Domestic - Surveillance - Suspect sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Unknown</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Newport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Newport in Meat, mixed meat - meat preparation - intended to be eaten cooked - frozen - Processing plant - Domestic - Surveillance - Suspect sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kottbus in Meat from broilers (Gallus gallus) - carcass - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Kottbus</th>
<th>Meats from broilers (Gallus gallus) - carcass - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Kottbus</th>
<th>Meat from broilers (Gallus gallus) - carcass - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
</tbody>
</table>

S. Kottbus

Meat from
broilers (Gallus
gallus) carcase Slaughterhouse
- Surveillance

Isolates out of a monitoring
program (yes/no)
Number of isolates available
in the laboratory

Antimicrobials:

unknown

lowest

highest

2

64

Cephalosporins - Cefotaxime

0.06

4

Fluoroquinolones - Ciprofloxacin

0.008

8

0.5

32

Quinolones - Nalidixic acid

4

64

Tetracyclines - Tetracycline

1

64

0.5

32

8

1024

Amphenicols - Chloramphenicol

Penicillins - Ampicillin

Trimethoprim
Sulfonamides - Sulfamethoxazole

Romania - 2013 Report on trends and sources of zoonoses

Romania - 2013

Table Antimicrobial susceptibility testing of S. Kottbus in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

568


Table Antimicrobial susceptibility testing of S. Derby in Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th></th>
<th></th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Derby</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
<td><=0.002</td>
<td><=0.004</td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Derby</th>
<th>Meat, mixed meat - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td>Isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Derby* in Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data (Dilution method)

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | <=0.016 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|-----------------|--------------|---|---|---------|---------|---------|-------|-----|-----|-----|-----|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aminoglycosides - Gentamicin | 2 | 1 | 0 |
| Aminoglycosides - Streptomycin | 16 | 1 | 0 |
| Amphenicols - Chloramphenicol | 16 | 1 | 0 |
| Cephalosporins - Cefotaxime | 0.5 | 1 | 0 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 1 | 0 |
| Penicillins - Ampicillin | 8 | 1 | 0 |
| Quinolones - Nalidixic acid | 16 | 1 | 0 |
| Tetracyclines - Tetracycline | 8 | 1 | 0 |
| Trimethoprim | 2 | 1 | 0 |
| Sulfonamides - Sulfamethoxazole | 256 | 1 | 0 |
Table Antimicrobial susceptibility testing of S. Derby in Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Derby</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

S. Derby

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>

Meat from turkey - fresh - chilled - Slaughterhouse - Surveillance - unknown
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
Aminoglycosides - Gentamicin		2	2	0																							
Aminoglycosides - Streptomycin		16	2	0																							
Amphenicols - Chloramphenicol		16	2	0																							
Cephalosporins - Cefotaxime		0.5	2	0																							
Fluoroquinolones - Ciprofloxacin		0.06	2	0																							
Penicillins - Ampicillin		8	2	0																							
Quinolones - Norfloxacin		16	2	0																							
Tetracyclines - Tetracycline		8	2	2																							
Trimethoprim		2	2	0																							
Sulfonamides - Sulfamethoxazole		256	2	0																							
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>S. Derby</td>
</tr>
<tr>
<td></td>
<td>Meats from pig - meat preparation - intended to be eaten cooked - Processing plant -</td>
</tr>
<tr>
<td></td>
<td>Surveillance</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 2 0</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 2 0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 2 0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 2 0</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 2 0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 2 0</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 2 2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 2 0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 2 0</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>S. Derby</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.02</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.015</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>64</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>8</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>128</td>
</tr>
</tbody>
</table>

Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates</td>
<td>8</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>0.5</td>
</tr>
<tr>
<td>Isolates</td>
<td>4</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>2</td>
</tr>
<tr>
<td>Isolates</td>
<td>1</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>0.06</td>
</tr>
<tr>
<td>Isolates</td>
<td>2</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>8</td>
</tr>
<tr>
<td>Isolates</td>
<td>1</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>0.25</td>
</tr>
<tr>
<td>Isolates</td>
<td>2</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>4</td>
</tr>
<tr>
<td>Isolates</td>
<td>1</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>32</td>
</tr>
<tr>
<td>Isolates</td>
<td>1</td>
</tr>
<tr>
<td>Number of isolates available</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobial susceptibility testing of S. Derby in Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance.
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Derby</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nadifloxacin</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Note: Concentration (µg/ml) refers to the concentration of inhibition equal to the cut-off value for each of the given antimicrobials.
Table Antimicrobial susceptibility testing of S. Derby in Meat from pig - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Derby</td>
<td></td>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Derby</th>
<th>Meat from turkey - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
</tr>
</tbody>
</table>

Aminoglycosides - Gentamicin

- Isolates out of a monitoring program: yes
- Number of isolates available: 5
- Concentration (µg/ml): 0.25

Aminoglycosides - Streptomycin

- Isolates out of a monitoring program: yes
- Number of isolates available: 5
- Concentration (µg/ml): 2

Romania - 2013 Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Derby</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>no</td>
<td>lowest: 2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>yes</td>
<td>lowest: 0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>yes</td>
<td>lowest: 0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>yes</td>
<td>lowest: 0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>yes</td>
<td>lowest: 4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>yes</td>
<td>lowest: 1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>yes</td>
<td>lowest: 0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>yes</td>
<td>lowest: 8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Derby</th>
<th>Meat from turkey - carcase - chilled - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Derby</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meats from turkey - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Derby</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Unknown</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.06</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of S. Derby in Meat from turkey - meat products - raw but intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>0.25</th>
<th>32</th>
<th>2</th>
<th>128</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Rissen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>unknown</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th></th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td></td>
<td>0.06</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>8</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidic acid</td>
<td></td>
<td>16</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>8</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses

587
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meats from pig - fresh - chilled - Cutting plant - Surveillance - unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamerthazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Rissen in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Rissen</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>antimicrobial:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Note: The table provides the number of isolates (N) and the number of isolates with a concentration of inhibition equal to each concentration level (n). The table includes concentrations for various antimicrobials, with cut-off values indicating the levels of sensitivity. The data is presented for a specific type of meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance, along with the method of dilution used for susceptibility testing.
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>S. Rissen</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Rissen in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to unknown.
Table Antimicrobial susceptibility testing of S. Rissen in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Ruzizi in Meat from sheep - fresh - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Ruzizi</th>
<th>Meats from sheep - fresh - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	<0.015	<0.016	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	4096		
Aminoglycosides - Gentamicin	2	1	0																									
Aminoglycosides - Streptomycin	16	1	1																									
Amphenicols - Chloramphenicol	16	1	0																									
Cephalosporins - Cefotaxime	0.5	1	0																									
Fluoroquinolones - Ciprofloxacin	0.06	1	1																									
Penicillins - Ampicillin	8	1	1																									
Quinolones - Nalidixic acid	16	1	0																									
Tetracyclines - Tetracycline	8	1	1																									
Trimethoprim	2	1	1																									
Sulfonamides - Sulfamethoxazole	256	1	1																									

S. Ruzizi

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Ruzizi in Meat from sheep - fresh - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Ruzizi</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meat from sheep - fresh - Slaughterhouse - Surveillance</td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Ruzizi in Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

S. Ruzizi

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Ruzizi</th>
<th>Meas from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note: The data represents the concentration (µg/ml) of isolates with a concentration of inhibition equal to.
Antimicrobial susceptibility testing of S. Ruzizi in Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>

Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance - unknown
Antimicrobial Susceptibility Testing of S. Ruzizi in Meat, Mixed Meat - Meat Preparation - Intended to be Eaten Cooked - Chilled - Retail - Surveillance

Table

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Ruzizi</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Amoxicillin</td>
<td>16</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>8</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>256</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>0.5</td>
<td>26</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>320</td>
<td>0</td>
</tr>
<tr>
<td>640</td>
<td>0</td>
</tr>
<tr>
<td>1280</td>
<td>0</td>
</tr>
<tr>
<td>2560</td>
<td>0</td>
</tr>
<tr>
<td>5120</td>
<td>0</td>
</tr>
<tr>
<td>10240</td>
<td>0</td>
</tr>
<tr>
<td>20480</td>
<td>0</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Virchow* in Meat from broilers (*Gallus gallus*) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>Ceftriaxone</th>
<th>Chloramphenicol</th>
<th>Ciprofloxacin</th>
<th>Cefotaxime</th>
<th>Nalidixic acid</th>
<th>Tetracycline</th>
<th>Ampicillin</th>
<th>Trimethoprim</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S. Virchow

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>yes</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials

- Aminoglycosides - Gentamicin: **0.25**
- Aminoglycosides - Streptomycin: **2**
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Virchow</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance - Objective sampling - HACCP and own checks - food sample - neck skin - quantitative data [Dilution method]</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Virchow in Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>S. Virchow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table: Antimicrobial Susceptibility Testing of S. Virchow in Meat from Broilers (Gallus gallus) - Minced Meat - Intended to Be Eaten Cooked - Chilled

Meat from broilers (Gallus gallus) - minced meat - intended to be eaten cooked - chilled
- Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Hadar</th>
<th>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.06</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>8</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>256</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

S. Hadar

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>unknown</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Hadar in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meant from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

| Antimicrobials | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|----------------|--------------|---|---|---------|---------|-------|-------|-------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|
| Aminoglycosides - Gentamicin | 2 | 6 | 0 | 6 | | | | | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | 16 | 6 | 6 | 6 | | | | | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | 16 | 6 | 0 | 5 | 1 | | | | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 6 | 0 | 5 | 1 | | | | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 6 | 6 | 6 | | | | | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 6 | 0 | 5 | 1 | | | | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 6 | 6 | 6 | | | | | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 6 | 6 | 6 | | | | | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 6 | 0 | 6 | | | | | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 6 | 6 | 6 | | | | | | | | | | | | | | | | | | | | | |

Isolates out of a monitoring program (yes/no) | Number of isolates available in the laboratory

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>N</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Infantis</th>
<th>Meat from broilers (Gallus gallus) - fresh - chilled - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

- **Aminoglycosides - Gentamicin**: 0.25 - 32
- **Aminoglycosides - Streptomycin**: 2 - 128
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Meat from broilers (Gallus gallus) - fresh - chilled - Cutting plant - Surveillance</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
<td><=0.002</td>
<td><=0.004</td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
</tr>
<tr>
<td>----------------</td>
<td>--------------</td>
<td>---</td>
<td>---</td>
<td>---------</td>
<td>---------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - chilled - Conservation Facilities - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]
<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>S. Infantis</th>
<th>Meat from broilers (Gallus gallus) - fresh - chilled - Conservation Facilities - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>2</td>
<td>64</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Sulfonamides - Sulfamethoxazole</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - liver - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - liver - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to:

<p>| Cutoff value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|--------------|---|---|---------|---------|-------|-------|-------|------|------|------|------|------|-----|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| 0.25 | 32 |</p>
<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>Isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td>8</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|----------------|--------------|---|---|---------|---------|------|------|------|------|------|------|------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aminoglycosides - Gentamicin | 2 | 4 | 0 | 3 | 1 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Aminoglycosides - Streptomycin | 16 | 4 | 4 | 2 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Amphenicols - Chloramphenicol | 16 | 4 | 0 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Cephalosporins - Cefotaxime | 0.5 | 4 | 0 | 2 | 2 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 4 | 4 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Penicillins - Ampicillin | 8 | 4 | 1 | 3 | 1 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Quinolones - Nalidixic acid | 16 | 4 | 4 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Tetracyclines - Tetracycline | 8 | 4 | 4 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Trimethoprim | 2 | 4 | 0 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
| Sulfonamides - Sulfamethoxazole | 256 | 4 | 4 | 4 | 16 | 4 | 4 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |

Table S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>1024</td>
</tr>
</tbody>
</table>

Note: Concentration (µg/ml), number of isolates with a concentration of inhibition equal to the cut-off value.
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

- **Amphenicols - Chloramphenicol**
 - Isolates: 2
 - Highest number: 64

- **Cephalosporins - Cefotaxime**
 - Isolates: 0.06
 - Highest number: 4

- **Fluoroquinolones - Ciprofloxacin**
 - Isolates: 0.008
 - Highest number: 8

- **Penicillins - Ampicillin**
 - Isolates: 0.5
 - Highest number: 32

- **Quinolones - Nalidixic acid**
 - Isolates: 4
 - Highest number: 64

- **Tetracyclines - Tetracycline**
 - Isolates: 1
 - Highest number: 64

- **Trimethoprim**
 - Isolates: 0.5
 - Highest number: 32

- **Sulfonamides - Sulfamethoxazole**
 - Isolates: 8
 - Highest number: 1024
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - neck skin - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Inhibitory Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>38</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>38</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>38</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>38</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>38</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>38</td>
</tr>
</tbody>
</table>

Romania - 2013 Report on trends and sources of zoonoses
<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >4096 |
|---------------------------------------|---------------|-----|-----|---------|---------|-------|-------|-------|------|------|------|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| Aminoglycosides - Gentamicin | | 2 | 1 | 0 | | | | | 1 | | | | | | | | | | | | | | | | |
| Aminoglycosides - Streptomycin | | 16 | 1 | 1 | | | | | 1 | | | | | | | | | | | | | | | | |
| Amphenicols - Chloramphenicol | | 16 | 1 | 0 | | | | | 1 | | | | | | | | | | | | | | | | |
| Cephalosporins - Cefotaxime | 0.5 | 1 | 0 | | | | | | 1 | | | | | | | | | | | | | | | | |
| Fluoroquinolones - Ciprofloxacin | 0.06 | 1 | 1 | | | | | | 1 | | | | | | | | | | | | | | | | |
| Penicillins - Ampicillin | 8 | 1 | 1 | | | | | | 1 | | | | | | | | | | | | | | | | |
| Quinolones - Nalidixic acid | 16 | 1 | 1 | | | | | | 1 | | | | | | | | | | | | | | | | |
| Tetracyclines - Tetracycline | 8 | 1 | 1 | | | | | | 1 | | | | | | | | | | | | | | | | |
| Trimethoprim | 2 | 1 | 0 | | | | | | 1 | | | | | | | | | | | | | | | | |
| Sulfonamides - Sulfamethoxazole | 256 | 1 | 1 | | | | | | 1 | | | | | | | | | | | | | | | | |
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - mechanically separated meat (MSM) - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
<td></td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
<td></td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
<td></td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
<td></td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
<td></td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
<td></td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
<td></td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
<td></td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
<td></td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - offal - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off values</th>
<th>Number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 3 0</td>
<td>1 2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 3 3</td>
<td>3</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 3 0</td>
<td>3</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 3 0</td>
<td>1 1 1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 3 3</td>
<td>3</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 3 0</td>
<td>3</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 3 3</td>
<td>3</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 3 3</td>
<td>3</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 3 0</td>
<td>3</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 3 3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Infantis</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Meat from broilers (Gallus gallus) - offal - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]</td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>S. Infantis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Infantis* in Meat from broilers (Gallus gallus) - fresh - frozen - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 7 0 1 6</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16 7 6 1 6</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16 7 0 6 1</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5 7 0 3 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 7 0 7</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8 7 0 7</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 7 0 7</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8 7 0 7</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2 7 0 7</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256 7 7 7</td>
</tr>
</tbody>
</table>

S. Infantis

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
</tbody>
</table>
Table Antimicrobial Susceptibility Testing of S. Infantis in Meat from Broilers (Gallus gallus) - Fresh - Frozen - Retail - Domestic - Surveillance - Objective Sampling - HACCP and Own Checks - Food Sample - Meat - Quantitative Data [Dilution Method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>S. Infantis</th>
<th>Meats from Broilers (Gallus gallus) - Fresh - Frozen - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Isolates out of a Monitoring Program (Yes/No)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Number of Isolates Available in the Laboratory</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Antimicrobials:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Quinolones - Nalidix acid</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Trimethoprim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sulfonamides - Sulphathiazole</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lowest</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Highest</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidix acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulphathiazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - frozen - Conservation Facilities - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	2	2	0	1	1																							
Aminoglycosides - Streptomycin	16	2	2		1	1																						
Amphenicols - Chloramphenicol	16	2	0			2																						
Cephalosporins - Cefotaxime	0.5	2	0			2																						
Fluoroquinolones - Ciprofloxacin	0.06	2	2		1	1																						
Penicillins - Ampicillin	8	2	0			1	1																					
Quinolones - Nalidixic acid	16	2	2																									
Tetracyclines - Tetracycline	8	2	2																									
Trimethoprim	2	2	0																									
Sulfonamides - Sulfamethoxazole	256	2	2																									

S. Infantis

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>

Note: Concentration (µg/ml), number of isolates with a concentration of inhibition equal to.
Table Antimicrobial susceptibility testing of S. Infantis in Meat from broilers (Gallus gallus) - fresh - frozen - Conservation Facilities - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>S. Infantis</th>
<th>Meat from broilers (Gallus gallus) - fresh - frozen - Conservation Facilities - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Kedougou in Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. Kedougou</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant</td>
</tr>
<tr>
<td></td>
<td>- Domestic - Surveillance - Objective sampling - Official sampling - food sample</td>
</tr>
<tr>
<td></td>
<td>- meat - quantitative data</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>cut-off value</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Aminoglycosides - Streptomycin</td>
</tr>
<tr>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
</tr>
<tr>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
</tr>
<tr>
<td></td>
<td>Penicillins - Ampicillin</td>
</tr>
<tr>
<td></td>
<td>Quinolones - Nalidixic acid</td>
</tr>
<tr>
<td></td>
<td>Tetracyclines - Tetracycline</td>
</tr>
<tr>
<td></td>
<td>Trimethoprim</td>
</tr>
<tr>
<td></td>
<td>Sulfonamides - Sulfamethoxazole</td>
</tr>
</tbody>
</table>

- Report on trends and sources of zoonoses
Table Antimicrobial susceptibility testing of S. Kedougou in Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>unknown</td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Brandenburg in Meat from pig - fresh - chilled - Cutting plant - Domestic - Surveillance - Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml)</th>
<th>Meats from pig - fresh - chilled - Cutting plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S. Brandenburg</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>unknown</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Meat from pig - fresh - chilled - Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suspect sampling - Official sampling - food sample - meat - quantitative data [Dilution method]</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>S. Brandenburg</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Brandenburg in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>1</td>
<td></td>
<td>4</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td>1</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

S. Brandenburg

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>unknown</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Surveillance

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Antimicrobial susceptibility testing of S. Brandenburg in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Unknown</td>
</tr>
<tr>
<td>S. Brandenburg</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Meleagridis in Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table: Antimicrobial susceptibility testing of S. Meleagridis in Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Meat from pig - minced meat - intended to be eaten cooked - chilled - Cutting plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of *S. Newlands* in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Norfloxacin</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>

Number of isolates available in the laboratory:

- Isolates out of a monitoring program (yes/no): unknown
- Aminoglycosides - Gentamicin: 2
- Aminoglycosides - Streptomycin: 16
- Amphenicols - Chloramphenicol: 16
- Cephalosporins - Cefotaxime: 0.5
- Fluoroquinolones - Ciprofloxacin: 0.06
- Penicillins - Ampicillin: 8
- Quinolones - Norfloxacin: 16
- Tetracyclines - Tetracycline: 8
- Trimethoprim: 2
- Sulfonamides - Sulfamethoxazole: 256
Table Antimicrobial susceptibility testing of S. Newlands in Meat, mixed meat - meat preparation - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>S. Newlands</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>unknown</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>=4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>S. Typhimurium</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>unknown</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Typhimurium in Meat, mixed meat - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobial</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhimurium</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring</td>
<td></td>
</tr>
<tr>
<td>program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available</td>
<td></td>
</tr>
<tr>
<td>in the laboratory</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fluorquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

S. Typhimurium

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - carcase - chilled - Slaughterhouse - Domestic - Surveillance - Objective sampling - Official sampling - food sample - carcase swabs - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Meant from pig - carcase - chilled - Slaughterhouse - Surveillance</td>
<td>unknown</td>
<td>S. Typhimurium</td>
<td>unknown</td>
<td>unknown</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
</tbody>
</table>

- **Amphenicols - Chloramphenicol**
- **Cephalosporins - Cefotaxime**
- **Fluoroquinolones - Ciprofloxacin**
- **Penicillins - Ampicillin**
- **Quinolones - Nalidixic acid**
- **Tetracyclines - Tetracycline**
- **Trimethoprim**
- **Sulfonamides - Sulfamethoxazole**
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

Antimicrobials	Cut-off value	N	n <=0.002	<=0.004	<=0.008	<=0.015	<=0.016	<=0.03	<=0.06	<=0.12	<=0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>=4096	
--	---------------	----	-----------	---------	---------	---------	---------	--------	--------	--------	--------	-------	------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	------	------	
Aminoglycosides - Gentamicin	2	1	0																							
Aminoglycosides - Streptomycin	16	1	0																							
Amphenicols - Chloramphenicol	16	1	0																							
Cephalosporins - Cefotaxime	0.5	1	0																							
Fluoroquinolones - Ciprofloxacin	0.06	1	0																							
Penicillins - Ampicillin	8	1	1																							
Quinolones - Nalidixic acid	16	1	0																							
Tetracyclines - Tetracycline	8	1	0																							
Trimethoprim	2	1	0																							
Sulfonamides - Sulfamethoxazole	256	1	0																							
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Domestic - Surveillance - Objective sampling - Official sampling - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>S. Typhimurium</th>
<th>Meat from pig - minced meat - intended to be eaten cooked - chilled - Processing plant - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>no</td>
<td>unknown</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>no</td>
<td>unknown</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>no</td>
<td>unknown</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>yes</td>
<td>unknown</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>yes</td>
<td>unknown</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>no</td>
<td>unknown</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>yes</td>
<td>unknown</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>yes</td>
<td>unknown</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>yes</td>
<td>unknown</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>yes</td>
<td>unknown</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>3</td>
<td>0</td>
<td></td>
<td>2</td>
<td></td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

| S. Typhimurium |
|----------------|---------------------|
| Isolates out of a monitoring program (yes/no) | unknown |
| Number of isolates available in the laboratory | unknown |
| Antimicrobials: |
| Aminoglycosides - Gentamicin | 0.25 | 32 |
| Aminoglycosides - Streptomycin | 2 | 128 |
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - meat preparation - intended to be eaten cooked - Retail - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Meats from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
<td></td>
</tr>
</tbody>
</table>
Antimicrobial susceptibility testing of *S. Typhimurium* in Meat from pig - offal - chilled - Slaughterhouse - Domestic - Surveillance - Selective sampling - Official sampling - food sample - quantitative data [Dilution method]

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	0.008	0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096	
Aminoglycosides - Gentamicin	2	1	0																								
Aminoglycosides - Streptomycin	16	1	1																								
Amphenicols - Chloramphenicol	16	1	0																								
Cephalosporins - Cefotaxime	0.5	1	0																								
Fluoroquinolones - Ciprofloxacin	0.06	1	1																								
Penicillins - Ampicillin	8	1	1																								
Quinolones - Nalidixic acid	16	1	0																								
Tetracyclines - Tetracycline	8	1	1																								
Trimethoprim	2	1	1																								
Sulfonamides - Sulfamethoxazole	256	1	1																								

Table details:

<table>
<thead>
<tr>
<th>S. Typhimurium</th>
<th>Meat from pig - offal - chilled - Slaughterhouse - Surveillance</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates</td>
<td>unknown</td>
<td>unknown</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Typhimurium in Meat from pig - offal - chilled - Slaughterhouse - Domestic - Surveillance - Selective sampling - Official sampling - food sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhimurium</td>
<td></td>
<td>unknown</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>S. Infantis</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>1296</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>----------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Pigs - fattening pigs - unspecified - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>S. Infantis</th>
<th>Pigs - fattening pigs - unspecified - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfencol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Cefazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of S. Infantis in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.008</td>
<td>0.015</td>
<td>0.016</td>
<td>0.03</td>
<td>0.06</td>
<td>0.12</td>
<td>0.25</td>
<td>0.5</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16</td>
<td>32</td>
<td>64</td>
<td>128</td>
<td>256</td>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
</tr>
</tbody>
</table>

- **S. Infantis**
- **Isolates out of a monitoring program (yes/no)**
- **Number of isolates available in the laboratory**
- **Antimicrobials:**
 - Aminoglycosides - Gentamicin
 - Aminoglycosides - Kanamycin
 - Aminoglycosides - Streptomycin
 - Amphenicols - Chloramphenicol
 - Amphenicols - Florfenicol
 - Cephalosporins - Cefotaxime
 - Fluoroquinolones - Ciprofloxacin
 - Penicillins - Ampicillin
 - Quinolones - Nalidixic acid
 - Tetracyclines - Tetracycline
 - Trimethoprim
 - Cephalosporins - Ceftazidime
 - Polymyxins - Colistin
 - Sulfonamides - Sulfamethoxazole

- **Concentration (µg/ml), number of isolates with a concentration of inhibition equal to**
 - 1296

- **Cut-off values:**
 - <=0.002
 - <=0.004
 - 0.008
 - 0.015
 - 0.016
 - 0.03
 - 0.06
 - 0.12
 - 0.25
 - 0.5
 - 1
 - 2
 - 4
 - 8
 - 16
 - 32
 - 64
 - 128
 - 256
 - 512
 - 1024
 - 2048
 - >4096
Table Antimicrobial susceptibility testing of S. Infantis in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25 32</td>
<td>1296</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2 128</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008 8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1 64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5 32</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25 16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8 1024</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
<td>n</td>
</tr>
<tr>
<td>------------------------------------</td>
<td>--------------</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Montevideo in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Montevideo in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Montevideo</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>lowest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td></td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td></td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Typhimurium in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to
Table Antimicrobial susceptibility testing of S. Typhimurium in Pigs - fattening pigs - unspecified - piglets - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - faeces - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Pigs - fattening pigs - unspecified - piglets - Farm - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. Typhimurium</td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>1,296</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Cut-off value</td>
<td>N</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>64</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.5</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>2</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>256</td>
<td>2</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of S. Typhimurium in Pigs - fattening pigs - unspecified - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of S. Typhimurium in Pigs - fattening pigs - unspecified - Farm - Domestic - Surveillance - Objective sampling - Official sampling - animal sample - organ/tissue - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1296</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Lowest</th>
<th>Highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.25</td>
<td>32</td>
</tr>
<tr>
<td>Aminoglycosides - Kanamycin</td>
<td>4</td>
<td>128</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>2</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Amphenicols - Florfenicol</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Cephalosporins - Cefotaxime</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.008</td>
<td>8</td>
</tr>
<tr>
<td>Penicillins - Ampicillin</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>4</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>64</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>0.5</td>
<td>32</td>
</tr>
<tr>
<td>Cephalosporins - Ceftazidime</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Polymyxins - Colistin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Sulfonamides - Sulfamethoxazole</td>
<td>8</td>
<td>1024</td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance testing of Salmonella in Animals

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Cefotaxime</td>
</tr>
<tr>
<td></td>
<td>Ceftazidime</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfonamides</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Trimethoprim</td>
</tr>
<tr>
<td>Test Method Used</td>
<td>Standard methods used for testing</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Concentration (microg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Resistant ></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td>32</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
<td>0.064</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfonamides</td>
<td>256</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Trimethoprim</td>
<td>2</td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance testing of Salmonella in Food

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Concentration (microg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Resistant ></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td>32</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Cefotaxime</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>Ceftazidime</td>
<td>2</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
<td>0.064</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfonamides</td>
<td>256</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Trimethoprim</td>
<td>2</td>
</tr>
</tbody>
</table>
2.2 CAMPYLOBACTERIOSIS

2.2.1 General evaluation of the national situation

A. Thermophilic Campylobacter general evaluation

National evaluation of the recent situation, the trends and sources of infection

Meat from broilers and meat from turkey - fresh meat- surveillance- official sampling, in 2012 were tested 490 units from which 155 (31,63 %) were positive for Campylobacter spp.:
- Campylobacter coli 84;
- Campylobacter jejuni 66;
- Campylobacter lari 5

In 2013 were taken a total number of 84 samples of meat from broilers, in own check, in order to detect Campylobacter spp., from which 7 were positive.
2.2.2 Campylobacter in foodstuffs

A. Thermophilic Campylobacter in Broiler meat and products thereof

Monitoring system
Sampling strategy
 At slaughterhouse and cutting plant

At meat processing plant

At retail
 According with Romanian National Surveillance Programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated which is according with the provisions of Regulation 2005/2073/EC.

Frequency of the sampling
At slaughterhouse and cutting plant

At retail
 Other: Sampling takes place during the months may-december.

Type of specimen taken
At retail
 Fresh meat

Methods of sampling (description of sampling techniques)
At retail
 According with Romanian National Surveillance Programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority.

Definition of positive finding
At meat processing plant

At retail
 According to the Romanian Surveillance Programme published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority.

Diagnostic/analytical methods used
At slaughterhouse and cutting plant
Control program/mechanisms

The control program/strategies in place

The Romanian Control Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated.

Results of the investigation

In 2012, meat from broilers - fresh meat- surveillance- were tested 466 units from which 150 (32,18 %) were positive for Campylobacter spp.:
- Campylobacter coli 81;
- Campylobacter jejuni 64;
- Campylobacter lari 5

In 2013 were taken a total number of 84 samples of meat from broiler, in own check, in order to detect Campylobacter, from which 7 were positive.

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Campylobacter</th>
<th>C. coli</th>
<th>C. jejuni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from pig - fresh - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **C. lari**
- **C. upsaliensis**
- **Thermophilic Campylobacter spp., unspecified**
- **Campylobacter spp., unspecified**

Meat from bovine animals - fresh - Slaughterhouse - Surveillance

Meat from pig - fresh - Cutting plant - Surveillance
Table Campylobacter in poultry meat

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Campylobacter</th>
<th>C. coli</th>
<th>C. jejuni</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - carcass - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>36</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>6</td>
<td>1 5</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from turkey - fresh - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C. lari</th>
<th>C. upsaliensis</th>
<th>Thermophilic Campylobacter spp., unspecified</th>
<th>Campylobacter spp., unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - carcass - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Slaughterhouse - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C. lari</td>
<td>C. upsaliensis</td>
<td>Thermophilic Campylobacter spp., unspecified</td>
</tr>
<tr>
<td>----------------</td>
<td>---------</td>
<td>----------------</td>
<td>--</td>
</tr>
<tr>
<td>Meat from turkey - fresh - Cutting plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.3 Campylobacter in animals

A. Thermophilic Campylobacter in Gallus gallus

Monitoring system

Sampling strategy

No national surveys were carried out in poultry on farm in 2012. Data are derived from samples taken for various reasons.

No national surveys were carried out in poultry on farm in 2013.

Frequency of the sampling

Rearing period

Other: Voluntary sampling

Before slaughter at farm

Other: Voluntary sampling

At slaughter

Other: Voluntary sampling

Type of specimen taken

Rearing period

Other: Cecum samples.

Before slaughter at farm

Other: Cecum samples.

At slaughter

Other: Cecum samples.

Case definition

Rearing period

Campylobacter identified in the sample.

Before slaughter at farm

Campylobacter identified in the sample.

At slaughter

Campylobacter identified in the sample.

Diagnostic/analytical methods used

Rearing period

Before slaughter at farm

At slaughter

Other: Bacteriological method: modified ISO 10272-1:2006,
Romania - 2013 Report on trends and sources of zoonoses
Table Campylobacter in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Campylobacter</th>
<th>C. coli</th>
<th>C. jejuni</th>
<th>C. lari</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - breeding bulls - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Industry sampling</td>
<td>animal sample</td>
<td>Domestic</td>
<td>Animal</td>
<td>1724</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats - animals under 1 year - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > caecum</td>
<td>Domestic</td>
<td>Animal</td>
<td>98</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > caecum</td>
<td>Domestic</td>
<td>Animal</td>
<td>88</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Animal</td>
<td>98</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Thermophilic Campylobacter spp., unspecified</th>
<th>C. fetus - C. fetus subsp. fetus</th>
<th>C. jejuni - C. jejuni subsp. jejuni</th>
<th>C. sputorum - C. sputorum subsp. bubulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - breeding bulls - Farm - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Goats - animals under 1 year - Veterinary clinics - Clinical investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Veterinary clinics - Clinical investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Veterinary clinics - Clinical investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Campylobacter in animals

<table>
<thead>
<tr>
<th></th>
<th>C. upsaliensis</th>
<th>Thermophilic Campylobacter spp., unspecified</th>
<th>C. fetus - C. fetus subsp. fetus</th>
<th>C. jejuni - C. jejuni subsp. jejuni</th>
<th>C. sputorum - C. sputorum subsp. bubulus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- animals over 1 year</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Veterinary clinics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Clinical investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
2.2.4 Antimicrobial resistance in Campylobacter isolates

A. Antimicrobial resistance in Campylobacter jejuni and coli in foodstuff derived from poultry

Sampling strategy used in monitoring

Methods of sampling (description of sampling techniques)

The Romanian Surveillance Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 yearly updated which is according with the provisions of Order of the President of the National Sanitary Veterinary and Food Safety Authority, in order to observe the antimicrobial resistance.

Methods used for collecting data

Isolates were collected from regional laboratories Sanitary Veterinary and Food Safety (SVFSL) at Institute of Hygiene and Veterinary Public Health (I.H.V.P.H.)

Resistance data is done in Institute of Hygiene and Veterinary Public Health.

Laboratory methodology used for identification of the microbial isolates

The method used it is broth microdilution; testing were performed according to NCCLS document and quality control according to the NCCLS standards.

Laboratory used for detection for resistance

Antimicrobials included in monitoring

Antimicrobials used were: Gentamicin, Streptomycin, Ciprofloxacin, Erythromycin, Nalidixic acid, Tetracycline.

Cut-off values used in testing

The breakpoints used are those listed in NCCLS.

Measures in case of the positive findings or single cases

Meat from positive for Campylobacter spp. lots, were subjected to heat treatment before being consumed and were not imposed penalties and / or veterinary restrictions.

Results of the investigation

There were tested 5 strains of Campylobacter jejuni and 1 Campylobacter coli or antimicrobial resistance in foodstuff derived from poultry.

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
B. Antimicrobial resistance in Campylobacter jejuni and coli in poultry

Sampling strategy used in monitoring
Frequency of the sampling
 Voluntary sampling

Type of specimen taken
 Cecum samples.

Methods used for collecting data
 Isolates were collected from regional laboratories (County Sanitary Veterinary and Food Safety Directorate – CSVFSD) at Institute for Diagnosis and Animal Health (IDAH) and identified in the NRL Campylobacter. Antimicrobial resistance testing is performed in the NRL.

Laboratory methodology used for identification of the microbial isolates

Laboratory used for detection for resistance
 Antimicrobials included in monitoring
 Susceptibility to tetracyclines, amphenicols, quinolones and aminoglycosides is studied, using microbroth dilution method, according to EURL-AR.

 Cut-off values used in testing
 The breakpoints used in testing are those recommended by EFSA in Dec 2007/516/EC and EURL-AR.

Preventive measures in place

Control program/mechanisms
 The control program/strategies in place
 Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012, published in Romanian Official Journal.

Results of the investigation
Table: Antimicrobial susceptibility testing of C. coli in Sheep - animals under 1 year (lambs) - Veterinary clinics - Clinical investigations

<table>
<thead>
<tr>
<th>Antimicrobials (Concentration, µg/ml)</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>C. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gentamicin</td>
<td>2</td>
<td>2</td>
<td>0.002</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>2</td>
<td>3</td>
<td>0.004</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>0.5</td>
<td>4</td>
<td>0.008</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>16</td>
<td>2</td>
<td>0.015</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>1</td>
<td>6</td>
<td>0.016</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>8</td>
<td>1</td>
<td>0.03</td>
</tr>
<tr>
<td>Erythromycin</td>
<td>0.5</td>
<td>4</td>
<td>0.06</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.12</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>64</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>128</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>256</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>512</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1024</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2048</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>>4096</td>
</tr>
</tbody>
</table>

Notes:
- Table shows the percentage of isolates showing resistance to antimicrobials for C. coli in sheep under 1 year of age (lambs) from veterinary clinics.
- Isolates were tested using the dilution method.
- The table includes concentrations ranging from 0.002 to >4096 µg/ml for various antimicrobials.
<table>
<thead>
<tr>
<th>Isolates out of a monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolates available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines -</td>
<td>Tetracycline</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Macrolides -</td>
<td>Erythromycin</td>
<td>0.5 32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>C. coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines -</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Macrolides -</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>C. coli</td>
</tr>
<tr>
<td>----------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>8</td>
</tr>
</tbody>
</table>

| Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | >=2048 |
|---------------|---|---|---------|---------|-------|-------|-------|-------|-------|-------|-------|------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| **Aminoglycosides - Gentamicin** | 2 | 1 | 0 | 1 |
| **Aminoglycosides - Streptomycin** | 4 | 1 | 1 | 1 |
| **Amphenicols - Chloramphenicol** | 16 | 1 | 0 | 1 |
| **Fluoroquinolones - Ciprofloxacin** | 0.5 | 1 | 1 | 1 |
| **Quinolones - Nalidixic acid** | 16 | 1 | 1 | 1 |
| **Tetracyclines - Tetracycline** | 2 | 1 | 1 | 1 |
| **Macrolides - Erythromycin** | 8 | 1 | 0 | 1 |
Table: Antimicrobial susceptibility testing of C. coli in Pigs - fattening pigs - unspecified - piglets - Veterinary clinics - Domestic - Clinical investigations - Suspect sampling - Not applicable - animal sample - caecum - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C. coli</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>Yes/no</td>
<td>2 - 64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25 - 16</td>
<td></td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5 - 32</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:
- Quinolones
- Tetracyclines
- Macrolides
Table Antimicrobial susceptibility testing of C. jejuni - C. jejuni subsp. jejuni in Sheep - animals over 1 year - Veterinary clinics - Domestic - Clinical investigations - Suspect sampling - Not applicable - animal sample - caecum - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

Antimicrobials:	Cut-off value	N	n	<=0.002	<=0.004	<=0.015	0.016	0.03	0.06	0.12	0.25	0.5	1	2	4	8	16	32	64	128	256	512	1024	2048	>4096		
Aminoglycosides - Gentamicin	2	1	0																								
Aminoglycosides - Streptomycin	4	1	0																								
Amphenicols - Chloramphenicol	16	1	0																								
Fluoroquinolones - Ciprofloxacin	0.5	1	1																								
Quinolones - Nalidixic acid	16	1	1																								
Tetracyclines - Tetracycline	1	1	0																								
Macrolides - Erythromycin	4	1	0																								

C. jejuni subsp. jejuni

Isolates out of a monitoring program (yes/no)
Number of isolates available in the laboratory

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Sheep - animals over 1 year - Veterinary clinics - Clinical investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.12 16</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>1 16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2 32</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>2 64</td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>7</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>32</td>
</tr>
</tbody>
</table>

Antimicrobial susceptibility testing of C. jejuni - C. jejuni subsp. jejuni in Sheep - animals over 1 year - Veterinary clinics - Clinical investigations - Suspect sampling - Not applicable - animal sample - caecum - quantitative data [Dilution method]
Table: Antimicrobial susceptibility testing of *C. fetus* - *C. fetus* subsp. *fetus* in Goats - animals over 1 year - Veterinary clinics - Domestic - Clinical investigations - Suspect sampling - Not applicable - animal sample - caecum - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Goat - animals over 1 year - Veterinary clinics - Clinical investigations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
</tbody>
</table>

C. fetus subsp. fetus

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2, 1, 0, 1</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4, 1, 0</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16, 1, 0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5, 1, 0</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16, 1, 1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>4, 1, 0</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>4, 1, 0</td>
</tr>
</tbody>
</table>

C. fetus subsp. fetus

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.12, 16</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>1, 16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2, 32</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06, 4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>2, 64</td>
</tr>
<tr>
<td>C. fetus subsp. fetus</td>
<td>Goats - animals over 1 year - Veterinary clinics - Clinical investigations</td>
</tr>
<tr>
<td>----------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

Antimicrobials

<table>
<thead>
<tr>
<th></th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5</td>
<td>32</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of C. fetus - C. fetus subsp. fetus in Goats - animals over 1 year - Veterinary clinics - Domestic - Clinical investigations - Suspect sampling - Not applicable - animal sample - caecum - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of C. jejuni - C. jejuni subsp. jejuni in Sheep - mixed herds - Veterinary clinics - Domestic - Clinical investigations - Suspect sampling - Not applicable - animal sample - foetus/stillbirth - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. jejuni subsp. jejuni</td>
<td>Sheep - mixed herds - Veterinary clinics - Clinical investigations</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>C. jejuni subsp. jejuni</td>
<td>Sheep - mixed herds - Veterinary clinics - Clinical investigations</td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
</tr>
<tr>
<td>C. jejuni subsp. jejuni</td>
<td>Sheep - mixed herds - Veterinary clinics - Clinical investigations</td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>C. jejuni subsp. jejuni</td>
<td>Sheep - mixed herds - Veterinary clinics - Clinical investigations</td>
<td>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>Isolates out of a monitoring program (yes/no)</td>
<td>Number of isolates available in the laboratory</td>
<td></td>
</tr>
<tr>
<td>C. jejuni subsp. jejuni</td>
<td>Sheep - mixed herds - Veterinary clinics - Clinical investigations</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Isolates out of a monitoring program (yes/no)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5</td>
<td>32</td>
</tr>
</tbody>
</table>

Table Antimicrobial susceptibility testing of C. jejuni - C. jejuni subsp. jejuni in Sheep - mixed herds - Veterinary clinics - Domestic - Clinical investigations - Suspect sampling - Not applicable - animal sample - foetus/stillbirth - quantitative data [Dilution method]
Antimicrobial Susceptibility Testing of C. sputorum - C. sputorum subsp. bubulus in Cattle (bovine animals) - breeding bulls - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - quantitative data [Dilution method]

Table

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Antimicrobials:

- Aminoglycosides - Gentamicin
- Aminoglycosides - Streptomycin
- Amphenicols - Chloramphenicol
- Fluoroquinolones - Ciprofloxacin
- Quinolones - Nalidixic acid
- Tetracyclines - Tetracycline
- Macrolides - Erythromycin

<table>
<thead>
<tr>
<th>C. sputorum subsp. bubulus</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - breeding bulls - Farm - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimicrobials:</td>
<td>lowest</td>
<td>highest</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.12</td>
<td>16</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols - Chloramphenicol</td>
<td>2</td>
<td>32</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>2</td>
<td>64</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of C. sputorum - C. sputorum subsp. bubulus in Cattle (bovine animals) - breeding bulls - Farm - Domestic - Surveillance - Objective sampling - Industry sampling - animal sample - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>C. sputorum subsp. bubulus</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5</td>
<td>32</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of C. coli in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Cut-off value</th>
<th>N</th>
<th>n</th>
<th><=0.002</th>
<th><=0.004</th>
<th>0.008</th>
<th>0.015</th>
<th>0.016</th>
<th>0.03</th>
<th>0.06</th>
<th>0.12</th>
<th>0.25</th>
<th>0.5</th>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>128</th>
<th>256</th>
<th>512</th>
<th>1024</th>
<th>2048</th>
<th>>4096</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>0.12</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5</td>
<td>1</td>
<td>1</td>
<td>0.06</td>
<td>4</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16</td>
<td>1</td>
<td>1</td>
<td>0.25</td>
<td>16</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0.5</td>
<td>32</td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td>1</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

C. coli

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Number of isolates available in the laboratory</th>
<th>lowest</th>
<th>highest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>yes</td>
<td>unknown</td>
<td>0.12</td>
<td>16</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>yes</td>
<td>unknown</td>
<td>1</td>
<td>16</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>yes</td>
<td>unknown</td>
<td>0.06</td>
<td>4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>yes</td>
<td>unknown</td>
<td>2</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>yes</td>
<td>unknown</td>
<td>0.25</td>
<td>16</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>yes</td>
<td>unknown</td>
<td>0.5</td>
<td>32</td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of C. coli in Meat from broilers (Gallus gallus) - carcase - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]
Table Antimicrobial susceptibility testing of C. coli in Meat from broilers (Gallus gallus) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C. coli</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>2 1 0</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>4 1 0</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.5 1 1</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>16 1 1</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>2 1 0</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>8 1 1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. coli</td>
<td>Meas from broilers (Gallus gallus) - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Isolates out of a monitoring program (yes/no)</td>
</tr>
<tr>
<td></td>
<td>Number of isolates available in the laboratory</td>
</tr>
<tr>
<td></td>
<td>unknown</td>
</tr>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.12 16</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>1 16</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06 4</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>2 16</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25 16</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5 32</td>
</tr>
<tr>
<td>Table Antimicrobial susceptibility testing of C. coli in Meat from broilers (Gallus gallus) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]</td>
<td></td>
</tr>
</tbody>
</table>
Table Antimicrobial susceptibility testing of C. jejuni in Meat from broilers (Gallus gallus) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]

Concentration (µg/ml), number of isolates with a concentration of inhibition equal to

| Antimicrobials: | Cut-off value | N | n | <=0.002 | <=0.004 | 0.008 | 0.015 | 0.016 | 0.03 | 0.06 | 0.12 | 0.25 | 0.5 | 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128 | 256 | 512 | 1024 | 2048 | 4096 |
|------------------|--------------|---|---|--------|--------|------|------|------|------|------|------|------|-----|----|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Aminoglycosides - Gentamicin | 2 | 5 | 0 | 1 | 3 | 1 |
| Aminoglycosides - Streptomycin | 4 | 5 | 0 | 1 | 3 | 1 |
| Fluoroquinolones - Ciprofloxacin | 0.5 | 5 | 3 | 1 | 1 | 1 | 2 |
| Quinolones - Nalidixic acid | 16 | 5 | 2 | 2 | 1 | 2 |
| Tetracyclines - Tetracycline | 1 | 5 | 2 | 2 | 1 | 1 | 1 |
| Macrolides - Erythromycin | 4 | 5 | 3 | 1 | 1 | 1 | 2 |

C. jejuni

<table>
<thead>
<tr>
<th>Isolates out of a monitoring program (yes/no)</th>
<th>Meat from broilers (Gallus gallus) - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of isolates available in the laboratory</td>
<td>unknown</td>
</tr>
</tbody>
</table>

Antimicrobials:

<table>
<thead>
<tr>
<th>Antimicrobials:</th>
<th>Concentration (µg/ml), number of isolates with a concentration of inhibition equal to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides - Gentamicin</td>
<td>0.12</td>
</tr>
<tr>
<td>Aminoglycosides - Streptomycin</td>
<td>1</td>
</tr>
<tr>
<td>Fluoroquinolones - Ciprofloxacin</td>
<td>0.06</td>
</tr>
<tr>
<td>Quinolones - Nalidixic acid</td>
<td>2</td>
</tr>
<tr>
<td>Tetracyclines - Tetracycline</td>
<td>0.25</td>
</tr>
<tr>
<td>Macrolides - Erythromycin</td>
<td>0.5</td>
</tr>
<tr>
<td>Sampling method</td>
<td>Antimicrobial susceptibility testing of C. jejuni in Meat from broilers (Gallus gallus) - Slaughterhouse - Domestic - Surveillance - Objective sampling - HACCP and own checks - food sample - meat - quantitative data [Dilution method]</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of C. coli in Animals

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of C. coli in Feed

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of C. coli in Food

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Concentration (microg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Resistant ></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Streptomycin</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
<td>0.5</td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
<td>8</td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
<td>16</td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of C. jejuni in Animals

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of C. jejuni in Feed

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of C. jejuni in Food

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>
2.3 LISTERIOSIS

2.3.1 General evaluation of the national situation

A. Listeriosis general evaluation

National evaluation of the recent situation, the trends and sources of infection

The Romanian National Surveillance Programme published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated which is according with the provisions of Regulation 2005/2073/EC.

In 2011, 54 strains of Listeria monocytogenes were isolated, from which 11 strains were isolated from milk and dairy products (cheeses and dairy products) and 44 strains were isolated from other foods (meat, meat preparation, minced meat, snails, fish, and other processed food products and prepared dishes).

In 2012, 38 strains of Listeria monocytogenes were isolated, of which 2 strains were isolated from milk and dairy products (cheeses) and 36 strains were isolated from other foods (fresh meat, meat products, meat preparation, minced meat, other processed food products and prepared dishes).

In 2012 it was observed a decrease of the strains isolated for milk and dairy products and also for other foods, compared with 2011.

In 2013, 47 strains of Listeria monocytogenes were isolated, of which 1 strains were isolated from milk and dairy products (cheeses) and 46 strains were isolated from other foods (fresh meat, meat products, meat preparation, minced meat, other processed food products and prepared dishes).

It was observed an increase of the strains isolated for from other foods, in 2013 compared with 2012.

Additional information

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
2.3.2 Listeria in foodstuffs

A. Listeria in Food

Monitoring system
Frequency of the sampling
At retail
Sampling takes place during their shelf-life

Type of specimen taken
At retail
Ready-to-eat food placed on the market during their shelf-life

Diagnostic/analytical methods used
At the production plant
Bacteriological method: EN ISO 11290-1
At retail
Bacteriological method: EN ISO 11290-2

Control program/mechanisms
The control program/strategies in place
The Romanian National Surveillance Programme published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012, yearly updated which is according with the provisions of Regulation 2005/2073/EC.

Measures in case of the positive findings or single cases
A positive laboratory finding of Listeria monocytogenes is followed by a notification by RASFF to all levels (central, regional and local). Then all the food chain is controlled in order to identify the origin of the contamination, if it is possible.
The contaminated products are traced back and are withdrawn from human consumption.

Notification system in place
Rapid Alert System for Food and Feed.

Results of the investigation
In 2013, 47 strains of Listeria monocytogenes were isolated, from 27 positive samples, out of them:
- 1 strain from 1 sample cheeses made from sheeps milk
- 1 strain from 1 sample meat from sheep - meat preparation
- 1 strain from 1 sample meat from turkey - meat preparation
- 5 strains from 1 sample meat from pig - meat products
- 1 strain from 1 sample meat from bovine animals
- 11 strains from 3 samples fish and fishery products
- 12 strains from 8 samples meat, mixed meat
- 4 strains from 2 samples snails
- 11 strains from 9 samples other food (processed food products and prepared dishes).
National evaluation of the recent situation, the trends and sources of infection

In 2011, 54 strains of Listeria monocytogenes were isolated, of which 11 strains were isolated from milk and dairy products (cheeses and dairy products) and 44 strains were isolated from other foods (meat, meat preparation, minced meat, snails, fish, and other processed food products and prepared dishes).

In 2012, 38 strains of Listeria monocytogenes were isolated, of which 2 strains were isolated from milk and dairy products (cheeses) and 36 strains were isolated from other foods (fresh meat, meat products, meat preparation, minced meat, other processed food products and prepared dishes).

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Milk, goats' - pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Milk, goats' - pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>118</td>
<td>0</td>
<td>118</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>29</td>
<td>0</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>41</td>
<td>0</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for L. monocytogenes</td>
<td>Units tested with detection method</td>
<td>Listeria monocytogenes presence in x g</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
<td>----------------------------------</td>
<td>----------------------------------</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>9</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep’s milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep’s milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep’s milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep’s milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>43</td>
<td>0</td>
<td>43</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep’s milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>15</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>42</td>
<td>0</td>
<td>33</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>203</td>
<td>0</td>
<td>195</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>64</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>67</td>
<td>0</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>178</td>
<td>0</td>
<td>173</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>102</td>
<td>0</td>
<td>102</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>80</td>
<td>0</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>22</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>12</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>40</td>
<td>0</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>30</td>
<td>0</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - dairy products, not specified - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - dairy products, not specified - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td>19</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>197</td>
<td>0</td>
<td>185</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>32</td>
<td>0</td>
<td>28</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Units tested with detection method</td>
<td>L. monocytogenes presence in g</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Farm - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Milk, goats' - raw milk - intended for direct human consumption - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Milk, goats' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Units tested with enumeration method

- Milk, cows' - raw milk - intended for direct human consumption - Farm - Surveillance
 - > detection limit but <= 100 cfu/g: 0
 - L. monocytogenes > 100 cfu/g: 0
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Product Description</th>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, goats' - pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, goats' - pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk and Dairy Products</td>
<td>Units tested with enumeration method</td>
<td>> detection limit but <= 100 cfu/g</td>
<td>L. monocytogenes > 100 cfu/g</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th></th>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - fresh - made from pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Packing centre - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Packing centre - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>56</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>Units tested with enumeration method</td>
<td>> detection limit but <= 100 cfu/g</td>
<td>L. monocytogenes > 100 cfu/g</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td></td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Farm - Surveillance</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Catering - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>10</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from goats’ milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Packing centre - Surveillance</th>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - butter - made from pasteurised milk - Processing plant - Surveillance</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from pasteurised milk - Processing plant - Surveillance</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - cream - made from raw or low heat-treated milk - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - dairy products, not specified - Catering - Surveillance</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - dairy products, not specified - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - ice-cream - Retail - Surveillance</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Processing plant - Surveillance</td>
<td>38</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Processing plant - Surveillance</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dairy products, unspecified - Retail - Surveillance</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - pasteurised milk - Processing plant - Surveillance</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk - intended for direct human consumption - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in milk and dairy products

<table>
<thead>
<tr>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of pasteurised/UHT products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Farm - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, cows' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, goats' - raw milk - intended for direct human consumption - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Milk, goats' - raw milk for manufacture - intended for manufacture of raw or low heat-treated products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Meat from pig - fresh - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Molluscan shellfish - cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Bakery products - cakes - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Bakery products - cakes - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Bakery products - cakes - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Bakery products - cakes - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
<tr>
<td>Bakery products - pastry - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bakery products - pastry - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>53</td>
<td>0</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - pastry - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>56</td>
<td>0</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Crustaceans - unspecified - shelled, shucked and cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Single</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>18</td>
<td>0</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Single</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>49</td>
<td>0</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>19</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - dried dietary foods for special medical purposes intended for infants below 6 months - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foodstuffs intended for special nutritional uses - dried dietary foods for special medical purposes intended for infants below 6 months - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>14</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>82</td>
<td>0</td>
<td>67</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for L. monocytogenes</td>
<td>Units tested with detection method</td>
<td>Listeria monocytogenes presence in x g</td>
</tr>
<tr>
<td>--</td>
<td>----------------------</td>
<td>------------------------------</td>
<td>----------------------</td>
<td>-------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>44</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cooked, ready-to-eat - Catering - Surveillance</td>
<td>C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cooked, ready-to-eat - Hospital or medical care</td>
<td>C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>facility - Surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cooked, ready-to-eat - Processing plant -</td>
<td>C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cooked, ready-to-eat - Retail - Surveillance</td>
<td>C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>cooked, ready-to-eat - Retail - Surveillance</td>
<td>C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from other animal species or not specified -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>meat products - raw and intended to be eaten raw -</td>
<td>C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from other animal species or not specified -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>meat products - raw and intended to be eaten raw -</td>
<td>C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cutting plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from other animal species or not specified -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>202</td>
<td>0</td>
<td>202</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>meat products - raw and intended to be eaten raw -</td>
<td>C.S.V.F.S.D.</td>
<td>Official sampling</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Meat from other animal species or not specified -</td>
<td>I.H.V.P.H. and</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>26</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>meat products - raw and intended to be eaten raw -</td>
<td>C.S.V.F.S.D.</td>
<td>HACCP and own checks</td>
<td>> meat</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Processing plant - Surveillance</td>
<td></td>
</tr>
</tbody>
</table>

Table Listeria monocytogenes in other foods
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for L. monocytogenes</th>
<th>Units tested with detection method</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - fresh - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - fresh - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - fresh - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>20</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>140</td>
<td>0</td>
<td>140</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>7</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Units tested with detection method</th>
<th>Total units positive for L. monocytogenes</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>16</td>
<td>0</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>17</td>
<td>0</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>6</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>91</td>
<td>0</td>
<td>67</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>80</td>
<td>0</td>
<td>64</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>171</td>
<td>0</td>
<td>105</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Units tested with detection method</th>
<th>Total units positive for L. monocytogenes</th>
<th>Listeria monocytogenes presence in x g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>23</td>
<td>0</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > meat</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>Molluscan shellfish - shelled, shucked and cooked - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1282</td>
<td>0</td>
<td>353</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>24</td>
<td>0</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1507</td>
<td>0</td>
<td>1054</td>
<td>0</td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units positive for L. monocytogenes</td>
<td>Units tested with detection method</td>
<td>Listeria monocytogenes presence in x g</td>
</tr>
<tr>
<td>---</td>
<td>------------------------------------</td>
<td>---------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>---</td>
<td>------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Selective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>100</td>
<td>0</td>
<td>89</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>594</td>
<td>0</td>
<td>388</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>103</td>
<td>0</td>
<td>103</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1512</td>
<td>0</td>
<td>1357</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Suspect sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - fresh - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Molluscan shellfish - cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - cakes - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - cakes - Processing plant - Surveillance</td>
<td>36</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - cakes - Retail - Surveillance</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - cakes - Retail - Surveillance</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - pastry - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - pastry - Processing plant - Surveillance</td>
<td>31</td>
<td>0</td>
</tr>
<tr>
<td>Bakery products - pastry - Retail - Surveillance</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>Food Category</td>
<td>Units tested with enumeration method</td>
<td>> detection limit but <= 100 cfu/g</td>
</tr>
<tr>
<td>--</td>
<td>--------------------------------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>Crustaceans - unspecified - shelled, shucked and cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - raw - Retail - Surveillance</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Catering - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fishery products, unspecified - ready-to-eat - Retail - Surveillance</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - dried dietary foods for special medical purposes intended for infants below 6 months - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - dried dietary foods for special medical purposes intended for infants below 6 months - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Foodstuffs intended for special nutritional uses - ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - fresh - Processing plant - Surveillance</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Food Description</th>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from bovine animals - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from bovine animals - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - fresh - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Hospital or medical care facility - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Meat from broilers (Gallus gallus) - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Meat from other animal species or not specified - meat products - raw and intended to be eaten raw - Cutting plant - Surveillance</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>Meat from other animal species or not specified - meat products - raw and intended to be eaten raw - Cutting plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from other animal species or not specified - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from other animal species or not specified - meat products - raw and intended to be eaten raw - Processing plant - Surveillance</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - fresh - Cutting plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - fresh - Packing centre - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - fresh - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Table Listeria monocytogenes in other foods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Units tested with enumeration method</td>
<td>> detection limit but <= 100 cfu/g</td>
<td>L. monocytogenes > 100 cfu/g</td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------</td>
<td>----------------------------</td>
</tr>
<tr>
<td>Meat from pig - meat preparation - intended to be eaten cooked - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Catering - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Processing plant - Surveillance</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - meat products - cooked, ready-to-eat - Retail - Surveillance</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Meat from pig - meat products - raw but intended to be eaten cooked - Processing plant - Surveillance</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat from pig - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat preparation - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Food Product Category</td>
<td>Environmental Monitoring</td>
<td>Surveillance</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>943</td>
<td>0</td>
</tr>
<tr>
<td>Molluscan shellfish - shelled, shucked and cooked - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Packing centre - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Molluscan shellfish - shelled, shucked and cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Cutting plant - Surveillance</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Packing centre - Surveillance</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - minced meat - intended to be eaten cooked - Processing plant - Surveillance</td>
<td>30</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Meat, mixed meat - meat products - Retail - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Molluscan shellfish - shelled, shucked and cooked - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Other processed food products and prepared dishes - unspecified - ready-to-eat foods -</th>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Catering - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Catering - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surveillance</td>
<td>501</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Hospital or medical care facility - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Surveillance</td>
<td>11</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Processing plant - Surveillance</td>
<td>243</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Processing plant - Surveillance</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Retail - Surveillance</td>
<td>310</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Retail - Surveillance</td>
<td>310</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Listeria monocytogenes in other foods

<table>
<thead>
<tr>
<th>Units tested with enumeration method</th>
<th>> detection limit but <= 100 cfu/g</th>
<th>L. monocytogenes > 100 cfu/g</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Retail - Surveillance</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Other processed food products and prepared dishes - unspecified - ready-to-eat foods - Retail - Surveillance</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
2.4 E. COLI INFECTIONS

2.4.1 General evaluation of the national situation

A. Verotoxigenic Escherichia coli infections general evaluation

National evaluation of the recent situation, the trends and sources of infection

In 2012 - 446 samples were tested, which from: 203 were carcase swabs, 121 bovine minced meat, 85 mixet meat- meat preparation - from bovine and sheep, 37 mixet meat- minced meat - from bovine and sheep.

There were no positive samples for Escherichia coli STEC.

Additional information

Analytical method used was: Escherichia coli O157. ISO/TS 13136:2012 - Microbiology of food and animal feed - Real-time polymerase chain reaction (PCR)-based method for the detection of food-borne pathogens - Horizontal method for the detection of Shiga toxin-producing Escherichia coli (STEC) and the determination of O157, O111, O26, O103 and O145 serogroups.
2.4.2 Escherichia coli, pathogenic in animals

A. Verotoxigenic Escherichia coli in cattle (bovine animals)

Monitoring system
 Sampling strategy

Additional information
2.5 TUBERCULOSIS, MYCOBACTERIAL DISEASES

2.5.1 General evaluation of the national situation

A. Tuberculosis general evaluation

History of the disease and/or infection in the country

The monitoring of tuberculosis in bovine populations from Romania have been continuous and sustained, while control and eradication of disease was included in the „Strategic programme for the surveillance, prevention and control of transmissible animal diseases from animals to humans, animal protection and environment“, updated every year and approved through President Order of the National Sanitary Veterinary and Food Safety Authority, consisting in the intradermic tuberculin test, for detecting positive animals and the qualification of their health status.

Until 2001, were subjected to the tuberculin test all bovine animals over six months old and, beginning with 2002, all bovine over six weeks old, from the whole territory of Romania, twice per year with a single intradermal test. All animals given inconclusive or positive results have been subjected to an intradermal comparative test and, in case of positive result, have been slaughtered and organ samples collected for laboratory investigations.

Following to actions carried out for the control and eradication of the tuberculosis some counties were register a continuous decrease of incidence of bovine tuberculosis.

In Romania, between 1990-2005 the incidence of bovine tuberculosis registered a meaningful decrease, as follows:
- 1990 - 5.73%;
- 1992 - 1.55%;
- 1995 - 0.33%.

- Since 1996 until 2005, the number of cases of bovine tuberculosis was lower than 0.05 infection rate per year in the total livestock of bovine. The average of percentage in tuberculosis infection per total livestock of bovine in this period was of 1.18%.

Relevance of the findings in animals, feedingstuffs and foodstuffs to human cases (as a source of infection)

In general, bovine Tuberculosis infection remains a significant animal health problem in Romania.
2.5.2 Mycobacterium in animals

A. Mycobacterium bovis in bovine animals

Status as officially free of bovine tuberculosis during the reporting year

The entire country free

Romania still is not recognized as an officially free from tuberculosis country.

Free regions

No

Monitoring system

Sampling strategy

Compulsory tuberculin testing is performed annually to all bovine animals aged over six weeks from the whole territory of Romania, by intradermal comparative test. Pre-movement test is carried out by a single intradermal test for all cattle older than 6 weeks for intra-Union trade or export to third countries, test performed at the assembly centre or in the holding of origin within the 30 days prior the movement, according to the art. 6 (2) of the Council Directive 64/432/EEC.

The programme of regular tuberculin testing is supplemented by veterinarian inspection of bovine during routine meat production at slaughterhouses.

The general objectives of the programme are:

- monitoring of bovine tuberculosis to know the prevalence and the incidence of disease of disease in bovine holdings from Romania;

- qualifying health status of cattle farms in Romania, as officially free of bovine tuberculosis.

Frequency of the sampling

See above.

Type of specimen taken

Other: Tuberculosis skin reaction

Methods of sampling (description of sampling techniques)

As described in Annex A of the EU Directive 64/432/EEC.

Case definition

A positive case is an animal with a positive result of the comparative skin test, in which Mycobacterium bovis or M. tuberculosis were isolated, or an animal with a positive post mortem examination result confirmed by laboratory.

A holding is defined as infected if Mycobacterium bovis was isolated from an animal of the holding.

Diagnostic/analytical methods used

1) Comparative intradermal skin test (Bovine and Avium tuberculin).

2) Pre-movement tuberculin test - export or intra community trade.

3) Inspection of carcasses at slaughterhouse.

4) Microbiological examination.
Vaccination policy
No vaccination

Control program/mechanisms
The control program/strategies in place
The whole cattle population is continuously monitored for bovine tuberculosis on a yearly basis by the intradermal tuberculin tests.
All slaughtered bovine animals were under veterinary control. The official post mortem veterinary examination is carry out in slaughterhouses by the official veterinarian in accordance with EU legislation.
For measures taken in case of single cases, see "Measures in case of the positive findings or single cases".

Recent actions taken to control the zoonoses
Testing, monitoring and surveillance.

Notification system in place
Tuberculosis is a notifiable disease according to "Order no. 79/2008 for the approval of the Sanitary Veterinary Norm regarding the internal notification and official declaration of certain transmissible animal diseases " with subsequent amendments.

Results of the investigation
See the table for the Romanian programme of tuberculosis eradication.

National evaluation of the recent situation, the trends and sources of infection
The annual incidence rate, which was 5.73% in 1990, was lower than 0.2% in 2012. The downward trend of the annual herd rates of prevalence and incidence confirms the favorable evolution of the situation.
In 2013 the annual incidence rate, which was 5.73% in 1990, was lower than 0.2% in 2013. The downward trend of the annual herd rates of prevalence and incidence confirms the favorable evolution of the situation.
Table: Bovine Tuberculosis in Countries and Regions that do not receive Community co-financing for eradication programmes

If present, the row "Total-1" refers to analogous data of the previous year.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total number of existing bovine</th>
<th>Officially free herds</th>
<th>Infected herds</th>
<th>Routine tuberculin testing</th>
<th>Number of tuberculin tests carried out before the introduction into the herds (Annex A(1)(2)(c) third indent (1) of Directive 64/432/EEC)</th>
<th>Number of animals with suspicious lesions of tuberculosis examined and submitted to histopathological and bacteriological examination</th>
<th>Number of animals detected positive in bacteriological examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alba</td>
<td>12780</td>
<td>12780</td>
<td>100</td>
<td></td>
<td>once a year</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Arad</td>
<td>9655</td>
<td>9654</td>
<td>99.99</td>
<td>1</td>
<td>once a year</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Argeș</td>
<td>26710</td>
<td>26710</td>
<td>100</td>
<td></td>
<td>once a year</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bacău</td>
<td>25993</td>
<td>25992</td>
<td>100</td>
<td>1</td>
<td>once a year</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Bihor</td>
<td>20905</td>
<td>20881</td>
<td>99.89</td>
<td>24</td>
<td>once a year</td>
<td></td>
<td>71</td>
</tr>
<tr>
<td>Bistrița-Năsăud</td>
<td>17360</td>
<td>17358</td>
<td>99.99</td>
<td>2</td>
<td>once a year</td>
<td></td>
<td>164</td>
</tr>
<tr>
<td>Botoșani</td>
<td>31664</td>
<td>31662</td>
<td>99.99</td>
<td>2</td>
<td>once a year</td>
<td></td>
<td>22</td>
</tr>
<tr>
<td>Brașov</td>
<td>10225</td>
<td>10224</td>
<td>99.99</td>
<td>1</td>
<td>once a year</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>Brăila</td>
<td>13285</td>
<td>13284</td>
<td>99.99</td>
<td>1</td>
<td>once a year</td>
<td></td>
<td>58</td>
</tr>
<tr>
<td>București</td>
<td>30</td>
<td>30</td>
<td>100</td>
<td></td>
<td>once a year</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Buzău</td>
<td>20209</td>
<td>20209</td>
<td>100</td>
<td></td>
<td>once a year</td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Caraș-Severin</td>
<td>10798</td>
<td>10796</td>
<td>99.98</td>
<td>2</td>
<td>once a year</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>Region</td>
<td>Population</td>
<td>Population</td>
<td>TB Cases</td>
<td>TB Detection</td>
<td>TB Control</td>
<td>TB Incidence</td>
<td>Country</td>
</tr>
<tr>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
<td>--------------</td>
<td>---------</td>
</tr>
<tr>
<td>Cluj</td>
<td>16830</td>
<td>65098</td>
<td>16830</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>Romania</td>
</tr>
<tr>
<td>Constanta</td>
<td>5444</td>
<td>42040</td>
<td>5443</td>
<td>99.98</td>
<td>1</td>
<td>.02</td>
<td>once a year</td>
</tr>
<tr>
<td>Covasna</td>
<td>7592</td>
<td>47100</td>
<td>7592</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>30575</td>
</tr>
<tr>
<td>Calarasi</td>
<td>4309</td>
<td>25346</td>
<td>4309</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>21079</td>
</tr>
<tr>
<td>Dolj</td>
<td>12854</td>
<td>36550</td>
<td>12854</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>31684</td>
</tr>
<tr>
<td>Dambovita</td>
<td>17968</td>
<td>35156</td>
<td>17968</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>35156</td>
</tr>
<tr>
<td>Galati</td>
<td>12259</td>
<td>36441</td>
<td>12259</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>34604</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>7767</td>
<td>16379</td>
<td>7766</td>
<td>99.99</td>
<td>1</td>
<td>.01</td>
<td>once a year</td>
</tr>
<tr>
<td>Gorj</td>
<td>16569</td>
<td>51023</td>
<td>16569</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>47270</td>
</tr>
<tr>
<td>Harghita</td>
<td>16170</td>
<td>81676</td>
<td>16170</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>81676</td>
</tr>
<tr>
<td>Hunedoara</td>
<td>11392</td>
<td>43695</td>
<td>11392</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>40741</td>
</tr>
<tr>
<td>Ialomita</td>
<td>7997</td>
<td>26508</td>
<td>7997</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>23226</td>
</tr>
<tr>
<td>Iasi</td>
<td>35793</td>
<td>84659</td>
<td>35793</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>68170</td>
</tr>
<tr>
<td>Ilfov</td>
<td>1549</td>
<td>4213</td>
<td>1549</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>4180</td>
</tr>
<tr>
<td>Maramures</td>
<td>30833</td>
<td>83002</td>
<td>30832</td>
<td>100</td>
<td>1</td>
<td>0</td>
<td>once a year</td>
</tr>
<tr>
<td>Mehedinți</td>
<td>21311</td>
<td>38785</td>
<td>21311</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>34619</td>
</tr>
</tbody>
</table>
Table Bovine tuberculosis in countries and regions that do not receive Community co-financing for eradication programmes

<table>
<thead>
<tr>
<th>Country</th>
<th>Region</th>
<th>Population</th>
<th>Dairy Cows</th>
<th>Bovine TB</th>
<th>Test Frequency</th>
<th>Positive Cows</th>
<th>Positive Cows</th>
<th>Positive Cows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mureș</td>
<td></td>
<td>12802</td>
<td>73406</td>
<td>12802</td>
<td>0</td>
<td>0</td>
<td>once a year</td>
<td>70877</td>
</tr>
<tr>
<td>Neamț</td>
<td></td>
<td>28979</td>
<td>104051</td>
<td>28979</td>
<td>0</td>
<td>0</td>
<td>once a year</td>
<td>67983</td>
</tr>
<tr>
<td>Olt</td>
<td></td>
<td>15326</td>
<td>34352</td>
<td>15326</td>
<td>0</td>
<td>0</td>
<td>once a year</td>
<td>33709</td>
</tr>
<tr>
<td>Prahova</td>
<td></td>
<td>15735</td>
<td>41351</td>
<td>15735</td>
<td>0</td>
<td>0</td>
<td>once a year</td>
<td>49451</td>
</tr>
<tr>
<td>Romania</td>
<td></td>
<td>655547</td>
<td>2223937</td>
<td>655497</td>
<td>99.99</td>
<td>50</td>
<td>.01</td>
<td>2028685</td>
</tr>
<tr>
<td>Satu Mare</td>
<td></td>
<td>12083</td>
<td>47547</td>
<td>12080</td>
<td>99.98</td>
<td>3</td>
<td>.02</td>
<td>46165</td>
</tr>
<tr>
<td>Sibiu</td>
<td></td>
<td>6352</td>
<td>38695</td>
<td>6352</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>37591</td>
</tr>
<tr>
<td>Suceava</td>
<td></td>
<td>46276</td>
<td>144667</td>
<td>46276</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>119860</td>
</tr>
<tr>
<td>Sălaj</td>
<td></td>
<td>9727</td>
<td>29514</td>
<td>9718</td>
<td>99.91</td>
<td>9</td>
<td>.09</td>
<td>29463</td>
</tr>
<tr>
<td>Teleorman</td>
<td></td>
<td>17259</td>
<td>37093</td>
<td>17258</td>
<td>99.99</td>
<td>1</td>
<td>.01</td>
<td>32840</td>
</tr>
<tr>
<td>Timiș</td>
<td></td>
<td>7605</td>
<td>43814</td>
<td>7605</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>43814</td>
</tr>
<tr>
<td>Tulcea</td>
<td></td>
<td>3719</td>
<td>35221</td>
<td>3719</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>24793</td>
</tr>
<tr>
<td>Vaslui</td>
<td></td>
<td>22414</td>
<td>66418</td>
<td>22414</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>64599</td>
</tr>
<tr>
<td>Vrancea</td>
<td></td>
<td>14369</td>
<td>57078</td>
<td>14369</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>50079</td>
</tr>
<tr>
<td>Vâlcea</td>
<td></td>
<td>16650</td>
<td>47689</td>
<td>16650</td>
<td>100</td>
<td>0</td>
<td>once a year</td>
<td>43512</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>1311094</td>
<td>4447874</td>
<td>1310994</td>
<td>99.99</td>
<td>100</td>
<td>.01</td>
<td>N.A.</td>
</tr>
</tbody>
</table>

N.A. = Not available
<table>
<thead>
<tr>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>N.A.</td>
</tr>
</tbody>
</table>
2.6 BRUCELLOSIS

2.6.1 General evaluation of the national situation

A. Brucellosis general evaluation

History of the disease and/or infection in the country

In Romania, the first reports on infectious abortion in cows, name under which bovine brucellosis was initially described and known were made up by Staicu, in 1906, then a detailed description is made up by Mihaiescu and collaborators in 1953 and by Al.Pop in 1954. From the historical data obtained by consulting the speciality literature, it turns out that bovine brucellosis has been eradicated in Romania, in 1957, but the national official records and those submitted to World Organization for Animal Health show that the latest occurrence of bovine brucellosis in Romania was in 1963. The disease control was achieved by slaughtering and disposal of all affected animals and of those suspected of disease or contamination associated with protective measures of antiepizootic protection and prohibition of the consumption of products from the mentioned animals. The first normative regulation on supervision, prevention and control of bovine brucellosis in Romania was drawn up in 1955, when the State Council Decree no. 167 is developed and implemented on the organization of animal health defense. Brucellosis was classified as a notifiable disease. By this decree, bovine brucellosis was considered a main disease of bovines and the disease was classified as officially notifiable and subject to specific sanitary veterinary measures, including quarantine measures. After 1990, the surveillance of bovine brucellosis, specific measures of prevention and disease control were introduced in the structure of "The strategic program of sanitary veterinary actions for the surveillance, prevention and control of animal disease, pest control on lawns".

Since 1998, Romania has transposed into the national legislation the specific legislation on the control and eradication of transmissible animal diseases, including regulations for bovine brucellosis.

National evaluation of the recent situation, the trends and sources of infection

2007/399/EC: Commission Decision of 11 June 2007 amending Decision 93/52/EEC as regards the declaration that Romania is officially free of brucellosis (B. melitensis)

The National Sanitary Veterinary and Food Safety Authority requests the European Commission the assessing of the technical file submitted by Romania in 2009, in order to acquire the status of officially free country regarding bovine brucellosis (Brucella abortus).
2.6.2 Brucella in animals

A. Brucella abortus in bovine animals

Status as officially free of bovine brucellosis during the reporting year

The entire country free

The National Sanitary Veterinary and Food Safety Authority requests the European Commission the assessing of the technical file submitted by Romania, in order to acquire the status of officially free country regarding bovine brucellosis (Brucella abortus).

Additional information

Request of the National Sanitary Veterinary and Food Safety Authority is based on:

a) historical data on the epidemiological situation of bovine brucellosis for a period of over 40 years;

b) the fulfillment by Romania of the conditions provided by The Terrestrial Animal Health Code of Animal Health World Organization, with reference to bovine brucellosis - Vol II, Section 11, Chapter 11.3.

c) the fulfillment by Romania of sanitary veterinary conditions and veterinary certification for intra-Community trade with bovine animals and swine - Council Directive 64/432/EEC with subsequent amendments, transposed into national legislation by Order of the President of The National Sanitary Veterinary and Food Safety Authority no. 61/2006 for approving the sanitary veterinary norm on animal health problems affecting intra-Community trade with bovine animals and swine, with subsequent amendments.

e) the fulfillment by Romania of sanitary veterinary health conditions and veterinary certification on imports of live bovines - Council Directive 04/68/CE, transposed into national legislation by Order of the President of the National Sanitary Veterinary and Food Safety Authority no. 231 of October 2, 2006 regarding the approval of sanitary veterinary norm setting animal health rules for the import and transit in and through the European Community of certain live ungulate animals;

f) the fulfillment by Romania of sanitary veterinary conditions and of veterinary certification regarding the imports of ova, embryos and semen from bovines - Council Directive 89/556/EEC with subsequent amendments, transposed into national legislation in consolidated form, with the last amendment Council Directive 2008/73/EC, by Order of the President of the National Sanitary Veterinary and Food Safety Authority no. 134 of June 16, 2006 for the approval of sanitary veterinary norm on animal health conditions governing intercommunity-trade and the imports from third countries of embryos of domestic bovine animals and the Council Directive 88/407/EEC with subsequent amendments, transposed into national legislation in consolidated form, with the latest amendment Council Directive 2008/73/EC, by Order of the President of the National Sanitary Veterinary and Food Safety Authority no. 205/2006 for approving the sanitary veterinary norm establishing the animal health requirements applicable to intra-
Community trade and to imports of semen of domestic bovine animals, as amended and supplemented by Order no. 45 of May 12, 2008;
g) the fulfillment by Romania of sanitary veterinary conditions and of veterinary certification regarding the imports of products (meat, milk) and by-products derived from bovines – Council Decision 1979/542/EEC with subsequent amendments, transposed into national legislation in consolidated form, with the last amendment to the Commission Decision 2009/317/CE, by Order no. 53 of May 26, 2005 for the approval of sanitary veterinary norm on the list of third countries or parts of third countries and the veterinary certification conditions, animal and public health for the import into the European Community of certain live animals and fresh meat from them and the taking over of their lists and conditions for the import in Romania, as amended and supplemented by Order no. 136 of December 13, 2005 and Order no. 152 of June 22, 2006, as well as the Commission Decision 2004/438/EC laying down animal health and public health conditions and veterinary certification required for the entry into the Community of heat-treated milk, milk products and raw milk intended for human consumption, with subsequent amendments, transposed into national legislation in consolidated form, with the latest amendment to the Commission Decision 2008/338/EC as well as Regulation (EC) no. 1774/2002 of the European Parliament and European Council of October, 3. 2002 laying down health rules concerning animal by-products not intended for human consumption, with subsequent amendments, with the latest amendment Commission Regulation 2004/780/CE;

Monitoring system
Sampling strategy
The herds are classified and sampled according to Council Directive 64/ 432/ EEC

Frequency of the sampling
The herds are classified and sampled according to Council Directive 64/ 432/ EEC

Type of specimen taken
Blood, milk, organs, vaginal mucus, semen, aborted fetus, placenta

Methods of sampling (description of sampling techniques)
CFT (complement fixation test) to be executed in case of positive RBT (rose bengal test).

Vaccination policy
In Romania, on the entire territory of the country, the vaccination against bovine brucellosis never was applied.

Control program/mechanisms
The control program/strategies in place
Romania had a mandatory national program for the control of Brucella bovis. The tests provided in the program are described as follows:
1. Serological surveillance by RSAR Rose Bengal of bovines aged over 12 months are controlled once a year but not later than 12 months since the precedent control.
2. Examination of bulk milk samples - three milk ELISAs tests carried out at intervals of at least three months, sample of milk is taken from the milk collected from farms with at least 30 % of dairy cows in milk.
3. Cows, buffaloes and heifers that aborted after 14 to 21 days since abortion or which show clinical signs leading to the suspicion of brucella infection.
4. The serological testing of domestic and wild animals are introduced by intra-Community trade or import from third countries over the age of 1 year is made in 1% percent, but not less than 5 samples per batch.
5. The compulsory bacteriological and serological surveillance of susceptible species from the hunting fund from all hunted animals.
6. Anathomopathological examination and laboratory complex:
Romania - 2013 Report on trends and sources of zoonoses

a) From all the animals that aborted, there are sent slinks to laboratory, placenta, fetal fluids and blood serum samples from 14 to 21 days after abortion.
b) All samples taken from the slaughtered bovines that have lesions leading to the suspicioning of brucella infection.

Notification system in place

Brucellosis is a notifiable disease according to "Order no. 79/2008 for the approval of the Sanitary Veterinary Norm regarding the internal notification and official declaration of certain transmissible animal diseases" with subsequent amendments.

National evaluation of the recent situation, the trends and sources of infection

The NSVFSA President Order no. 77/15.08.2005 for the approval of the sanitary veterinary Norm on notifying animal diseases, represents the official transposition of the Council Directive 1982/894/CE regarding the notification of animal diseases, which transposes the Council Directive 82/894/EEC, with further amendments and completions. The disease was mandatory notifiable and subject to quarantine measures, during the last 15 years. There wasn’t any bovine brucellosis suspicion during the last 15 years and no cases of disease were detected during the same period.
B. Brucella melitensis in goats

Status as officially free of caprine brucellosis during the reporting year

The entire country free

Those recognized by the European Commission according to community legislation (Dec. 399/2007/EC).

Free regions

2007/399/EC: Commission Decision of 11 June 2007 amending Decision 93/52/EEC as regards the declaration that Romania is officially free of brucellosis (B. melitensis)

Monitoring system

Sampling strategy

Frequency of the sampling

Type of specimen taken

Blood

Methods of sampling (description of sampling techniques)

RBT and CFT; in case of positivity to RBT and CFT isolation of Br. melitensis.

Vaccination policy

The vaccination against Br. Melitensis was no applied.

Control program/mechanisms

The control program estratégias in place

The monitoring and control programme of ovine and caprine brucellosis is realized through:

a) Rose bengal plate agglutination test and Complement Fixation Test, for 5% of the sheep and goats over the age of 6 months.

b) Serological examination (Rose bengal plate agglutination test and Complement Fixation Test) for all animals presenting clinical manifestations that lead to a suspected infection.

c) Laboratory examinations for the samples obtained from carcasses with lesions suspected to be due to brucellosis.

d) Laboratory examinations of aborted foetuses from sheep and goats.

e) Supervision of wild ruminants grown in captivity and semi-captivity, from natural reserves, parks, zoological gardens, etc.

Measures in case of the positive findings or single cases

Until present time, in Romania, there have been no cases of the disease reported.

Notification system in place

Brucellosis is a notifiable disease according to "Order no. 79/2008 for the approval of the Sanitary Veterinary Norm regarding the internal notification and official declaration of certain transmissible animal diseases" with subsequent amendments.
C. Brucella melitensis in sheep

Status as officially free of ovine brucellosis during the reporting year

The entire country free

Those recognized by the European Commission according to community legislation (Dec. 399/2007/EC).

Free regions

2007/399/EC: Commission Decision of 11 June 2007 amending Decision 93/52/EEC as regards the declaration that Romania is officially free of brucellosis (B. melitensis)

Additional information

For the information concerning sheep, please refer to brucellosis in goats, as the program of control is the same for sheep and goats.
Table Brucellosis in other animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sample unit</th>
<th>Units tested</th>
<th>Total units positive for Brucella</th>
<th>B. abortus</th>
<th>B. melitensis</th>
<th>B. suis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bison - zoo animals - Zoo - Surveillance (RBT)</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>12</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hares - wild - Hunting - Surveillance (Bouth samples were analyzed bacteriological. Positive sample was analyzed also by PCR.)</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hares - wild - Hunting - Surveillance (UE trade)</td>
<td>I.D.A.H, CSVFSD</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>469</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamas - farmed - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Farm - Surveillance</td>
<td>I.D.A.H, CSVFSD</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>45873</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Farm - Surveillance (UE trade)</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>20</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Hunting - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>Animal</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Hunting - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>47</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Type</td>
<td>Breed</td>
<td>Sampling</td>
<td>Method</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>-------</td>
<td>----------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bisons - Zoo animals</td>
<td></td>
<td>Zoo</td>
<td>Surveillance (RBT)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - Pet animals</td>
<td></td>
<td>Veterinary clinics</td>
<td>Clinical investigations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hares - Wild animals</td>
<td></td>
<td>Hunting</td>
<td>Surveillance (Bouth samples were analyzed bacteriological. Positive sample was analyzed also by PCR.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lamas - Farmed animals</td>
<td></td>
<td>Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - Breeding animals</td>
<td></td>
<td>Farm</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild boars - Wild animals</td>
<td></td>
<td>Hunting</td>
<td>Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Brucella spp., unspecified</th>
<th>B. canis</th>
<th>B. suis - biovar 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Brucella spp., unspecified</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B. suis - biovar 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Ovine or Caprine Brucellosis in countries and regions that do not receive Community co-financing for eradication programme

If present, the row "Total-1" refers to analogous data of the previous year.

<table>
<thead>
<tr>
<th>Region</th>
<th>Total number of existing Herds</th>
<th>Animals</th>
<th>Officially free herds Number of herds</th>
<th>%</th>
<th>Number of herds</th>
<th>%</th>
<th>Infected herds</th>
<th>Number of herds tested</th>
<th>Number of infected herds</th>
<th>Surveillance Number of animals tested with serological blood tests</th>
<th>Number of animals positive serologically</th>
<th>Investigations of suspect cases Number of animals examined microbio logically</th>
<th>Number of animals positive microbio logically</th>
<th>Number of suspended herds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alba</td>
<td>6370</td>
<td>369364</td>
<td>6370</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>6370</td>
<td>19045</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Arad</td>
<td>3150</td>
<td>664547</td>
<td>3150</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>3150</td>
<td>45682</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Argeş</td>
<td>6640</td>
<td>234892</td>
<td>6640</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>6640</td>
<td>16478</td>
<td>0</td>
<td></td>
<td>15</td>
<td>15</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>Bacău</td>
<td>7926</td>
<td>298066</td>
<td>7926</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>7926</td>
<td>18459</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Bihor</td>
<td>3173</td>
<td>454414</td>
<td>3173</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>3173</td>
<td>27142</td>
<td>0</td>
<td></td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Bistriţa-Năsăud</td>
<td>6613</td>
<td>410034</td>
<td>6613</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>6613</td>
<td>27220</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Botoşani</td>
<td>7124</td>
<td>346223</td>
<td>7124</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>7124</td>
<td>20394</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Braşov</td>
<td>5216</td>
<td>254366</td>
<td>5216</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5216</td>
<td>14913</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Brăila</td>
<td>5595</td>
<td>328747</td>
<td>5595</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5595</td>
<td>17815</td>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Bucureştii</td>
<td>44</td>
<td>2099</td>
<td>44</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>44</td>
<td>137</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Buzău</td>
<td>13108</td>
<td>343775</td>
<td>13108</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>13108</td>
<td>20944</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Caraş-Severin</td>
<td>5294</td>
<td>141424</td>
<td>5294</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5294</td>
<td>7927</td>
<td>0</td>
<td></td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Cluj</td>
<td>5334</td>
<td>604040</td>
<td>5334</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>5334</td>
<td>31690</td>
<td>0</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Ovine or Caprine Brucellosis in countries and regions that do not receive Community co-financing for eradication programme

<table>
<thead>
<tr>
<th>Region</th>
<th>Population</th>
<th>Area (ha)</th>
<th>Primary Cases</th>
<th>Secondary Cases</th>
<th>Total Diagnostic Tests</th>
<th>Positive Tests</th>
<th>Repeated Tests</th>
<th>Eradication Test</th>
<th>Abattoir Test</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constanţa</td>
<td>5294</td>
<td>617086</td>
<td>5294</td>
<td>0</td>
<td>0</td>
<td>5294</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Covasna</td>
<td>5945</td>
<td>242882</td>
<td>5945</td>
<td>0</td>
<td>0</td>
<td>5945</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Călăraşi</td>
<td>7302</td>
<td>175516</td>
<td>7302</td>
<td>0</td>
<td>0</td>
<td>7302</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dolj</td>
<td>16942</td>
<td>298756</td>
<td>16942</td>
<td>0</td>
<td>0</td>
<td>16942</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Dâmboviţa</td>
<td>3054</td>
<td>99655</td>
<td>3054</td>
<td>0</td>
<td>0</td>
<td>3054</td>
<td>5176</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Galaţi</td>
<td>6605</td>
<td>350877</td>
<td>6605</td>
<td>0</td>
<td>0</td>
<td>6605</td>
<td>23157</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>3662</td>
<td>110182</td>
<td>3662</td>
<td>0</td>
<td>0</td>
<td>3662</td>
<td>5853</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Gorj</td>
<td>6914</td>
<td>189835</td>
<td>6914</td>
<td>0</td>
<td>0</td>
<td>6914</td>
<td>13400</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Harghita</td>
<td>11434</td>
<td>256886</td>
<td>11434</td>
<td>0</td>
<td>0</td>
<td>11434</td>
<td>13059</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Hunedoara</td>
<td>5029</td>
<td>269780</td>
<td>5029</td>
<td>0</td>
<td>0</td>
<td>5029</td>
<td>13116</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ialomiţa</td>
<td>6140</td>
<td>222630</td>
<td>6140</td>
<td>0</td>
<td>0</td>
<td>6140</td>
<td>12753</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Iaşi</td>
<td>8258</td>
<td>396038</td>
<td>8258</td>
<td>0</td>
<td>0</td>
<td>8258</td>
<td>22449</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ilfov</td>
<td>506</td>
<td>43675</td>
<td>506</td>
<td>0</td>
<td>0</td>
<td>506</td>
<td>3303</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Maramureş</td>
<td>5499</td>
<td>247320</td>
<td>5499</td>
<td>0</td>
<td>0</td>
<td>5499</td>
<td>18119</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mehedinţi</td>
<td>7686</td>
<td>173623</td>
<td>7686</td>
<td>0</td>
<td>0</td>
<td>7686</td>
<td>8934</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Mureş</td>
<td>10304</td>
<td>373887</td>
<td>10304</td>
<td>0</td>
<td>0</td>
<td>10304</td>
<td>20884</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Ovine or Caprine Brucellosis in countries and regions that do not receive Community co-financing for eradication programme

<table>
<thead>
<tr>
<th>Region</th>
<th>Cases</th>
<th>Tests</th>
<th>Positive</th>
<th>False</th>
<th>Correct</th>
<th>Positive</th>
<th>False</th>
<th>Correct</th>
<th>Positive</th>
<th>False</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neamț</td>
<td>9674</td>
<td>209133</td>
<td>9674</td>
<td>0</td>
<td>0</td>
<td>9674</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Olt</td>
<td>11430</td>
<td>222386</td>
<td>11430</td>
<td>0</td>
<td>0</td>
<td>11430</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Prahova</td>
<td>12927</td>
<td>298578</td>
<td>12927</td>
<td>0</td>
<td>0</td>
<td>12927</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Romania</td>
<td>270554</td>
<td>12984484</td>
<td>270554</td>
<td>0</td>
<td>0</td>
<td>270554</td>
<td>773185</td>
<td>0</td>
<td>45</td>
<td>45</td>
<td>45</td>
</tr>
<tr>
<td>Satu Mare</td>
<td>1601</td>
<td>216668</td>
<td>1601</td>
<td>0</td>
<td>0</td>
<td>1601</td>
<td>13383</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sibiu</td>
<td>4105</td>
<td>641424</td>
<td>4105</td>
<td>0</td>
<td>0</td>
<td>4105</td>
<td>32520</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Suceava</td>
<td>6009</td>
<td>298986</td>
<td>6009</td>
<td>0</td>
<td>0</td>
<td>6009</td>
<td>17248</td>
<td>0</td>
<td>8</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Sălaj</td>
<td>2355</td>
<td>307320</td>
<td>2355</td>
<td>0</td>
<td>0</td>
<td>2355</td>
<td>16911</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Teleorman</td>
<td>10187</td>
<td>219217</td>
<td>10187</td>
<td>0</td>
<td>0</td>
<td>10187</td>
<td>11921</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Timiș</td>
<td>3941</td>
<td>862839</td>
<td>3941</td>
<td>0</td>
<td>0</td>
<td>3941</td>
<td>61928</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tulcea</td>
<td>4327</td>
<td>487974</td>
<td>4327</td>
<td>0</td>
<td>0</td>
<td>4327</td>
<td>29530</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Vaslui</td>
<td>7409</td>
<td>344847</td>
<td>7409</td>
<td>0</td>
<td>0</td>
<td>7409</td>
<td>24552</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vrancea</td>
<td>6980</td>
<td>213178</td>
<td>6980</td>
<td>0</td>
<td>0</td>
<td>6980</td>
<td>13005</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Vâlcea</td>
<td>3448</td>
<td>141315</td>
<td>3448</td>
<td>0</td>
<td>0</td>
<td>3448</td>
<td>7448</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>541108</td>
<td>25968968</td>
<td>541108</td>
<td>0</td>
<td>0</td>
<td>541108</td>
<td>1546370</td>
<td>0</td>
<td>90</td>
<td>90</td>
<td>90</td>
</tr>
</tbody>
</table>

Comments:
Table Ovine or Caprine Brucellosis in countries and regions that do not receive Community co-financing for eradication programme

Comments:

1) N.A.
Table Bovine brucellosis in countries and regions that do not receive Community co-financing for eradication programme

<table>
<thead>
<tr>
<th>Region</th>
<th>Total number of existing bovine</th>
<th>Officially free herds</th>
<th>Infected herds</th>
<th>Surveillance</th>
<th>Investigations of suspect cases</th>
<th>Epidemiological investigation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Herds</td>
<td>Animals</td>
<td>Number of herds</td>
<td>Herds</td>
<td>Animals</td>
<td>%</td>
</tr>
<tr>
<td>Alba</td>
<td>12780</td>
<td>58822</td>
<td>12780</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Arad</td>
<td>9655</td>
<td>53834</td>
<td>9655</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Argeș</td>
<td>26868</td>
<td>68986</td>
<td>26868</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacău</td>
<td>26155</td>
<td>65621</td>
<td>26155</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bihor</td>
<td>20905</td>
<td>81183</td>
<td>20905</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bistrița-Năsăud</td>
<td>17360</td>
<td>74439</td>
<td>17360</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Botoșani</td>
<td>31664</td>
<td>112486</td>
<td>31664</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brașov</td>
<td>10225</td>
<td>58151</td>
<td>10225</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Brăila</td>
<td>13285</td>
<td>43928</td>
<td>13285</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>București</td>
<td>30</td>
<td>215</td>
<td>30</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Buzău</td>
<td>20209</td>
<td>57348</td>
<td>20209</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Caraș-Severin</td>
<td>10798</td>
<td>30357</td>
<td>10798</td>
<td>100</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

If present, the row "Total-1" refers to analogous data of the previous year.
Table Bovine brucellosis in countries and regions that do not receive Community co-financing for eradication programme

<table>
<thead>
<tr>
<th>Region</th>
<th>No. of cases</th>
<th>No. of regions</th>
<th>No. of deaths</th>
<th>No. of abortions</th>
<th>No. of stillbirths</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cluj</td>
<td>16830</td>
<td>16830</td>
<td>0</td>
</tr>
<tr>
<td>Constanța</td>
<td>5444</td>
<td>5444</td>
<td>0</td>
</tr>
<tr>
<td>Covasna</td>
<td>7592</td>
<td>7592</td>
<td>0</td>
</tr>
<tr>
<td>Călărași</td>
<td>4309</td>
<td>4309</td>
<td>0</td>
</tr>
<tr>
<td>Dolj</td>
<td>12854</td>
<td>12854</td>
<td>0</td>
</tr>
<tr>
<td>Dâmbovița</td>
<td>17968</td>
<td>17968</td>
<td>0</td>
</tr>
<tr>
<td>Galați</td>
<td>12259</td>
<td>12259</td>
<td>0</td>
</tr>
<tr>
<td>Giurgiu</td>
<td>7767</td>
<td>7767</td>
<td>0</td>
</tr>
<tr>
<td>Gorj</td>
<td>16569</td>
<td>16569</td>
<td>0</td>
</tr>
<tr>
<td>Harghita</td>
<td>16170</td>
<td>16170</td>
<td>0</td>
</tr>
<tr>
<td>Hunedoara</td>
<td>11392</td>
<td>11392</td>
<td>0</td>
</tr>
<tr>
<td>Ialomița</td>
<td>7997</td>
<td>7997</td>
<td>0</td>
</tr>
<tr>
<td>Iași</td>
<td>35793</td>
<td>35793</td>
<td>0</td>
</tr>
<tr>
<td>Ilfov</td>
<td>1549</td>
<td>1549</td>
<td>0</td>
</tr>
<tr>
<td>Maramureș</td>
<td>30833</td>
<td>30833</td>
<td>0</td>
</tr>
<tr>
<td>Mehedinți</td>
<td>21311</td>
<td>21311</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Bovine brucellosis in countries and regions that do not receive Community co-financing for eradication programme

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mureș</td>
<td>12802</td>
<td>73406</td>
<td>12802</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>12745</td>
<td>49917</td>
<td>0</td>
<td>57</td>
<td>3809</td>
<td>0</td>
</tr>
<tr>
<td>Neamț</td>
<td>28979</td>
<td>104051</td>
<td>28979</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>28962</td>
<td>55973</td>
<td>0</td>
<td>17</td>
<td>897</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Olt</td>
<td>15326</td>
<td>34352</td>
<td>15326</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>15322</td>
<td>24101</td>
<td>0</td>
<td>4</td>
<td>288</td>
<td>0</td>
</tr>
<tr>
<td>Prahova</td>
<td>15735</td>
<td>41351</td>
<td>15735</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>15729</td>
<td>27023</td>
<td>0</td>
<td>61</td>
<td>1682</td>
<td>0</td>
</tr>
<tr>
<td>Romania</td>
<td>656236</td>
<td>2223937</td>
<td>656236</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>655776</td>
<td>1528799</td>
<td>0</td>
<td>460</td>
<td>40406</td>
<td>0</td>
<td>14</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Satu Mare</td>
<td>12083</td>
<td>47547</td>
<td>12083</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>12083</td>
<td>34616</td>
<td>0</td>
</tr>
<tr>
<td>Sibiu</td>
<td>6360</td>
<td>38695</td>
<td>6360</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>6335</td>
<td>23075</td>
<td>0</td>
<td>25</td>
<td>1496</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Suceava</td>
<td>46276</td>
<td>144667</td>
<td>46276</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>46276</td>
<td>117364</td>
<td>0</td>
</tr>
<tr>
<td>Sălaj</td>
<td>10088</td>
<td>29514</td>
<td>10088</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>10088</td>
<td>22929</td>
<td>0</td>
</tr>
<tr>
<td>Teleorman</td>
<td>17259</td>
<td>37093</td>
<td>17259</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>17259</td>
<td>25008</td>
<td>0</td>
</tr>
<tr>
<td>Timiș</td>
<td>7605</td>
<td>43814</td>
<td>7605</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>7567</td>
<td>28469</td>
<td>0</td>
<td>38</td>
<td>2504</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Tulcea</td>
<td>3719</td>
<td>35221</td>
<td>3719</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>3719</td>
<td>18304</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vaslui</td>
<td>22414</td>
<td>66418</td>
<td>22414</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>22414</td>
<td>43889</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vrancea</td>
<td>14369</td>
<td>57078</td>
<td>14369</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>14362</td>
<td>33314</td>
<td>0</td>
<td>7</td>
<td>836</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Vâlcea</td>
<td>16650</td>
<td>47689</td>
<td>16650</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>16650</td>
<td>30220</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1312472</td>
<td>4447874</td>
<td>1312472</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>1311552</td>
<td>3057598</td>
<td>0</td>
<td>920</td>
<td>80812</td>
<td>0</td>
<td>28</td>
<td>0</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Bovine brucellosis in countries and regions that do not receive Community co-financing for eradication programme

Comments:

1) N.A.
2.7 YERSINIOSIS

2.7.1 General evaluation of the national situation

2.7.2 Yersinia in animals

A. Yersinia enterocolitica in pigs

Monitoring system

Sampling strategy

Animals at slaughter (herd based approach)

In 2011 were taken a total number of 9 samples of meat from pigs at processing plant, in own check, in order to detect Yersinia enterocolitica. There were found no positive samples for Yersinia enterocolitica.

In 2012 no samples were analysed for Yersinia enterocolitica.

In 2013 no samples were analysed for Yersinia enterocolitica.

Frequency of the sampling

Animals at slaughter (herd based approach)

Other: ___

Diagnostic/analytical methods used

Animals at slaughter (herd based approach)

Bacteriological method: ISO 10273:2003

Control program/mechanisms

The control program/strategies in place

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
2.8 TRICHINELLOSIS

2.8.1 General evaluation of the national situation

A. Trichinellosis general evaluation

History of the disease and/or infection in the country

Romania does not have any regions or holdings official free of trichinelosis. Trichinella spp. is detected in pigs belonging to the small holdings (individual backyards), bears, wild boars.

National evaluation of the recent situation, the trends and sources of infection

In 2010 were detected 140 positive cases in fattening pigs not raised under controlled housing conditions, 67 positive cases in wild boars, 9 positive cases in bears and 1 positive case in domestic solipedes (horses).

In 2011 were detected 369 positive cases from which: 259 cases in fattening pigs not raised under controlled housing conditions, 5 cases in fattening pigs raised under controlled housing conditions, 92 cases in wild boars, 12 cases in bears and 1 positive case in domestic solipedes (horses).

In 2011 it was observed an increase of the percent of positive cases for all the species, compared with 2010 (217 positive cases in 2010 and 369 positive cases in 2011, an increase with 70%). The prevalence of positive cases of pigs raised in backyards was 0.11% in 2011.

During the year 2012, in Romania were detected a total number of 287 positive cases of Trichinella spp from which:
- 171 positive cases in fattening pigs from backyards (not raised under controlled housing conditions);
- 107 positive cases in wild boars,
- 9 positive cases in bears.

During the year 2013, in Romania were detected a total number of 361 positive cases of Trichinella spp from which:
- 193 positive cases in fattening pigs from backyards (not raised under controlled housing conditions);
- 148 positive cases in wild boars,
- 20 positive cases in bears.

In 2013 it was observed an increase of the percent of positive cases for all the species, compared with 2012 (287 positive cases in 2012 and 361 positive cases in 2013, an increase with 25.8%). The prevalence of positive cases of pigs raised in backyards was 0.16% in 2013.

Relevance of the findings in animals, feedingstuffs and foodstuffs to human cases (as a source of infection)

The main source of infection in humans with Trichinella spp. was pork meat (raw meat or low treated products made in household with pork meat from pigs raised in backyards).

Recent actions taken to control the zoonoses

The Romanian National Surveillance Programme of Zoonoses on 2013 was issued according with the provisions of Regulation 2005/2075/EC in order to control the Trichinelosis.
Romania - 2013 Report on trends and sources of zoonoses

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
2.8.2 Trichinellosis in humans

A. Trichinellosis in humans

Notification system in place
2.8.3 Trichinella in animals

A. Trichinella in horses

Monitoring system

Sampling strategy

Sampling is compulsory for all slaughtered horses, intended to human consumption, in order to detect Trichinella spp.

According to the provisions of Regulation 2075/2005 all the analysis are performed only by artificial digestion methods.

Frequency of the sampling

Each horse carcass at slaughterhouse is analyzed.

Type of specimen taken

The lingual or jaw muscle. In the case of horses, where those muscles are missing, a larger-sized specimen is taken from a pillar of the diaphragm at the transition to the sinewy part.

Methods of sampling (description of sampling techniques)

Specimens weighing at least 15 g are taken from the lingual or jaw muscle according to provisions of Regulation 2075/2005.

Diagnostic/analytical methods used

Artificial digestion.

Results of the investigation including the origin of the positive animals

There were analyzed 19988 samples from horses and no positive samples were detected.

Control program/mechanisms

The control program/strategies in place

The Romanian National Surveillance Programme of Zoonoses is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated which is according with the provisions of Regulation 2005/2075/EC, in order to detect Trichinella spp.

Measures in case of the positive findings or single cases

A positive laboratory finding of Trichinella spp is followed by a notification by RASFF to all levels (central, regional and local). The positive horse meat have to be withdrawn from human consumption and be send to ABP units.

Notification system in place

Rapid Alert System for Food and Feed
For categories of holdings officially recognised Trichinella-free

Sampling is compulsory for all slaughtered horses, intended to human consumption, in order to detect Trichinella spp.
The analysis is performed only by artificial digestion method, for each horse carcass at slaughterhouse.

National evaluation of the recent situation, the trends and sources of infection

Between 2007-2009 no positive samples were detected.
Between 2010-2011 positive samples were detected, in the north of the country: in 2010 - 1 positive sample was detected and in 2011 the same.
In 2012 no positive samples were detected.
In 2013 no positive samples were detected.

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
Romania - 2013 Report on trends and sources of zoonoses

B. Trichinella in pigs

Number of officially recognised Trichinella-free holdings
 Not available

Categories of holdings officially recognised Trichinella-free
 Not available

Officially recognised regions with negligible Trichinella risk
 Not available

Monitoring system
 Sampling strategy
 General
 Sampling is compulsory for all pigs slaughtered, intended to human consumption.

For categories of holdings officially recognised Trichinella-free

For regions with negligible Trichinella risk

Frequency of the sampling
 General
 The sampling is compulsory performed for all pigs slaughtered and intended for human consumption, in order to detect Trichinella spp. according to the provisions of Regulation 2005/2075/EC.

For Trichinella free holdings

For categories of holdings officially recognised Trichinella-free

Type of specimen taken
 General
 Diaphragm pillars.
 In the absence of diaphragm pillars, the following specimens are taken: the rib part or the breastbone part of the diaphragm, the jaw muscles, tongue or abdominal muscles.
For Trichinella free holdings

For categories of holdings officially recognised Trichinella-free

For regions with negligible Trichinella risk

Methods of sampling (description of sampling techniques)

General
 According with the provisions of Regulation 2005/2075/EC, in order to detect Trichinella spp.

For Trichinella free holdings

For regions with negligible Trichinella risk

Case definition

For Trichinella free holdings
 Not available

For categories of holdings officially recognised Trichinella-free
 Not available

For regions with negligible Trichinella risk
 Not available

Diagnostic/analytical methods used

General
 Artificial digestion methods on individual samples and/or on pooled samples.
Preventive measures in place
Sampling is compulsory for all pigs slaughtered in order to detect Trichinella spp. and to avoid human trichinelosis.

Control program/mechanisms
The control program/strategies in place
The Romanian Surveillance Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated which is according with the provisions of Regulation 2005/2075/EC, in order to detect Trichinella spp.

Measures in case of the positive findings or single cases
Pig meat infested with Trichinella spp. is withdrawn from human consumption and sent to the rendering establishments, in order to be denatured.

The contingency plan in place

Notification system in place
Rapid Alert System for Food and Feed.

Results of the investigation including description of the positive cases and the verification of the Trichinella species
171 positive cases in fattening pigs from backyards were detected in 2012. Beside 2011, in 2012 for pigs raised in backyards was observed a decrease of percent of positive cases, with 33,97% in 2012.

193 positive cases in fattening pigs from backyards were detected in 2013. Beside 2012, in 2013 for pigs raised in backyards was observed an increase of percent of positive cases, with 12,90% in 2013.

All positive samples were sent to National Reference Laboratory for Trichinella which is in Institute of Hygiene and Veterinary Public Health. The NRL sent to the EU-RL-P to identify the species of Trichinella.

Fattening pigs raised under controlled housing conditions in integrated production system
No positive samples were detected in 2013

Fattening pigs not raised under controlled housing conditions in integrated production system
There were controlled 8632 samples from fattening animals and all the results were negative.

Breeding sows and boars
There were controlled 10045 samples from breeding animals and all the results were negative.

National evaluation of the recent situation, the trends and sources of infection
During the year 2010, in Romania were detected a total number of 140 positive cases of Trichinella spp in pigs.
It was observed an decrease of percent of positive samples for pigs from backyards and for pigs raised
During the year 2011, in Romania were detected a total number of 264 positive cases of Trichinella spp. in pigs. It was observed an increase of percent of positive samples for pigs from backyards and for pigs raised under controlled housing conditions in integrated production system compared with 2010.

During the year 2012, in Romania were detected a total number of 171 positive cases of Trichinella spp. in pigs. It was observed a decrease of percent of positive samples for pigs from backyards compared with 2011.

During the year 2013, in Romania were detected a total number of 193 positive cases of Trichinella spp. in pigs from backyards, from which:
- 0 positive cases from 3768855 analyzed samples of meat from fattening pigs raised under controlled housing conditions in integrated production system.
- 0 positive cases from 8632 analyzed samples of meat from fattening pigs not raised under controlled housing conditions in integrated production system.
- 193 positive cases from 122228 analyzed samples of meat from fattening pigs raised in backyards - non raised under controlled housing conditions in integrated production system.

Out of 193 positive cases, were identified: 139 Trichinella spiralis, 11 Trichinella britovi and 43 Trichinella spp. unspecified (PCR did not show any amplification).

It was observed an increase of percent of positive samples for pigs from backyards compared with 2012.

Relevance of the findings in animals to findings in foodstuffs and to human cases (as a source of infection)

In 2013 all cases of trichinellosis detected to humans are related to the positive cases registered in backyards.
Table Trichinella in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sample unit</th>
<th>Units tested</th>
<th>Total units positive for Trichinella</th>
<th>T. spiralis</th>
<th>T. britovi</th>
<th>Trichinella spp., unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pigs - fattening pigs - raised under controlled housing conditions - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>3768855</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - raised under controlled housing conditions - sows and boars - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>10045</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>19988</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Game handling establishment - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>70</td>
<td>20</td>
<td>4</td>
<td>15</td>
<td>1</td>
</tr>
<tr>
<td>Pigs - fattening pigs - not raised under controlled housing conditions - Slaughterhouse - Surveillance (pigs from backyards (not raised under controlled housing conditions))</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>122228</td>
<td>193</td>
<td>139</td>
<td>43</td>
<td>11</td>
</tr>
<tr>
<td>Pigs - fattening pigs - not raised under controlled housing conditions - piglets - Slaughterhouse - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>8632</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild boars - farmed - Game handling establishment - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>102</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Game handling establishment - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic</td>
<td>Animal</td>
<td>6720</td>
<td>148</td>
<td>61</td>
<td>38</td>
<td>50</td>
</tr>
</tbody>
</table>

Comments:

1) for positive samples reported as Trichinella unspecified the PCR did not show any amplification
Table Trichinella in animals

Comments:

2) for positive samples reported as Trichinella unspecified the PCR did not show any amplification

3) for positive samples reported as Trichinella unspecified the PCR did not show any amplification. In the same samples were identified two different species: T. spiralis and T. Britovi
2.9 ECHINOCOCCOsis

2.9.1 General evaluation of the national situation

A. Echinococcus spp. general evaluation

History of the disease and/or infection in the country
Testing for detection of Echinococcus is a part of post-mortem inspection of slaughtered animals. It is a visual inspection of the internal organs of the slaughtered animals accompanied by cuts of liver if is necessary. The Echinococcus is not routinely distinguished by species.

National evaluation of the recent situation, the trends and sources of infection
Analysis the situation after 2007 in inspected carcasses in slaughter houses shows on the decreasing of cases.
The monitoring program for Echinococciosis in the dogs was introduced in the year 2007.
The samples are taken from stray dogs. Were tested 19136 samples for echinococciosis, 77 were positive for Echinococcus spp.
In the period 2007-2008 were tested 16784 samples from dogs for echinococciosis, 28 samples were positive for Echinococcus spp.
In the year 2009 were tested 2352 samples from dogs for echinococciosis, 49 samples were positive for Echinococcus spp.
In the year 2010 were tested 809 samples from dogs for echinococciosis by ELISA coproantigen test and two of them were positive for Echinococcus spp.
In 2011 were tested 5262 samples from dogs by ELISA coproantigen. From them 121 samples were positive for Echinococcuss spp.
In 2012 were tested 5119 samples from dogs by ELISA coproantigen, From them 9 samples were positive for Echinococcus spp.
In 2013 were tested 3267 samples from dogs by ELISA coproantigen, From them 159 samples were positive for Echinococcus spp.
Recent actions taken to control the zoonoses

In 2013 it was introduced PCR technique for identification the Echinococcus granulosus species on intermediate hosts. Were tested 82 samples from sheep, goats, cattle and pigs by PCR technique for identification the Echinococcus granulosus species. All samples were positive for Echinococcus granulosus.
2.9.2 Echinococciosis in humans

A. Echinococcus spp. in humans

Reporting system in place for the human cases

No available data at the national level.
2.9.3 Echinococcus in animals

Table Echinococcus in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Echinococcus</th>
<th>E. granulosus</th>
<th>E. multilocularis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solipeds, domestic - horses - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Tulcea</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>All animals - wild - Unknown - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Caras-Severin</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>All animals - wild - Unknown - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Iași</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>19</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Botoșani</td>
<td>199</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>15</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Tulcea</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Vâlcea</td>
<td>60</td>
<td>54</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Harghita</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Satu Mare</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Echinococcus in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Echinococcus</th>
<th>E. granulosus</th>
<th>E. multilocularis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Bistrița-Năsăud</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Prahova</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Caras-Severin</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Brăila</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Sibiu</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Sâlaj</td>
<td>598</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Suceava</td>
<td>27</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Cluj</td>
<td>323</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Tulcea</td>
<td>231</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Neamţ</td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Iaşi</td>
<td>851</td>
<td>218</td>
<td></td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>11</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Echinococcus in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Echinococcus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Buzău</td>
<td>180</td>
<td>22</td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Ilfov</td>
<td>88</td>
<td>12</td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Teleorman</td>
<td>164</td>
<td>12</td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Brăila</td>
<td>244</td>
<td>74</td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Hunedoara</td>
<td>63</td>
<td>0</td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>49</td>
<td>0</td>
</tr>
<tr>
<td>Dogs - pet animals - Farm - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > faeces</td>
<td>Domestic Animal</td>
<td>Bacău</td>
<td>432</td>
<td>39</td>
</tr>
<tr>
<td>Goats - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Olt</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Tulcea</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Giurgiu</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Hunedoara</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
Table Echinococcus in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Echinococcus</th>
<th>E. granulosus</th>
<th>E. multilocularis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Region</td>
<td>Units tested</td>
<td>Total units positive for Echinococcus</td>
<td>E. granulosus</td>
<td>E. multilocularis</td>
</tr>
<tr>
<td>-----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------------</td>
<td>--------</td>
<td>--------------</td>
<td>---------------------------------------</td>
<td>---------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Argeş</td>
<td>4</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Bihor</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Iaşi</td>
<td>3</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Bistriţa-Năsăud</td>
<td>35</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Ialomiţa</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Satu Mare</td>
<td>34</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Giurgiu</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Neamţ</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Caraş-Severin</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Slaughterhouse - Surveillance</td>
<td>CSVFSD</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > organ/tissue</td>
<td>Domestic Animal</td>
<td>Bistriţa-Năsăud</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Echinococcus in animals

<table>
<thead>
<tr>
<th>Echinococcus spp., unspecified</th>
<th>Solipeds, domestic - horses - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>All animals - wild - Unknown - Surveillance</td>
</tr>
<tr>
<td></td>
<td>All animals - wild - Unknown - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Echinococcus spp., unspecified</td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - adult cattle over 2 years - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Dogs - pet animals - Farm - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Goats - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>Echinococcus spp., unspecified</td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Pigs - breeding animals - unspecified - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Echinococcus spp., unspecified</td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
</tbody>
</table>
Table Echinococcus in animals

<table>
<thead>
<tr>
<th>Echinococcus spp., unspecified</th>
<th>Sheep - animals over 1 year - Slaughterhouse - Surveillance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sheep - animals over 1 year - Slaughterhouse - Surveillance</td>
</tr>
<tr>
<td></td>
<td>Solipeds, domestic - horses - Slaughterhouse - Surveillance</td>
</tr>
</tbody>
</table>
2.10 TOXOPLASMOSIS

2.10.1 General evaluation of the national situation

A. Toxoplasmosis general evaluation

Recent actions taken to control the zoonoses

The surveillance is made according with the Order of the President of the National Sanitary Veterinary and Food Safety Authority no.34/2006 with subsequent amendments. Surveillance by serological (ELISA, CFT, IFI) and other laboratory tests on samples taken from species susceptible, depending on the epidemiological situation or of the animal owner request.

Additional information

For cats and dogs a Serological surveillance is done on the owner request (in special in case of pregnant women owner of cats and dogs).
2.10.2 Toxoplasma in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Analytical Method</th>
<th>Sampling unit</th>
<th>Units tested</th>
<th>Total units positive for Toxoplasma</th>
<th>T. gondii</th>
<th>Toxoplasma spp., unspecified</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats - pet animals - Veterinary clinics - Clinical investigations</td>
<td>I.D.A.H</td>
<td>Suspect sampling</td>
<td>Not applicable</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>ELISA, Indirect ELISA (I-ELISA)</td>
<td>Animal</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>CSVFSD</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>ELISA, Indirect ELISA (I-ELISA)</td>
<td>Animal</td>
<td>360</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
2.11 RABIES

2.11.1 General evaluation of the national situation

A. Rabies general evaluation

History of the disease and/or infection in the country

Romania, in the past, was one of the countries with the highest number of rabies cases from Europe. Starting with 1950, following the measures applied, including immune-prophylaxis, rabies became preponderantly limited to wild carnivores, especially foxes. Rabies was diagnosed sporadically in the population of wild animals, other than foxes, its occurrence not being dependent of the existence of infected foxes in the relevant area. In the last years in domestic and wild animals were diagnosed more cases, so it can be appreciated that rabies is an endemic disease with increasing evolutional tendencies. It must be added, that the Danube Delta is a particular area, protected under the Administration of Biosphere’s Reservation, where beside the fox population and other wild animals, are also living domestic animals in a semi wild condition.

National evaluation of the recent situation, the trends and sources of infection

Romania is now one of the countries with the higher number of rabies cases in Europe. Rabies in foxes is endemic for many years.

- rabies evaluated in Romania both in wild animals population, particularly in foxes and in domestic animals population;
- rabies has an endemic evolution in foxes and sporadic in other animals;
- lately we assist to the growth of the number of counties in which rabies was diagnosed, so as in 2012, of 41 counties, the disease was diagnosed;
- most of rabies cases in domestic animals were registered in dogs and cats;
- an important number of cases were also registered in the bovine populations;
- the Danube Delta having a particular biotope, where wild animals cohabit with domestic animals, can be regionalized;
In 2012, were tested by FAT 3356 samples, of which 448 samples were find positive.
In 2013, were tested by FAT 2898 samples, of which 402 samples were find positive.

Relevance of the findings in animals, feedingstuffs and foodstuffs to human cases (as a source of infection)

If an infected animal (e.g. fox or dog) has had contact with the ruminants, equines and pigs, the veterinarians it is obliged to investigate the whole herd to find out whether certain animals were bitten. These animals are isolated immediately and placed under official observation; if any clinical signs of rabies appears, they should be killed and then tested for confirmation of the diagnostic.

Concerned the milk we refer to a statement of WHO Reference Laboratory on Rabies in Wusterhausen (Germany): milk that has been heat pasteurized poses no risk for rabies virus transmission (but NO milk from a rabid animal should be used for human or animal consumption).

In our country have not been reported cases of rabies in humans after consumption of animals confirmed with rabies or susceptible or consumption of these products.
Romania - 2013 Report on trends and sources of zoonoses

Recent actions taken to control the zoonoses

In 2011 was made the oral vaccination of foxes in 16 counties (Arad, Alba, Bihor, Mureș, Maramureș, Bistrița Năsăud, Brașov, Cluj, Covasna, Caraș-Severin, Harghita, Hunedoara, Sălaj, Sibiu, Satu Mare, Timiș) in West and Center of Romania, which is the entire territory bounded by the Carpathian Mountains. The baits distribution included Hungarian, Serbian and part of Ukrainian border.

The vaccination campaigns of foxes with baits were made by air distribution (approximately 20 baits/km²) and manual distribution (approximately 25 bites/km²) in inaccessible places and areas, in the aircraft with significant populations of foxes near towns, national roads, areas considered at risk. The manual distribution was done by the managers of the hunting areas with the official vets. Air distribution was provided by a service provider under contract for each campaign.

The oral vaccination of foxes was made with the baits containing the strain SAD Bern. In one bait there is one vaccination virus dose (1.8 ml) closed in aluminum-plastic blister. Round, dark brown bait is made of feed mixture attractive for foxes - strongly fish smell.

After vaccination campaigns at 45 days, we started the vaccination evaluation program. Foxes shot were brought to the laboratory by hunting managers according to Article 11 (2) and 12 of HG nr.55/2008. The laboratory’s worked on flow chart, each fox was controlled by FAT (for rabies diagnosis); then, tests negative was sent to the NRL, the only approved laboratory for examining sera fox rabies antibodies in this direction and the achievement test detection marker "tetracycline" the mandible.

In 2012, due to political and legislative changes that took place in Romania, the legal basis for approving the oral vaccination of foxes in the whole territory was not approved until the 1st of June, 2012. Therefore, in Romania the spring vaccination campaign of foxes against rabies was not performed.

In August 2012 the legal basis has been approved in order to implement the oral vaccination of foxes in the whole territory. We are currently in conflict with the company of aerial distribution of vaccinal baits. The NSVFSA makes all efforts to implement (perform) the oral vaccination campaign of foxes.

The NSVFSA addressed to The Ministry of National Defence, by requesting the support for the carrying out of autumn campain in 2012, by air distribution of antirabies vaccines, as vaccinal baits for foxes, but from legal and economic reasons, this could not be carried out.

From these reasons, in the autumn of 2012, Romania failed to carry out the vaccination of foxes by manual distribution to dens of 80475 vaccinal baits (58.680 national vaccination +21.795 emergency vaccination in counties AG, DB, PH, VN) in 41 counties. In the autumn of 2012, there has been purchased a number of 80.520 baits, of which 40 baits were sampled for testing for establishing the stability of vaccinal titre and 5 baits being kept as countersamples. Of 40 baits samples, 16 baits were tested for virus titre and stability of virus titre.

In 2013, the conflict with the company of aerial distribution of vaccinal baits was resolved and the aerial vaccination was performed on the whole territory of the country of 41 counties. There have been distributed a number of 7774398 of baits in total, in two vaccination campaigns, in spring and in autumn. The spring vaccination of foxes was carried out by air distribution of baits (number of 3.846.098 baits with an approx. 20 baits/km²) and also by manual distribution (number of 57499 baits) around localities and areas difficult to reach by plane (approximately 25 baits/km²). The autumn vaccination of foxes was carried out by air distribution of a number of 3.928.300 baits and also by manual distribution (58.715 baits). Concerning the baits testing, a number of 580 baits were tested and a number of 350 baits were kept as counter samples.

After vaccination campaigns at 45 days, we started the vaccination evaluation program. The shot foxes were brought to the laboratory by hunting managers according to Article 11 (2) and 12 of HG nr.55/2008. The laboratory’s worked on flow chart, each fox was controlled by FAT (for rabies diagnosis); then, the negative tests was sent to the NRL, the only approved laboratory for examining sera fox rabies antibodies in this direction and the achievement test detection marker "tetracycline" the mandible.

Suggestions to the European Union for the actions to be taken
If it is possible co-finance for the vaccination in cats and dogs.

Additional information

As a member state of the European Union, Romania had annual programs for the surveillance and control of rabies approved, in conformity with the provisions of the European Commission decisions no. 2006/876/CE, 2007/782/CE, 2008/897/CE and 2009/883/CE. Nevertheless, the programs for the anti-rabic vaccination of wild foxes could not be implemented, but partially, during the period between 2007-2009, by manual administration of vaccine baits, on restricted areas. One of the causes for not applying the program represented the impossibility of acquiring the vaccine baits due to legal obstructions found in the process of justice.
2.11.2 Lyssavirus (rabies) in animals

A. Rabies in dogs

Monitoring system
Sampling strategy
Confirmation of rabies diagnosis is established only by laboratory tests on samples taken (brain) from dogs that died or were killed due to clinical signs of disease (nervous signs). Samples for laboratory tests if suspicion of rabies - the entire bodies of the dog - are packaged properly so as to avoid any leakage of fluids. Transport is carried out in refrigerated containers, within 24 hours in winter time and 12 hours in summer time, labeled "biological samples with a high risk of contamination - WARNING RABIES". If the samples are not sent to the laboratory in time, they are frozen.

Frequency of the sampling
If the dog becomes ill with symptoms of rabies or dies from a rabies-like illness during the observation period, the dog should be tested for rabies.

Type of specimen taken
Organs/tissues: brain samples (bulb, Ammon horn, cerebellum, cortex, brain stem)

Methods of sampling (description of sampling techniques)
The entire bodies of small animals or heads of large animals - are packaged properly so as to avoid any leakage of fluids. Harvesting and handling must comply with strict work protection measures and biosecurity; must wear personal protective equipment plus disposable mask, goggles, surgical gloves; are mandatory disinfection of instruments and working table used for sampling, in accordance with veterinary rules in force, and washing and disinfecting hands of the operator. Accompanying the evidence clearly indicated the origin of the animal and it owner, owner address, phone number, changes in behavior or physiological status of that animal, if has bitten or scratched other people, and identification and their residence. Transport measures are required to destroy the bodies, destruction of consumables used in handling samples and destruction of laboratory animals (white mice) used for confirmation or denial of rabies diagnosis.

Case definition
A case of dog rabies is defined as an illness characterized by acute encephalomyelitis that almost always progresses to coma or death and is laboratory confirmed.

Diagnostic/analytical methods used
Fluorescent Antibody Test (FAT) on smears from hippocampus or medulla oblongata

Vaccination policy
All dogs over 3 months are vaccinated once a year with a rabies vaccine registered and marketed in Romania. Rabies immunization is done by organizing mass vaccination campaigns, annual autumn-winter period, followed by completing vaccination. Each vaccinated carnivorous receives a completed and signed by the empowered veterinary practitioner
Romania - 2013 Report on trends and sources of zoonoses

health book which certifies the carrying out of the vaccination against rabies, details about the vaccinated animal, owner, location, veterinarian and the vaccine used. Each health book has one series and one number.

Other preventive measures than vaccination in place

The administration of the counties should build shelters for stray dogs, according to national legislation

Control program/mechanisms

The control program/strategies in place

The Romanian Control Programme was a national programme for domestic and wild animals, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 29/2008, for the approval of the sanitary veterinary Norm regarding the general measures of prevention and control of rabies in domestic and wild animals.

The surveillance, control, and monitoring of domestic animals and wild animals for rabies makes the objective "The programme for the actions of surveillance, prevention and control of animal diseases, of those transmissible from animals to man, for protection of animals and environment" which is carried out yearly by the National Sanitary Veterinary and for Food Safety Authority; this programme is supplemented, everytime it is necessary, with epidemiological and risk analysis.

Suggestions to the European Union for the actions to be taken

Rabies Vaccination Program for stray dogs and stray cats to be Cofinancing by the UE

Measures in case of the positive findings or single cases

After rabies confirmation, the county SVFSD acts as follows:

a) perform the epidemiological enquire;
b) establishes the protection and the surveillance zones;
c) issues the control plan with deadlines and responsibilities;

The control measures in the protection zone include:
- drawing up the epidemiological maps;
- killing of carnivores which were bitted or scratched by sick animals, if they were not vaccinated against rabies, or if they have less than 21 days since first vaccination,
- isolation by the rest of the animals of the vaccinated carnivores which have been bitted or scratched by the sick animal;
- placement under observation of all animals from that holding for 14 days, beginning with the contact moment;
- killing of all animals from that holding, in case when they manifest clinical signs in this period of time; animals which did not manifest clinical signs of rabies, are released from observation;
- interdiction of animal movement for animal which were under observation for a period of, at least 3 month.

The control measures in the surveillance zones include:
- a census for all dogs and cats;
- vaccination of dogs and cats with inactivated vaccine;
- surveillance and movement control of dogs and cats.

Notification system in place

Rabies is a notifiable disease from local to central level, in accordance with the NSVFSA President Order no.79/2008 for the approval of the sanitary veterinary Norm on notifying animal diseases, represents the official transposition of the Council Directive 1982/894/CE regarding the notification of animal diseases.
The obligativity of disease notification comes to the free practice empowered practitioners which notify the official veterinarian about the rabies suspicions in the field. Rabies suspicion is notified from the field to SVFSD, and samples are sent to the county sanitary veterinary laboratory accredited and authorized for diagnosis.

The official vet responsible with animal health from CSVFSD, notifies the suspicion by a rapid communication mean to the director of Animal Health and Welfare Directorate from NSVFSA and also by using a notification report form, to NSVFSA all suspected cases of rabies. Following to laboratory confirmation of rabies, the county SVFSD and of the Bucharest Municipality, will notify, using a notification report form, to NSVFSA all confirmed cases of rabies.

If rabies is confirmed in a domestic animal, the owner is also notified and a complete file is issued in view of applying the control measures, if necessary.

The situation concerning rabies cases is notified twice/year to OIE, and quarterly to the European Institute for Rabies Control.

Results of the investigation

Investigations of the human contacts with positive cases

The people who have been in contact with positive cases are send to hospitals for examination and medical treatment.

National evaluation of the recent situation, the trends and sources of infection

In 2010 year there were detected 46 positive cases in dogs.

The vaccination against Rabies of foxes will decrease the number of cases in domestic animals, because foxes are natural virus reservoir.

In 2011 were detected 40 positive cases in dogs.

In 2012 were detected by FAT 49 positive cases in dogs.

In 2013 were detected 38 positive cases in dogs.
B. European Bat Lyssavirus 1 (EBL 1) in Animals All animals - in total - Survey

Monitoring system
Frequency of the sampling
There is no actual monitoring of bats-wild.

Type of specimen taken
Organs/tissues: brain samples

Case definition
In 2009 year there were detected by the FAT 1 positive cases in bat-wild.
The sample was not submitted to the National Reference Laboratory for Rabies for characterization by geno-typing.
In the years 2010, 2011 and 2012 there were no detected cases in bats-wild. In 2013, there were not positive cases in bats.
<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bats - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal București</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bats - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Cluj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bats - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Romania</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal București</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Prahova</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Harghita</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Cluj</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Olt</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Romania</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Vaslui</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal Hunedoara</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Region</td>
<td>Units tested</td>
<td>Total units positive for Lyssavirus (rabies)</td>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Brașov</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bistriţa-Năsăud</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sibiu</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Prahova</td>
<td>8</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Suceava</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Iaşi</td>
<td>20</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vâlcea</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Timiş</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Ialomiţa</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Buzău</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Covasna</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sălaj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bihor</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Botoșani</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Brăila</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Alba</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>124</td>
<td>23</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Satu Mare</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Olt</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Harghita</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Cluj</td>
<td>18</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>NSVFA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Tulcea</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Region</td>
<td>Units tested</td>
<td>Total units positive for Lyssavirus (rabies)</td>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>--</td>
<td>---------------------</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dâmboviţa</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Arad</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bacău</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Neamţ</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>6</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sibiu</td>
<td>6</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Romania</td>
<td>371</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bihor</td>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Caras-Severin</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>18</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vaslui</td>
<td>16</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Region</td>
<td>Units tested</td>
<td>Total units positive for Lyssavirus (rabies)</td>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
<td>--------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Braşov</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Prahova</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Suceava</td>
<td>13</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Harghita</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Botoşani</td>
<td>4</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Timiş</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Buzău</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Argeş</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Călăraşi</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucureşti</td>
<td>73</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Dolj</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Teleorman</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Covasna</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Neamţ</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dâmboviţa</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Giurgiu</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Brăila</td>
<td>24</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sălaj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bacău</td>
<td>11</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Constanţa</td>
<td>8</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bistriţa-Năsăud</td>
<td>19</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Cluj</td>
<td>17</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Iaşi</td>
<td>5</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Maramureș</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Satu Mare</td>
<td>15</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Hunedoara</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Tulcea</td>
<td>10</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Alba</td>
<td>22</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vâlcea</td>
<td>9</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Cluj</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>4</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Iaşi</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bacău</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deer - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Romania</td>
<td>11</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Prahova</td>
<td>15</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Cluj</td>
<td>34</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Teleorman</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Satu Mare</td>
<td>7</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vâlcea</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Arad</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Argeş</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sălaj</td>
<td>12</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dâmboviţa</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Harghita</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vaslui</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Region</td>
<td>Units tested</td>
<td>Total units positive for Lyssavirus (rabies)</td>
<td>Rabies virus (RABV)</td>
<td>EBLV-1</td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td>---------------</td>
<td>--------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>-----------</td>
<td>-------------</td>
<td>---</td>
<td>----------------------</td>
<td>--------</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sibiu</td>
<td>7</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucureşti</td>
<td>11</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bacău</td>
<td>9</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Câlăraşi</td>
<td>3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>285</td>
<td>41</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucureşti</td>
<td>13</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Timiş</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Hunedoara</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bihor</td>
<td>25</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Suceava</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Olt</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Brăila</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td></td>
</tr>
<tr>
<td>NSVFSA</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dogs - stray dogs - Veterinary clinics - Monitoring - active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSVFSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dogs - stray dogs - Veterinary clinics - Monitoring - active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSVFSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dogs - stray dogs - Veterinary clinics - Monitoring - active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSVFSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dogs - stray dogs - Veterinary clinics - Monitoring - active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSVFSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dogs - stray dogs - Veterinary clinics - Monitoring - active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSVFSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Dogs - stray dogs - Veterinary clinics - Monitoring - active</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSVFSA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampling strategy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspect sampling</td>
</tr>
<tr>
<td>Official sampling</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sampler</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample type</th>
</tr>
</thead>
<tbody>
<tr>
<td>animal sample > brain</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample origin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domestic</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Region</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units tested</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Total units positive for Lyssavirus (rabies)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>EBLV-1</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Tulcea</td>
<td>6</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Constanţa</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>5</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Buzău</td>
<td>14</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Buzău</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Prahova</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Cluj</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Covasna</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucureşti</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bacău</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Suceava</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucureşti</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Alba</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Iaşi</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Satu Mare</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Giurgiu</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sălaj</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Călăraşi</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>26</td>
<td>13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sibiu</td>
<td>69</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Gorj</td>
<td>57</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>70</td>
<td>2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Neamţ</td>
<td>32</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Galaţi</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Botoşani</td>
<td>34</td>
<td>0</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Timiș</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Arad</td>
<td>86</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Argeş</td>
<td>112</td>
<td>0</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bistriţa-Năsăud</td>
<td>97</td>
<td>28</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Covasna</td>
<td>46</td>
<td>0</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bacău</td>
<td>57</td>
<td>8</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active 11</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Neamţ</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Giurgiu</td>
<td>8</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active 12</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Iaşi</td>
<td>7</td>
<td>3</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Suceava</td>
<td>42</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Ialomița</td>
<td>90</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>București</td>
<td>99</td>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Giurgiu</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Alba</td>
<td>67</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Maramureș</td>
<td>79</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vâlcea</td>
<td>81</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Dâmbovița</td>
<td>64</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Gorj</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Buzău</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Câlărași</td>
<td>21</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Ialomiţa</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dolj</td>
<td>137</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>57</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Suceava</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Olt</td>
<td>21</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Ilfov</td>
<td>19</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Tulcea</td>
<td>13</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Covasna</td>
<td>12</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Brăila</td>
<td>26</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Hunedoara</td>
<td>39</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Braşov</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Braşov</td>
<td>60</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bistrița-Năsăud</td>
<td>33</td>
<td>12</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bihor</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vrancea</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Constanța</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Arad</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Caras-Severin</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Harghita</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Prahova</td>
<td>16</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Teleorman</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Buzău</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vrancea</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sâlaj</td>
<td>128</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sibiu</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Brăila</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Cluj</td>
<td>122</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Iași</td>
<td>86</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bihor</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Satu Mare</td>
<td>41</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>NSVFSA Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dâmbovița</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Satu Mare</td>
<td>14</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>23</td>
<td>16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Prahova</td>
<td>11</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bistrița- Năsăud</td>
<td>34</td>
<td>23</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sibiu</td>
<td>14</td>
<td>6</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Constanța</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Giurgiu</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Hunedoara</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Botoșani</td>
<td>18</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Alba</td>
<td>10</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Bacău</td>
<td>9</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Olt</td>
<td>9</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Harghita</td>
<td>14</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Iași</td>
<td>62</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Maramureș</td>
<td>18</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Brașov</td>
<td>36</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>Domestic Animal</td>
<td>Covasna</td>
<td>26</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Argeş</td>
<td>17</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dâmboviţa</td>
<td>12</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Caras-Severin</td>
<td>19</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bihor</td>
<td>26</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vâlcea</td>
<td>8</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Cluj</td>
<td>58</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Teleorman</td>
<td>34</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Ialomiţa</td>
<td>13</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vrancea</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dolj</td>
<td>8</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Buzău</td>
<td>7</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Suceava</td>
<td>72</td>
<td>24</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Arad</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Neamţ</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>10</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vaslui</td>
<td>6</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sâlaj</td>
<td>34</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Tulcea</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Brăila</td>
<td>9</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Romania</td>
<td>2821</td>
<td>322</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bacău</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Cluj</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Botoşani</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>25</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vrancea</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Neamț</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bistrița-Năsăud</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>București</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>66</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Brâila</td>
<td>12</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Suceava</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sălaj</td>
<td>5</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>București</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Hunedoara</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Constanța</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Gorj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Region</td>
<td>Units tested</td>
<td>Total units positive for Lyssavirus (rabies)</td>
<td>Rabies virus (RABV)</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-------------------</td>
<td>---------</td>
<td>-------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------</td>
<td>-------------</td>
<td>---</td>
<td>---------------------</td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Dolj</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Teleorman</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>12</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Gorj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Cluj</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucharest</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Rats - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Prahova</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Rats - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Vaslui</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Gorj</td>
<td>22</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bucharest</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Alba</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sibiu</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Neamț</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bistrița-Năsăud</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Romania</td>
<td>91</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Călărași</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Hunedoara</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Covasna</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bacău</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Sălaj</td>
<td>7</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Bihor</td>
<td>17</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic Animal</td>
<td>Botoșani</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Iaşi</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Maramureş</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Suceava</td>
<td>2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bucureşti</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Romania</td>
<td>8</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Sălaj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Dolj</td>
<td>2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Brașov</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Gorj</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Alba</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for Lyssavirus (rabies)</th>
<th>Rabies virus (RABV)</th>
<th>EBLV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild boars - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Romania</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vrancea</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Bacău</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Covasna</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Hunedoara</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>București</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>NSVFSA</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Vâlcea</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Veterinary clinics - Monitoring - active</td>
<td>NSVFSA</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > brain</td>
<td>Domestic</td>
<td>Animal</td>
<td>Romania</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>EBLV-2</td>
</tr>
<tr>
<td>Bats - wild - Natural habitat - Monitoring - active</td>
</tr>
<tr>
<td>Bats - wild - Natural habitat - Monitoring - active</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th></th>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bats - wild - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Natural habitat - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bears - wild - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3
<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active 1)</td>
<td>23</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active 2)</td>
<td></td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Cats - stray cats - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th></th>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>3)</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>4)</td>
<td>47</td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
<td></td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Deer - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Deer - wild - Veterinary clinics - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>7) 41</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>6)</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>3</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Dogs - stray dogs - Veterinary clinics - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>9)</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferrets - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Ferrets - wild - Veterinary clinics - Monitoring - active</td>
<td>13</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>28</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>8</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>--------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>13</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>14</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>15</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>16</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>17</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>18</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>19</td>
</tr>
</tbody>
</table>

EBLV-2 = Equine Rhinovirus-like Virus 2
Lyssavirus = Lyssavirus (unspecified virus)
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>20</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>21</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>22</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>23</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>24</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>25</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>26</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>8</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Hunting - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>16</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>23</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>8</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>15</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>16</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>5</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>14</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>7</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>27</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>5</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>24</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>4</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>9</td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Foxes - wild - Natural habitat - Monitoring - active</td>
<td>6</td>
</tr>
<tr>
<td>Foxes - wild - Veterinary clinics - Monitoring - active</td>
<td>322</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>13</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>9</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Goats - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Jackals - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Jackals - wild - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Pigs - unspecified - Veterinary clinics - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Rats - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Rats - wild - Veterinary clinics - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>3</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>10</td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>---------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Sheep - mixed herds - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
</tbody>
</table>
Table Rabies in animals

<table>
<thead>
<tr>
<th>EBLV-2</th>
<th>Lyssavirus (unspecified virus)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>2</td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Veterinary clinics - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Wild boars - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Wild boars - wild - Veterinary clinics - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td>1</td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>EBLV-2</td>
<td>Lyssavirus (unspecified virus)</td>
</tr>
<tr>
<td>--------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>Wolves - wild - Natural habitat - Monitoring - active</td>
<td></td>
</tr>
<tr>
<td>Wolves - wild - Veterinary clinics - Monitoring - active</td>
<td>37</td>
</tr>
</tbody>
</table>

Comments:

1) 3 from 23 tested by IFD and PCR RT as well
2) tested by FAT also
3) tested by FAT also
4) 5 from 47 tested by IFD and PCR RT as well
5) tested by FAT also
6) 1 from 3 tested by IFD and PCR RT as well
7) 9 from 41 tested by IFD and PCR RT as well
8) tested by FAT also
9) tested by FAT also
10) 1 from 13 tested by IFD and PCR RT as well
11) tested by FAT also
12) tested by FAT also
13) tested by FAT also
14) tested by FAT also
Table Rabies in animals

Comments:

15) tested by FAT also
16) tested by FAT also
17) tested by FAT also
18) tested by FAT also
19) tested by FAT also
20) tested by FAT also
21) tested by FAT also
22) tested by FAT also
23) tested by FAT also
24) tested by FAT also
25) tested by FAT also
26) tested by FAT also
27) tested by FAT also
28) tested by FAT also
29) 132 from 322 tested by IFD and PCR RT as well
30) tested by FAT also
31) 1 from 13 tested by IFD and PCR RT as well
32) 1 from 2 tested by IFD and PCR RT as well
33) tested by FAT also
34) 1 from 10 tested by IFD and PCR RT as well
35) tested by FAT also
36) tested by FAT also
Table Rabies in animals

Comments:

37) 1 from 1 tested by IFD and PCR RT as well
2.12 STAPHYLOCOCCUS INFECTION

2.12.1 General evaluation of the national situation

2.13 Q-FEVER

2.13.1 General evaluation of the national situation

A. Coxiella burnetii (Q-fever) general evaluation

History of the disease and/or infection in the country

The surveillance is made according with the Order of the President of the National Sanitary Veterinary and Food Safety Authority no. 43/2012. Testing is performed only on clinical suspicion in case of abortions of ruminants.

The active surveillance is made by CFT (Complement Fixation Test) or ELISA of all bovine, sheep and goats in case of abortions with unspecified diagnostic on blood samples harvest after 14-21 days. This surveillance is made on the suspicion of the disease through serological, bacteriological and morfo-pathological exams. On lymph nodes, liver, lung, kidney, placental and myocardium tissue are made morfo-pathological and necropsy exams by Romanowsky-Giemsa or Lillie-Pasternack method.

A. For confirmation of bovine livestock:
1. The PCR samples for testing purposes as follows:

 I) From minimum six cattle (three multiparous and three primiparous), from the number of cattle that have aborted after 15 days and less than four months ago. It will be taken blood samples for serological testing by ELISA (using preferable antigen prepared from Coxiella isolates obtained from ruminates)

 ii) From the bovine with breeding affections (placental retention, metritis) expressed in the last four months. It will be taken blood samples for serologic testing by ELISA (using preferable antigen prepared from Coxiella isolates obtained from ruminates for reaching a number of six tested animals)

2. From the animals which do not have breeding problems it will be taken blood sampled and examined serologically by ELISA (using preferable antigen prepared from Coxiella isolates obtained from ruminates for reaching a number of six tested animals).

B. For confirmation of small ruminant livestock:
1. From a total of 2 to 6 samples from taken from goats and sheep that have aborted in the last eight days. It will be taken vaginal swab, placental swab, or aborted material for PCR examination.

 Will perform two PCR tests on individual samples or two samples are composed of more than two animals tested.

2. In case when only one sample is available for PCR examination or one of two samples analyzed by quantitative PCR, apply the following scheme:

 i) From goats and sheep that have aborted 15 days or three weeks ago it will be taken blood samples for serological examination by ELISA (using preferable antigen prepared from Coxiella isolates obtained from ruminates, for reaching minimum number of tested animals to ten, especially the aborted ones, if possible five or bigger number).

 ii) From goats and sheep that gave birth prematurely 15 days or three months ago, it will be taken blood samples for serological examination by ELISA (using preferable antigen prepared from Coxiella isolates obtained from ruminates, for reaching minimum number of tested animals to ten, especially the aborted
iii) From sheep and goats from the same herd which do not present breeding affections three months ago after giving birth, it will be taken blood samples for serological examination by ELISA (using preferable antigen prepared from Coxiella isolates obtained from ruminates, for reaching minimum number of tested animals to ten, especially the aborted ones, if possible five or bigger number).

National evaluation of the recent situation, the trends and sources of infection

Q fever is a zoonotic disease caused by Coxiella burnetii, a stable bacteria that resists to heat, drying and many common disinfectants. This resistance enables the bacteria to survive for a long period in the environment. Cattle, sheep, and goats are the main reservoirs but a wide variety of other animals can be contaminated, including domestic pets. Coxiella burnetii does not usually cause clinical disease in these animals, although an increased abortion rate and fertility problems in cattle, sheep and goats are observed. The emergence of these common symptoms over a longer period of time leads finally to the diagnosis of Q fever. Organisms are excreted in milk, urine, and faeces by infected animals. Animals shed the organisms especially during parturition within the amniotic fluids and the placenta. Airborne transmission can occur in premises contaminated by placental material, birth fluids or excreta from infected animals. Airborne inhalation is an important transmission route of infection.

Relevance of the findings in animals, feedingstuffs and foodstuffs to human cases (as a source of infection)

Livestock farmers, dairy workers, veterinarians, slaughterhouse and meat processing plant workers, and researchers at laboratories or facilities housing susceptible animals are especially concerned and have to be informed about this disease, the possible transmission of infection and preventive measures to be respected.

Recent actions taken to control the zoonoses

The following measures could be used in the prevention and control of Q fever:
Public education and information on sources of infection giving advice to high risk persons, especially with preexisting cardiac valvular disease or individuals with vascular grafts and pregnant women restrict
access to barns and laboratories used in housing potentially infected animals quarantine aborted animals appropriately disposal of placenta, birth products, fetal membranes, and aborted fetuses use only pasteurized milk and milk products infected
holding facilities should be located away from populated areas. Measures should be implemented to prevent airflow to other occupied areas
2.13.2 Coxiella (Q-fever) in animals

Table Coxiella burnetii (Q fever) in animals

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Analytical Method</th>
<th>Sampling unit</th>
<th>Total units positive for Coxiella (Q-fever)</th>
<th>C. burnetii</th>
<th>No of clinically affected herds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cattle (bovine animals) - adult cattle over 2 years - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>ELISA, Indirect ELISA (I-ELISA)</td>
<td>Animal</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>Goats - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Domestic</td>
<td>Real-Time PCR</td>
<td>Animal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Goats - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>ELISA, Indirect ELISA (I-ELISA)</td>
<td>Animal</td>
<td>52</td>
<td>0</td>
</tr>
<tr>
<td>Goats - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Real-Time PCR</td>
<td>Animal</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>ELISA, Indirect ELISA (I-ELISA)</td>
<td>Animal</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > foetus/stillbirth</td>
<td>Domestic</td>
<td>Real-Time PCR</td>
<td>Animal</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Sheep - animals over 1 year - Farm - Surveillance</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>animal sample > milk</td>
<td>Domestic</td>
<td>ELISA, Indirect ELISA (I-ELISA)</td>
<td>Animal</td>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>
2.14 WEST NILE VIRUS INFECTIONS

2.14.1 General evaluation of the national situation

2.14.2 West Nile Virus in animals

A. West Nile Virus in Animals

Monitoring system
 Sampling strategy
 For 2013, the strategy involved sampling from horses in three villages from two counties (Constanta and Braila) where IgM conversions were found in 2011, and, subsequently official notification was sent to O.I.E. The strategy was the same as in 2012.

Frequency of the sampling
 Samples were taken in June, August and October.

Type of specimen taken
 Serum

Case definition
 Case means an individual animal infected by a pathogenic agent, with or without clinical signs (O.I.E. Terrestrial Animal Heath Code)

Diagnostic/analytical methods used
 West Nile IgM sandwich ELISA

Vaccination policy
 No vaccination

Other preventive measures than vaccination in place
 No other measures

Control program/mechanisms
 The control program/strategies in place
 No control program/strategy

Recent actions taken to control the zoonoses
 No recent action

Measures in case of the positive findings or single cases
 No measures

Notification system in place
 National notification system

Results of the investigation
 All samples were negative.

Relevance of the findings in animals to findings in foodstuffs and to human cases (as a
source of infection)

No viral circulation was present in those areas, during 2013.
<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Vaccination status</th>
<th>Analytical Method</th>
<th>Sampling unit</th>
<th>Region</th>
<th>Units tested</th>
<th>Total units positive for West Nile Virus</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solipeds, domestic - horses - Farm - Monitoring - active</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>no</td>
<td>IgM-capture ELISA (MAC-ELISA)</td>
<td>Animal</td>
<td>Brăila</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>Solipeds, domestic - horses - Farm - Monitoring - active</td>
<td>I.D.A.H</td>
<td>Objective sampling</td>
<td>animal sample > blood</td>
<td>Domestic</td>
<td>no</td>
<td>IgM-capture ELISA (MAC-ELISA)</td>
<td>Animal</td>
<td>Constanța</td>
<td>56</td>
<td>0</td>
</tr>
</tbody>
</table>

West Nile Virus

Solipeds, domestic - horses - Farm - Monitoring - active
Solipeds, domestic - horses - Farm - Monitoring - active
3. INFORMATION ON SPECIFIC INDICATORS OF ANTIMICROBIAL RESISTANCE
3.1 **ESCHERICHIA COLI, NON-PATHOGENIC**

3.1.1 General evaluation of the national situation

3.1.2 Antimicrobial resistance in Escherichia coli, non-pathogenic

Table Cut-off values used for antimicrobial susceptibility testing of Escherichia coli, non-pathogenic in Animals

<table>
<thead>
<tr>
<th>Class</th>
<th>Drug</th>
<th>Concentration (microg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
<td>2</td>
<td>Resistant ></td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td>16</td>
<td>Resistant <=</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Cefotaxime</td>
<td>0.25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ceftazidime</td>
<td>0.5</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
<td>0.064</td>
<td></td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of Escherichia coli, non-pathogenic in Animals

<table>
<thead>
<tr>
<th>Antimicrobial Class</th>
<th>Drug</th>
<th>Concentration (microg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
<td>Resistant ></td>
<td>Resistant <=</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfonamides</td>
<td>256</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sulfamethoxazole</td>
<td>64</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Trimethoprim</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values used for antimicrobial susceptibility testing of Escherichia coli, non-pathogenic in Feed

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td>Cefotaxime</td>
</tr>
<tr>
<td></td>
<td>Ceftazidime</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Quinolones</td>
<td>Nalidixic acid</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>Sulfonamides</td>
</tr>
<tr>
<td></td>
<td>Sulfamethoxazole</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>Trimethoprim</td>
</tr>
<tr>
<td>Table Cut-off values used for antimicrobial susceptibility testing of Escherichia coli, non-pathogenic in Feed</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
</tr>
</tbody>
</table>

**	**anti-microbial agent**	**Cut-off value (mg/L)**
**| Amoxicillin | 2 |
**| Amikacin | 32 |
**| Ampicillin | 2 |
**| Ciprofloxacin | 0.16 |
**| Gentamicin | 8 |
**| Kanamycin | 32 |
**| chloramphenicol | 8 |
**| streptomycin | 32 |
**| trimethoprim sulphamethoxazole | 1.25 |

Table Cut-off values used for antimicrobial susceptibility testing of Escherichia coli, non-pathogenic in Food

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>2</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>16</td>
</tr>
<tr>
<td>Amphenicols</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>16</td>
</tr>
<tr>
<td>Cephalosporins</td>
<td></td>
</tr>
<tr>
<td>Cefotaxime</td>
<td>0.25</td>
</tr>
<tr>
<td>Ceftazidime</td>
<td>0.5</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>0.064</td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>8</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
</tr>
<tr>
<td>Nalidixic acid</td>
<td>16</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td></td>
</tr>
<tr>
<td>Sulfonamides</td>
<td>256</td>
</tr>
<tr>
<td>Sulfamethoxazole</td>
<td>64</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>8</td>
</tr>
<tr>
<td>Trimethoprim</td>
<td></td>
</tr>
<tr>
<td>Trimethoprim</td>
<td>2</td>
</tr>
</tbody>
</table>
Table: Cut-off values used for antimicrobial susceptibility testing of Escherichia coli, non-pathogenic in Food
3.2 ENTEROCOCCUS, NON-PATHOGENIC

3.2.1 General evaluation of the national situation

3.2.2 Antimicrobial resistance in Enterococcus, non-pathogenic isolates

Table Cut-off values for antibiotic resistance of E. faecalis in Animals

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Concentration (microg/ml)</td>
<td></td>
</tr>
<tr>
<td>Zone diameter (mm)</td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Glycopeptides (Cyclic peptides, Polypeptides)</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Oxazolidines</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance of E. faecalis in Animals

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>Concentration (microg/ml)</th>
<th>Zone diameter (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetracyclines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance of E. faecalis in Feed

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Zone diameter (mm)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Glycopeptides (Cyclic peptides, Polypeptides)</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
</tr>
<tr>
<td>Oxazolidines</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td></td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance of E. faecalis in Food

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td></td>
</tr>
<tr>
<td>Streptomycin</td>
<td></td>
</tr>
<tr>
<td>Amphenicols</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td></td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td></td>
</tr>
<tr>
<td>Glycopeptides (Cyclic peptides, Polypeptides)</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td></td>
</tr>
<tr>
<td>Oxazolidines</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td></td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td></td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td></td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance of E. faecium in Animals

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Glycopeptides (Cyclic peptides, Polypeptides)</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Oxazolidines</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Streptogramins</td>
<td>Quinupristin/Dalfopristin</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance of E. faecium in Feed

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard method used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Zone diameter (mm)</td>
</tr>
<tr>
<td>Standard</td>
<td>Resistant ></td>
</tr>
<tr>
<td></td>
<td>Resistant <=</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
</tr>
<tr>
<td>Gentamicin</td>
<td>32</td>
</tr>
<tr>
<td>Streptomycin</td>
<td>128</td>
</tr>
<tr>
<td>Amphenicols</td>
<td></td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>32</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
</tr>
<tr>
<td>Ciprofloxacin</td>
<td>4</td>
</tr>
<tr>
<td>Glycopeptides (Cyclic peptides, Polypeptides)</td>
<td></td>
</tr>
<tr>
<td>Vancomycin</td>
<td>4</td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
</tr>
<tr>
<td>Erythromycin</td>
<td>4</td>
</tr>
<tr>
<td>Oxazolidines</td>
<td></td>
</tr>
<tr>
<td>Linezolid</td>
<td>4</td>
</tr>
<tr>
<td>Penicillins</td>
<td></td>
</tr>
<tr>
<td>Ampicillin</td>
<td>4</td>
</tr>
<tr>
<td>Streptogramins</td>
<td></td>
</tr>
<tr>
<td>Quinupristin/Dalfopristin</td>
<td>1</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
</tr>
<tr>
<td>Tetracycline</td>
<td>4</td>
</tr>
</tbody>
</table>
Table Cut-off values for antibiotic resistance of E. faecium in Food

<table>
<thead>
<tr>
<th>Test Method Used</th>
<th>Standard methods used for testing</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Concentration (microg/ml)</td>
</tr>
<tr>
<td></td>
<td>Standard</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Gentamicin</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
</tr>
<tr>
<td>Amphenicols</td>
<td>Chloramphenicol</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td>Ciprofloxacin</td>
</tr>
<tr>
<td>Glycopeptides</td>
<td>Vancomycin</td>
</tr>
<tr>
<td>(Cyclic peptides, Polypeptides)</td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td>Erythromycin</td>
</tr>
<tr>
<td>Oxazolidines</td>
<td>Linezolid</td>
</tr>
<tr>
<td>Penicillins</td>
<td>Ampicillin</td>
</tr>
<tr>
<td>Streptogramins</td>
<td>Quinupristin/Dalfopristin</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td>Tetracycline</td>
</tr>
</tbody>
</table>
4. INFORMATION ON SPECIFIC MICROBIOLOGICAL AGENTS
4.1 CRONOBACTER

4.1.1 General evaluation of the national situation

4.1.2 Cronobacter in foodstuffs

A. Cronobacter in foodstuffs

Monitoring system

Diagnostic/analytical methods used

ISO/TS 22964; in accordance with Regulation (EC), No 2073/2005 on microbiological criteria for foodstuffs.

Notification system in place

Results of the investigation

In 2011, 3 samples of infant formula were analyzed for Enterobacter sakazakii.
In 2012 no samples were analysed for Cronobacter.
In 2013 no samples were analysed for Cronobacter.

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
4.2 HISTAMINE

4.2.1 General evaluation of the national situation

A. Histamine General evaluation

History of the disease and/or infection in the country
 No relevant data

National evaluation of the recent situation, the trends and sources of infection
 No relevant data

Relevance of the findings in animals, feedingstuffs and foodstuffs to human cases (as a source of infection)
 No relevant data

Recent actions taken to control the hazard
 No relevant data
4.2.2 Histamine in foodstuffs

A. Histamine in foodstuffs

Monitoring system

Methods of sampling (description of sampling techniques)

The samples were taken from the following fish species: Scombridae, Clupeidae, Engraulidae, Coryfenidae, Pomatomidae, Scombresosidae.

Definition of positive finding

For fishery products manufactured/prepared from fish species associated with a high amount of histidine are sampled 9 units from which 2 units may have the values between 100 mg/kg - 200 mg/kg.

For fishery products which have undergone enzyme maturation treatment in brine, manufactured/prepared from fish species associated with a high amount of histidine are sampled 9 units from which 2 units may have the values between 200 mg/kg - 400 mg/kg.

Diagnostic/analytical methods used

HPLC AOAC JURNAL, vol.81, no. 5/1998

Control program/mechanisms

The control program estratégias in place

The Romanian Control Programme is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated which is according with the provisions of Regulation 2005/2073/EC (with subsequent amendments) in order to detect histamine.

Notification system in place

Rapid Alert System for Food and Feed.

Results of the investigation

In 2012, there were analyzed 155 samples from fish species and all samples had values less than 100 mg/kg.

In 2013, there were analyzed 170 samples from fish species and all samples had values less than 100 mg/kg.

National evaluation of the recent situation, the trends and sources of infection

In 2012 no positive samples were detected

In 2013 no positive samples were detected

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
Table Histamine in food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units in non-conformity</th>
<th><= 100 mg/kg</th>
<th>>100 - <= 200 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Packing centre - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>92</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Source of information</td>
<td>Sampling strategy</td>
<td>Sampler</td>
<td>Sample type</td>
<td>Sample origin</td>
<td>Sampling unit</td>
<td>Sample weight</td>
<td>Units tested</td>
<td>Total units in non-conformity</td>
<td><= 100 mg/kg</td>
<td>>100 - <= 200 mg/kg</td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---------</td>
<td>------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>--------------</td>
<td>--------------------------------</td>
<td>---------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Catering - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Processing plant - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Retail - Surveillance</td>
<td>I.H.V.P.H. and C.S.V.F.S.D.</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample</td>
<td>Batch</td>
<td>10 Gram</td>
<td>43</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Processing plant - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Retail - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Processing plant - Surveillance</td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Retail - Surveillance</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Histamine in food

<table>
<thead>
<tr>
<th></th>
<th>>200 - <=400 mg/kg</th>
<th>> 400 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Packing centre - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Packing centre - Surveillance</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Processing plant - Surveillance</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products from fish species associated with a high amount of histidine - not enzyme maturated - Retail - Surveillance</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Catering - Surveillance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Processing plant - Surveillance</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fish - Fishery products which have undergone enzyme maturation treatment in brine - Retail - Surveillance</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
4.3 STAPHYLOCOCCAL ENTEROTOXINS

4.3.1 General evaluation of the national situation

4.3.2 Staphylococcal enterotoxins in foodstuffs

A. Staphylococcal enterotoxins in foodstuffs

Monitoring system

Sampling strategy

According to The Romanian National Surveillance Programme published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority no 43/2012 yearly updated which is according with the provisions of Regulation 2005/2073/EC

Definition of positive finding

Diagnostic/analytical methods used

The screening European method from CRL.

Control program/mechanisms

The control program/strategies in place

The Romanian National Surveillance Programme published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority, yearly updated which is according with the provisions of Regulation 2005/2073/EC.

Notification system in place

Rapid Alert System for Food and Feed.

Results of the investigation

In 2012 were analyzed 186 samples and neither of them were found positive.
In 2013 were analyzed 411 samples and one of them was found positive.

National evaluation of the recent situation, the trends and sources of infection

In 2011 were analyzed 51 samples, in 2012 were analyzed 186 samples; in both years, neither of these samples were found positive.
In 2013 were analyzed 411 samples from which 1 was positive.
Table Staphylococcal enterotoxins in food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Staphylococcal enterotoxins</th>
<th>Enterotoxin D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>208</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from pasteurised milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>13</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Processing plant - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>10</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>94</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>43</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Selective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>8</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from cows' milk - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>5</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table Staphylococcal enterotoxins in food

<table>
<thead>
<tr>
<th>Source of information</th>
<th>Sampling strategy</th>
<th>Sampler</th>
<th>Sample type</th>
<th>Sample origin</th>
<th>Sampling unit</th>
<th>Sample weight</th>
<th>Units tested</th>
<th>Total units positive for Staphylococcal enterotoxins</th>
<th>Enterotoxin D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeses made from sheep's milk - hard - made from pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>16</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>HACCP and own checks</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - hard - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses made from sheep's milk - soft and semi-soft - made from pasteurised milk - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>3</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cheeses, made from mixed milk from cows, sheep and/or goats - soft and semi-soft - made from raw or low heat-treated milk - Retail - Surveillance</td>
<td>Suspect sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dairy products (excluding cheeses) - milk powder and whey powder - Retail - Surveillance</td>
<td>Objective sampling</td>
<td>Official sampling</td>
<td>food sample > milk</td>
<td>Batch</td>
<td>25 Gram</td>
<td>2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5. FOODBORNE

Foodborne outbreaks are incidences of two or more human cases of the same disease or infection where the cases are linked or are probably linked to the same food source. Situation, in which the observed human cases exceed the expected number of cases and where a same food source is suspected, is also indicative of a foodborne outbreak.
A. Foodborne outbreaks

System in place for identification, epidemiological investigations and reporting of foodborne outbreaks

The municipal public health authorities are responsible for detecting, preventing diseases related to food and water and for notifying to the other authorities involved. Ill persons and the overall epidemiological investigation are the responsibilities of the regional authorities (public health and veterinary public health authorities).

Description of the types of outbreaks covered by the reporting:

During 2013 there were 20 outbreaks, 1 episode was weak-evidence and 19 episodes were with strong evidence, 442 people ill and 325 people hospitalized.

The following results (table) include food borne outbreaks notified in the framework of mandatory notification.

National evaluation of the reported outbreaks in the country:

Trends in numbers of outbreaks and numbers of human cases involved

In 2010, a total number of 29 food borne outbreaks were reported; in 2011 a total number of 6 food borne outbreaks were reported, and in 2012 a total number of 10 food borne outbreaks were reported, under the mandatory notification system.

In 2013 a total number of 20 food borne outbreaks were reported.

The causative agent was confirmed in laboratory.

The causative agent was identified based on epidemiological and laboratory findings.

Relevance of the different causative agents, food categories and the agent/food category combinations

The causative agent was isolated in the incriminated foodstuff or epidemiological suspected (table). Trichinella was the most frequently identified agent in food borne disease outbreaks.

Relevance of the different type of places of food production and preparation in outbreaks

Most of the outbreaks were reported to be linked to the private household and the most important factors contributing to food borne disease outbreaks reported were contamination from uncontrolled meat consumption.

Control measures or other actions taken to improve the situation

All the control measures are described in Romanian Surveillance Programme which is a national programme, published in Romanian Official Journal as Order of the President of the National Sanitary Veterinary and Food Safety Authority.

Additional information

Institute for Hygiene and Veterinary Public Health (I.H.V.P.H.)
Table Foodborne Outbreaks: summarised data

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Number of outbreaks</th>
<th>Human cases</th>
<th>Hospitalized</th>
<th>Deaths</th>
<th>Strong evidence Number of Outbreaks</th>
<th>Total number of outbreaks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Salmonella - S. Typhimurium</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Salmonella - S. Enteritidis</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Salmonella - Other serovars</td>
<td>1</td>
<td>14</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Campylobacter</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Listeria - Listeria monocytogenes</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Listeria - Other Listeria</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Yersinia</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Escherichia coli, pathogenic - Verotoxigenic E. coli (VTEC)</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus - B. cereus</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacillus - Other Bacillus</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Staphylococcal enterotoxins</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clostridium - Cl. botulinum</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Clostridium - Cl. perfringens</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Weak evidence or no vehicle outbreaks</td>
<td>Number of outbreaks</td>
<td>Human cases</td>
<td>Hospitalized</td>
<td>Deaths</td>
<td>Strong evidence Number of Outbreaks</td>
<td>Total number of outbreaks</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
<td>-------------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Clostridium - Other Clostridia</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Bacterial agents - Brucella</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Bacterial agents - Shigella</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other Bacterial agents - Other Bacterial agents</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parasites - Trichinella</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Parasites - Giardia</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parasites - Cryptosporidium</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parasites - Anisakis</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Parasites - Other Parases</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Viruses - Norovirus</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Viruses - Hepatitis viruses</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Viruses - Other Viruses</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other agents - Histamine</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other agents - Marine biotoxins</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Other agents - Other Agents</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Unknown agent</td>
<td>Number of outbreaks</td>
<td>Human cases</td>
<td>Hospitalized</td>
<td>Deaths</td>
<td>Strong evidence Number of Outbreaks</td>
<td>Total number of outbreaks</td>
</tr>
<tr>
<td>---------------</td>
<td>---------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>---------------------------</td>
</tr>
<tr>
<td>Unknown agent</td>
<td>0</td>
<td>unknown</td>
<td>unknown</td>
<td>unknown</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
Trichinella - T. spiralis

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBO Code</td>
</tr>
<tr>
<td>Number of outbreaks</td>
</tr>
<tr>
<td>Number of human cases</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
</tr>
<tr>
<td>Number of deaths</td>
</tr>
<tr>
<td>Food vehicle</td>
</tr>
<tr>
<td>More food vehicle information</td>
</tr>
<tr>
<td>Nature of evidence</td>
</tr>
<tr>
<td>Outbreak type</td>
</tr>
<tr>
<td>Setting</td>
</tr>
<tr>
<td>Place of origin of problem</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
</tr>
<tr>
<td>Contributory factors</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
</tr>
<tr>
<td>Additional information</td>
</tr>
</tbody>
</table>
Trichinella - Trichinella spp., unspecified

<table>
<thead>
<tr>
<th>FBO Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outbreaks</td>
<td>2</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>7</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>7</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Pig meat and products thereof</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td>Detection of causative agent in food vehicle or its component - Detection of indistinguishable causative agent in humans</td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Household</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>Household</td>
</tr>
<tr>
<td>Setting</td>
<td>Household</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td>contamination from uncontrolled meat consumption</td>
</tr>
</tbody>
</table>
Trichinella - Trichinella spp., unspecified

<table>
<thead>
<tr>
<th>FBO Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>8</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>8</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle information</td>
<td>Pig meat and products thereof</td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food chain or its environment - Detection of indistinguishable causative agent in humans</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>General</td>
</tr>
<tr>
<td>Setting</td>
<td>Household</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td>contamination from uncontrolled meat consumption</td>
</tr>
</tbody>
</table>
Trichinella - Trichinella spp., unspecified

<table>
<thead>
<tr>
<th>FBO Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>8</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>8</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Pig meat and products thereof</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td></td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food vehicle or its component - Symptoms and onset of illness pathognomonic to causative agent</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>General</td>
</tr>
<tr>
<td>Setting</td>
<td>Household</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td>contamination from uncontrolled meat consumption</td>
</tr>
</tbody>
</table>
Salmonella spp., unspecified

<table>
<thead>
<tr>
<th>FBO Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>164</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>119</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Buffet meals</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td>meat products ready-to-eat, cheese, roasted meat</td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food vehicle or its component - Detection of indistinguishable causative agent in humans</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>General</td>
</tr>
<tr>
<td>Setting</td>
<td>Unknown</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Infected food handler</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>
S. Enteritidis

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>FBO Code</td>
<td></td>
</tr>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>9</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>9</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Mixed food</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td>boeuf salad, potato salad with mayonnaise, meatballs</td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food vehicle or its component - Detection of indistinguishable causative agent in humans</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>General</td>
</tr>
<tr>
<td>Setting</td>
<td>Household</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Infected food handler</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
<tr>
<td>FBO Code</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>5</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>5</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Sweets and chocolate</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td></td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food vehicle or its component - Symptoms and onset of illness pathognomonic to causative agent</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>Household</td>
</tr>
<tr>
<td>Setting</td>
<td>Household</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Inadequate heat treatment</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>
S. Typhimurium

<table>
<thead>
<tr>
<th>FBO Code</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>31</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>6</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Bakery products</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td>pastry with mushrooms</td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food chain or its environment - Detection of indistinguishable causative agent in humans</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>General</td>
</tr>
<tr>
<td>Setting</td>
<td>Household</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Unknown</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>
Unknown

| FBO Code |
|---|---|
| Number of outbreaks | 2 |
| Number of human cases | 76 |
| Number of hospitalisations | 61 |
| Number of deaths | 0 |
| Food vehicle | Buffet meals |
| More food vehicle information |
Nature of evidence	Detection of causative agent in food chain or its environment - Symptoms and onset of illness pathognomonic to causative agent
Outbreak type	General
Setting	Unknown
Place of origin of problem	Unknown
Origin of food vehicle	Domestic
Contributory factors	Infected food handler
Mixed Outbreaks (Other Agent)	
Additional information	wedding dishes
Romania - 2013 Report on trends and sources of zoonoses

Unknown

<table>
<thead>
<tr>
<th>Value</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>FBO Code</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of outbreaks</td>
<td>1</td>
</tr>
<tr>
<td>Number of human cases</td>
<td>40</td>
</tr>
<tr>
<td>Number of hospitalisations</td>
<td>13</td>
</tr>
<tr>
<td>Number of deaths</td>
<td>0</td>
</tr>
<tr>
<td>Food vehicle</td>
<td>Buffet meals</td>
</tr>
<tr>
<td>More food vehicle information</td>
<td>meat products ready-to-eat, cheese</td>
</tr>
<tr>
<td>Nature of evidence</td>
<td>Detection of causative agent in food chain or its environment - Symptoms and onset of illness pathognomonic to causative agent</td>
</tr>
<tr>
<td>Outbreak type</td>
<td>General</td>
</tr>
<tr>
<td>Setting</td>
<td>Hospital/medical care facility</td>
</tr>
<tr>
<td>Place of origin of problem</td>
<td>Unknown</td>
</tr>
<tr>
<td>Origin of food vehicle</td>
<td>Domestic</td>
</tr>
<tr>
<td>Contributory factors</td>
<td>Infected food handler</td>
</tr>
<tr>
<td>Mixed Outbreaks (Other Agent)</td>
<td></td>
</tr>
<tr>
<td>Additional information</td>
<td></td>
</tr>
</tbody>
</table>