

FoodDrinkEurope's views on the Food Additives Re-evaluation programme

Stakeholder Platform, Brussels, 28th April 2014

Angeliki Vlachou

Manager Food Policy, Science, R&D
FoodDrinkEurope

Contents

- Background
- Reasons for data collection
- FoodDrinkEurope's organisation
 - Strategy on data collection
- Lessons from Batch 1 and Batch 2 data collections
- Exposure assessment
- Conclusions

Background

- The Commission's ad hoc group on food additives (May 2008):
 - representatives of the European Commission, EFSA, JECFA
 - several member states
 - FoodDrinkEurope

Conclusions:

- necessary to identify additive usage levels most likely to make a significant contribution to intake
- food industry could focus on collecting data that was of greatest relevance to risk assessment and risk management

What is Required to Achieve Realistic Exposure Assessments?

- Food consumption data
 - Should be tested and validated for purpose
- Use levels
 - With an understanding of the amount of additives added at the time of manufacture and the actual amount of additives still present in the product as consumed
 - Should take account of complete range of exposure values
- Occurrence
 - Including occurrence (food effectively containing the additive/food in which the additive is authorised)

What is Required to Achieve Realistic Exposure Assessments?

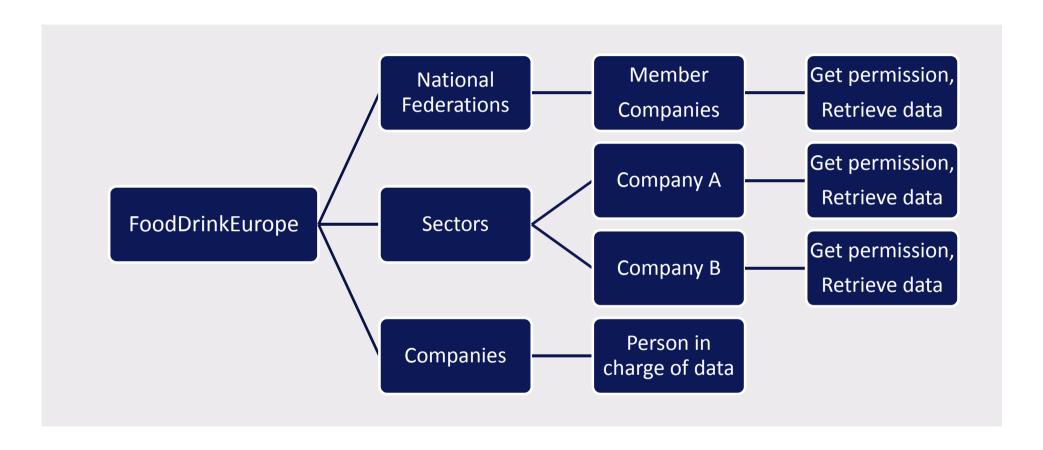
- Modelling methods
 - Should be transparent and versatile
- Overall approach
 - Should take all uncertainties into consideration and avoid 'cumulative conservatism'
- Include Uncertainty Analysis

FoodDrinkEurope's Organisation

National federations (26, including 3 observers)

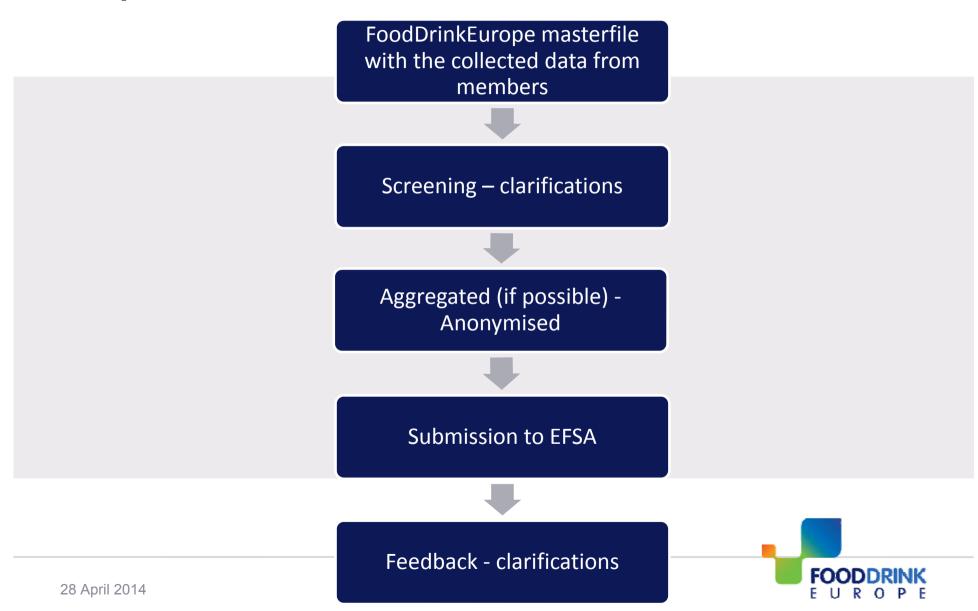
- E.g.: FDF (UK), ANIA (FR), BLL (DE), Federalimentare (IT) etc.
- Observers: Norway (NHO), Turkey (TGDF) and BFU (Baltic Food Union)

■ EU level sector associations (25)


 E.g.: Breakfast cereals (CEEREAL), Chocolate, Biscuits and Confectionary (CAOBISCO), Spirit drinks (SpiritsEurope), Dairy products (EDA), Snacks (ESA), Soft drinks (UNESDA), etc.

■ Large companies (17)

- E.g.: Agrokor, Coca-Cola, Cargill, Danone, General Mills, Heineken, Kellogg, Mars, Nestlé, PepsiCo, Ülker, Unilever, etc.



Response to Data Collection calls

Response to Data Collection calls

Lessons from Batch 1 and Batch 2 data collections

- Requires huge effort from the food industry
- Involves a lot of people
- Pragmatic deadlines are needed
- No changes once the call is announced
- Work programme: 1call per year with a reasonable deadline to plan the resources in advance

Lessons from Batch 1 and Batch 2 data collections - Templates

- Practical problems:
 - Difficulties encountered for members to open and use the two spread sheets - Issues of firewalls and other security devices that prevented macros from running
- Appropriateness of the template:
 - Template was not developed for usage level additive data collection
 - Country of reporting
 - Some sub-categories are missing
 - Development of a common language: e.g. definition of representative grades

Lessons from Batch 1 and Batch 2 data collections

- Batch 3 template was improved:
 - Open one spread sheet
 - Fields automatically filled in
 - Drop down list: EU countries first and alphabetically ordered
 - Incorporate the legislation into the main spread sheet
- Clarifications:
 - Active principle or whole additive, e.g. colours, gums
 - Carry over
 - Additives part of mixtures

Batch 1 contribution

Records	Additive	E number
58	Curcumin	E 100
22	Azorubine/Carmoisine	E 122
25	Allura Red AC	E 129
3	Indigotine, Indigo carmine	E 132
1	Brown HT	E 155
17	Chlorophylls	E 140 (i)
5	Chlorophyllins	E 140 (ii)
18	Copper complexes of chlorophylls	E 141 (i)
26	Copper complexes of chlorophyllins	E 141 (ii)
12	β-Apo-8'-carotenal	E 160e
37	Titanium dioxide	E 171
11	Iron oxides and hydroxides	E 172

Batch 2 contribution

Records	Additive	E number
18	Quinoline yellow	E 104
39	Sunset Yellow	E 110
84	Cochineal, Carminic acid, Carmines	E 120
19	Ponceau 4R	E 124
6	Brilliant black BN	E 151
47	Annatto, bixin, norbixin	E160b
13	Sulphur dioxide	E 220
9	Sodium sulphite[a]	E 221
6	Sodium bisulphite[a]	E 222
29	Sodium metabisulphite[a]	E 223
7	Potassium metabisulphite[a]	E 224
6	Calcium sulphite[a]	E 226
6	Calcium bisulphite[a]	E 227
6	Potassium bisulphite[a]	E 228
6	Potassium nitrite[b]	E 249
3 28 April 20	114 Sodium nitrate[c]	E 251

Records	Additive	E number
7	Potassium nitrate[c]	E 252
293	Ascorbic acid	E 300
31	Sodium ascorbate[d]	E 301
2	Calcium ascorbate[d]	E 302
56	Ascorbyl palmitate[3]	E 304i
1	Ascorbyl stearate[3]	E 304ii
38	Tocopherol-rich extract	E 306
96	α - tocopherol	E 307
2	γ- tocopherol	E 308
2	δ - tocopherol	E 309
86	Glycerol	E 422
13	Sucrose acetate isobutyrate	E 444
6	Polyglycerol esters o fatty acids	f E 475
6	Sorbitan monostearate	E 4 <mark>91</mark>
2	Sorbitan tristearate	E 492

Exposure assessment

- Realistic exposure assessment
 - FAIM categorisation system is too broad
- Refinement leads to a more realistic exposure assessment
- Occurrence data are not taken into account
- Currently a deterministic approach is followed
 - Use of only the maximum reported levels/permitted levels
- Probabilistic approach avoid worst case scenario

Exposure assessment: FACET tool

- FACET is an FP 7 project led by Joint Research Centre (JRC):
 - develop tools to better estimate additive exposure, to prevent risk assessors to constantly use worst case scenarios for exposure assessment
 - to constantly use worst case scenarios for exposure assessment
 Centralised & harmonised database on food intake suitably categorised for food chemical exposures
 - Validated probabilistic methods and associated software programme for estimation of target food chemicals

Conclusions

- Collection of good quality data and exposure assessments are an essential component of a reliable risk assessment
- Food industry can make important contribution to meaningful and complete data collection
- Addressing uncertainty and variability is essential, this should however not lead to the use of worst case scenarios being the basis for exposure assessment
- Practical solutions are required, training of personnel dealing with data collection
- Significant challenges remain

Thank you for your attention!

